Effect of thyroxine and carbimazole treatments on basal and histamine stimulated gastric acid secretion in the common African Toad (*Bufo regularis*).

Ajayi A. Folorunsho¹ and Olaleye S. Babafemi²

¹ Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
² Department of Physiology, University of Ibadan, Ibadan, Nigeria.

Corresponding author: aajayi22@lautech.edu.ng

ARTICLE INFO

ABSTRACT

Several studies have confirmed that thyroid hormones influence acid secretion particularly in mammals, but little attention is given to the influence of thyroid hormone on gastric acid secretion in amphibians. In this study, the basal and stimulated gastric acid secretions in carbimazole and thyroxine-treated common Africa toads were compared with controls. Thirty toads (100-120g b.w) were divided into three groups of ten toads each; Group “A” the control, Group “B” the hypothyroid group given carbimazole (5mg/250g b.w) and Group “C” the hyperthyroid group treated with thyroxine (5µg/100g b.w) treatments were carried out for 35 days by daily oral administration. Serum T₃, T₄ and TSH levels confirmed the thyroid status of the toads. The mean Basal Gastric Acid (GAS) secretion in the control toads was significantly (p<0.05) higher than that of the carbimazole treated group, while the basal GAS of the thyroxine treated group was significantly (p<0.05) increased compared to the control. Administration of histamine intramuscularly increased significantly (p<0.05) the basal GAS of hyperthyroid toads, and the increment is higher than the GAS in control animals and in carbimazole treated toads. The parietal cells counts were significantly (p<0.05) higher in thyroxine treatment and lowered in carbimazole treated toads compared with control animals. In conclusion, increased thyroid hormone is associated with a rise in the basal secretion of gastric acid which is associated with increased histaminergic and zymogenic cell activities.

INTRODUCTION

Thyroid hormone has been shown to influence the function of somebody organs including cardiovascular (Wickenden *et al.*, 1997) and nervous systems (Tejani *et al.*, 1994), liver (Daza *et al.*, 1997), growth process (Fisher *et al.*, 1982; Connors, 1994) development and reproductive systems. There is evidence that they also affect gastric acid secretion (Fatemeh *et al.*, 2002). Akiyama *et al.* (1982) found out that the administration of thyroxine into rats led to significant increases in serum T₃ level, gastric pH (reduced acid secretion) and serum gastrin level. Adeniyi and Olowookorun observed that chronic administration of thyroxine increased parietal cell mass, as well as basal acid secretion and histamine-stimulated acid secretion (Adeniyi and Olowookorun, 1989), mice also show the same trend (Olaleye and Elegbe, 2005).
The gastric acid secretion stimulator used in the present study is histamine. Histamine is released from the enterochromaffin cells of gastric mucus and has a pivotal role in the control of gastric acid secretion (Debas and Carvaial, 1994). Acetylcholine via activating histidine de-carboxylase increases the histamine release (Sandvik et al., 1988; Welsh et al., 1994) which in turn increases acid secretion via its receptors and cyclic adenosine monophosphate (cAMP) as a mediator in parietal cells. Sachs et al. (1997) observed that in rats, the released histamine from enterochromaffin cells activates the voltage-dependent Ca+2/C1- channels and consequently increases gastric acid secretion.

Surveys of available literature reveal data majorly on the role of thyroid hormone on basal and histamine-stimulated acid secretion in mammals’ stomach alone (Adeniyi and Olowookorun, 1989). There is insufficient information on the influence of thyroxine on basal gastric acid secretion and histamine-stimulated acid secretion in other vertebrates such as amphibian and therefore remain a question to be answered. Considering the importance of thyroxine in metamorphosis and the growth of amphibians (Laurent and Daniel, 2019), a study into the link between the thyroid gland and the digestive system (Ishizaya-Oka and Shi, 2005) and that of the possible inclusion of toad as a model of gastric secretion studies (Molero et al., 1998) is very important. This study was designed to investigate the influence of altered thyroid state on basal and histamine-stimulated gastric acid secretion in the typical African toad (Bufo regularis) to give more insight on the mechanism by which thyroid hormones affect gastric acid secretion in amphibians.

MATERIALS AND METHODS

Experiments were carried out on three groups (with ten adult toads per group) of toads weighing 80-120gm. Toads used in this experiment were randomly collected as described by Oyebola and Elegbe (1975). They were maintained under control ambient temperature and were allowed two weeks of acclimatization to the new environment before treatment.

Food and water were given *ad libitum*. The first group of toads (the control) were given distilled water, the second group (the hypothyroid) were treated with 5mg/250g b.w of carbimazole daily, while the third group (the hyperthyroid) were treated with 5µg/100g b.w of thyroxine daily. The drugs were administered orally in solution form for 35 days (Ajayi and Akhigbe, 2012). The weight of each toad was
recorded before the treatment, weekly as the treatment progressed and at the end of the treatment.

At the end of the experiments, blood was collected by cardiac puncture. Pooled sera samples from 5 toads from each group were analyzed for the concentrations of thyroxine (T₄), tri-iodothyronine (T₃) and thyroid-stimulating hormone (TSH), using Enzyme-linked Immunosorbent Assay (ELISA) Method (Surks et al., 2004).

Five stomach samples from each group were used for the study on parietal cell mass, and the stomach was removed and fixed in formol saline for 24hours, each stomach was then cut and embedded in paraffin wax, followed by sectioning with a microtome, after which the routine stain hematoxyline and eosin were applied. Parietal cells picked up dark stains. The cellular density was analyzed adopting the method of WHO (1991) in which a grid was inserted into the eyepiece of the microscope and focused through stained sections of tissues. All the cells were enumerated, and corrections were made for cells bisected by the edges or borders of the grid. The cell population was estimated as the number of cells/mm² of tissue. The counting was done at a magnification of x400. Sala et al. (1981) mathematical correction was used to correct for the actual number of cells counted.

The in-vivo study of gastric acid secretion was carried out using a modification of the continuous perfusion method of Ghosh and Schild (1959) as modified by previous workers (.Adeniyi and Olowookorun, 1989; Ajayi et al., 2012).

The toads were deprived of food overnight and then anaesthetized (i.p) with pentobarbital (35mg/kg). The cardiac and pyloric ends of the toad stomach were cannulated with polyethylene tubing, and the stomach was perfused with Ringer’s solution at room temperature, the rate of flow of the perfusate was regulated to give an effluent of 1.0± 0.1ml/min.

In each animal, four samples of basal acid secretion were first determined for all the groups, after the basal collections, the toads were injected (i.m) with 3mg/kg b.w histamine to determine the histamine-induced gastric acid secretion. Effluents from the stomachs during the experiment were collected at 15 min intervals for 90 minutes after histamine injection, and the acid content was determined by titration.

Acid secretions were expressed in µeq/15min. The mean acid secretions in all the groups studied were calculated, and the paired t-test was used in assessing the statistical significance of the differences. p-value of 0.05 or less was taken as statistically significant.

RESULTS

Weight change in altered thyroid state.

There was significant (p ≤ 0.05) reduction in percentage weight gain in thyroxine treated toads (-17.66 ± 1.43%), and a significant increase in percentage weight gain in carbimazole treated toads (20.47 ±0.35%) when compared with the control (5.25±0.29%) as shown in Figure 2.

Thyroid function test:

The results (Figure 3) show that chronic thyroxine treatment in toads increased T₃ and T₄ levels while TSH level decreased significantly (p ≤ 0.05). There were also significant (p ≤ 0.05) reduction in T₃ and T₄ levels and significant p ≤ 0.05) increase in TSH level of carbimazole treated toads when compared with the control.
Fig. 2: Percentage weight change following treatment with carbimazole and thyroxine a,b,c = Values with different superscripts are significant at p ≤ 0.05.

Fig. 3: Concentration of thyroid hormones following treatment with carbimazole and thyroxine

* = Significant difference (p ≤ 0.05) between carbimazole treated and levothyroxine treated compared with control

** = Significant difference (p ≤ 0.05) between carbimazole treated compared with control

*** = Significant difference (p ≤ 0.05) between levothyroxine treated compared with control

Parietal Cell Count:
Table 1 shows the parietal count of toad’s stomach following treatments with carbimazole and thyroxine.

Table 1: Parietal cell Count of Control, Carbimazole and Thyroxine treated toads (cells/mm² of mucosa)

<table>
<thead>
<tr>
<th>Group</th>
<th>Parietal cell count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>104 ± 0.32*</td>
</tr>
<tr>
<td>Carbimazole treated</td>
<td>65 ± 0.32**</td>
</tr>
<tr>
<td>Thyroxine treated</td>
<td>161 ± 0.32***</td>
</tr>
</tbody>
</table>

* = Significant difference (p ≤ 0.05) between carbimazole treated and levothyroxine treated compared with control

** = Significant difference (p ≤ 0.05) between Carbimazole treated compared with control

*** = Significant difference (p ≤ 0.05) between levothyroxine treated compared with control

Basal and histamine stimulated gastric acid secretion
The effect of altered thyroid state on basal and histamine stimulated gastric acid secretion in toads are shown in Table 2.
Table 2: Percentage change in basal and histamine stimulated gastric acid secretion in treated Toad

<table>
<thead>
<tr>
<th>Toads</th>
<th>Basal secretion±SEM (µeq/15min)</th>
<th>Maximal response to histamine(µeq/15min)</th>
<th>% change over basal ±SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.38 ± 0.07*</td>
<td>2.18 ± 0.04*</td>
<td>61.77±0.06*</td>
</tr>
<tr>
<td>Carbimazole treated</td>
<td>1.13 ± 0.09***</td>
<td>1.92 ± 0.05***</td>
<td>55.86±0.08***</td>
</tr>
<tr>
<td>Thyroxine treated</td>
<td>2.24 ± 0.08 **</td>
<td>3.18 ± 0.09**</td>
<td>69.27±0.08**</td>
</tr>
</tbody>
</table>

* = Significant difference (p ≤ 0.05) between carbimazole treated and levothyroxine treated compared with control
** = Significant difference (p ≤ 0.05) between carbimazole treated compared with control
*** = Significant difference (p≤ 0.05) between levothyroxine treated compared with control

Plate 1, photomicrograph section showed an excellent outline of parietal cells as indicated by black arrow, and plate 2, photomicrograph section showed large parietal cells indicated by arrow colour blue and ova zymogenic cells indicated by arrow colour brown

Plate 1: Control toad Parietal Cell
Plate 2: Thyroxine treated toad Parietal Cell (H&E X 40)(H&E X 40).

Plate 3, showed atrophy of parietal cells indicated by a black arrow and deformed zymogenic cells as indicated by blue arrow

Plate 3: Photomicrograph section of stomach showing Parietal Cell Slide of carbimazole treated toad (H&E X 400)

DISCUSSION

The results of the thyroid function tests confirmed that the toads were either hypothyroid or hyperthyroid at the time of the experiment. The serum T3 and T4 levels were in a pathophysiologic range, and this confirmed the result of the indirect tests of body weight changes, which provides indices of peripheral actions of thyroid hormones (Min et al., 2018).

The study observed a significant decrease in weight in thyroxine-treated toads which contradict the work of Adeniyi and Olowookorun (1990), who reported a
significant increased liver, kidney, with the stomach and heart weight in thyroxine-
treated rats. However, this is in agreement with previous studies which revealed a
significantly reduced body weight gain in altered thyroid state (Ajayi and Akhigbe,
2012; Ajayi et al., 2013). The result showed the role of the average concentration of
thyroid hormone in optimal growth (Ajayi and Akhigbe, 2012).

The relationship between thyroid hormones and its altered states on gastric acid
secretion has been studied in several animal species and human (Akiyama et al.,
1982; Kazuhiko et al., 2006). The reduced secretion in carbimazole treatment and
increased secretion in tyrosine treatment is in agreement with the studies on rats
(Akiyama et al., 1982; Adeniyi and Olowookorun, 1990); in human subjects
(Kazuhiko et al., 2006; Fatemeh and Saleh, 2012). Adeniyi and Olowookorun (1990)
suggested that thyroid hormones regulate basal and secretagogue stimulated acid
secretion via their effects on parietal cell mass (Adeniyi and Olowookorun, 1989).
Kayode and Michael (1998) also explained that an increase in the mass of parietal
cells increases mitotic activity and causes an increase in acid secretion in thyroxine
treatment, while thyroidectomy inhibits parietal cell mitotic activity and decreases
acid output.

The significant increase in gastric acid output after the administration of
histamine in this study have been observed in earlier studies on amphibian species
(Oyebola and Alada, 1992), but no information on the effect in altered thyroid state.
The present study showed that thyroxine further increased the effect of histamine on
gastric acid secretion. The result also shows the same pattern with the increased
parietal cell count observed in this study. Parietal cells contain histamine H2-type of
receptors for the endocrine control of acid secretion (Forte and Zhu, 2010). The
presence of histamine- H2 receptors in the gastric mucosa of bullfrog has been
described (Watanabe and Goto, 1975). It was observed that the regulation of gastric
acid secretion by histamine is through the activation of adenylyl cyclase, which
therefore increases the production of intracellular CAMP (Zeng and Sachs, 1998).
Thus, it was suggested that thyroid hormone is capable of increasing gastric acid
secretion locally by stimulating the release of histamine from the enterochromaffin-
like (ECL) cells (Kitamura et al., 1999). The histology of the stomach of an animal may be responsible for the type of
diets taken by the animal, and the architectural arrangement of its structures gives an
interpretation their mechanism of adaptation to these diets (Hildebrand and Goslow,
2001; Ofusori et al., 2008).

The large parietal cells and ova zymogenic cells as a result of thyroxine
treatment in toad is different when compared with the work of Akiyama et al. (1989)
which reported that parietal cells of rats remain normal after treatment with
thyroxine. Also, carbimazole treatment showed atrophy of parietal cells and deformed
zymogenic cells in the toad.

The parietal cells of rats secrete gastric acid; while the zymogenic cells of rats
produce pepsin (Kayode and Michael, 1989). Previous studies believe that in
amphibian the zymogenic cells produce both acid and pepsin (Forte and Zhu, 2010).
The results of this study suggest that both parietal cells and zymogenic cells may be
responsible for acid secretion in the toad, which could be responsible for the
prominent secretion of acid recorded.
CONCLUSION

In conclusion, this study showed that thyroxine is associated with a significant rise in basal gastric acid secretion from both parietal cell count rise with an increase in the size and zymogenic cell activities. While carbimazole treatment reduced the secretion due to the reduced size of parietal cells count and activities of zymogenic cells. This study put the toad in a position as a possible model for gastric acid secretion study.

REFERENCES

