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ABSTRACT

Harmful algal blooms (HABS), a sign of ecosystem imbalance, are frequently
brought on by the numerous environmental changes that show the growing
global human footprint and climate change. Phaeocystis globosa blooms are
common in coastal waters and have had detrimental effects on biological
environments by producing harmful hemolytic chemicals, creating nuisance
foam depleting oxygen, and forming ichthyotoxic algal blooms.
Cycloheximide is a fungicide that occurs naturally and is a protein synthesis
inhibitor in eukaryotic cells generated by the Gram-positive Streptomyces
griseus bacteria. The data revealed that cycloheximide treatment (250 pg/ml)
with algal cells of P. globosa induced a decrease in photosynthetic pigment
content (chlorophyll a, carotenoid), photosynthetic efficiency, total algal
biomass production, total soluble protein, activities of antioxidant enzymes of
peroxidase, catalase, and superoxide dismutase, as compared to the control
samples. However, there is an increased level of caspase-3 activity,
malondialdehyde, and dichlorofluorescein compared to the control samples.
The alteration in cell morphology and cell membrane integrity of P. globosa
was detected by transmission electron microscopy technologies. In control
cells, the morphology was normal, with intact organelle structure, typical
normal nucleus, chloroplasts, mitochondria, and other organelles. After being
exposed to cycloheximide for 72 hours, P. globosa algae cells displayed
increased cytoplasmic vacuolization and the disintegration of numerous
organelles, including the nucleus and chloroplasts. Furthermore, the nucleus
was significantly swollen and blurry, and intracellular materials leaked out of
the cell via a damaged plasma membrane. The results indicate that application
of cycloheximide (250 pg/ml) possesses the potential to be used as an eco-
friendly biological control agent for managing harmful effects of P. globosa
algal blooms, particularly in water treatment processes.

INTRODUCTION

HABs are the most serious consequence of eutrophication. They have become
major marine environmental disasters occurring worldwide and have been causing
irreversible damage to ecosystems, public health, tourism, and fisheries (Heisler et
al., 2008), thereby limiting economic development in fisheries and threatening marine
organisms, human health, tourism, and aquaculture (Anderson et al., 2012; Zhang et
al., 2014). Algal blooms can seriously compromise human safety and the
environment, including the death of aquatic animals, the deterioration in water
quality, and the destruction of aquatic environments (Peperzak & Van Wezel, 2023;
Wei et al., 2024). An important and common marine haptophyte, Phaeocystis
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(Prymnesiophyceae), may cause blooms in marine ecosystems with agminated
colonies (Rousseau et al., 2007). It has been established that Phaeocystis spp.
flagellates are dangerous algae which produce enormous blooms that kill fish (Blauw
et al., 2010). In tropical marine environments, P. globose is the primary cause of toxic
algal blooms, where it establishes enormous colonies (Jun et al., 2020; Liang et al.,
2021). According to reports, the eukaryotic HAB-producing species P. globosa is
linked to shellfish mortality and has detrimental effects on the entire ecological
system by generating harmful hemolytic chemicals, producing nuisance foam, and
depleting oxygen (Zhang et al., 2014). In the meantime, P. globosa extracellular
polymeric hazardous nanoparticles were detected in marine habitats (Zhang et al.,
2012).

P. globosa blooms in the form of colonies floating on the surface of seawater,
which can lead to the discoloration of coastal seawater when many colonies are
formed, resulting in marine ecosystem disasters (Wei et al., 2024). P. globosa has
been found to produce the following hazardous metabolites: fatty acids with
polyunsaturated chains (van Rijssel et al., 2007) and dimethylsulfoniopropionate
(Mohapatra et al., 2014). According to reports, the most severe toxicities to aquatic
organisms are caused by hemolytic glycolipid activity (Yang et al., 2009), and
ichthyotoxic activity (Basti et al., 2021). This contributes to cause economic deficits
(Lancelot et al., 2011) and fish deaths (Long et al., 2015). Scientists have focused on
persistent HABs outbreaks in coastal waters, encouraging the development of novel
technology and management techniques (Anderson et al., 2012).

Cycloheximide is a fungicide that occurs naturally and is a protein synthesis
inhibitor in eukaryotic cells generated by the Gram-positive Streptomyces griseus
bacteria (Alfred & Dale, 1987; Schneider-Poetsch et al., 2010). Cycloheximide
blocks eukaryotic translational elongation by interfering with the translocation stage
of protein synthesis, which involves the movement of two mMRNA molecules and
tRNA in proximity to the ribosome (Muller et al., 2012). It is a cell-permeable
molecule that binds the ribosome and that specifically prevents eukaryotic translation
from reaching its elongation phase (Schneider-Poetsch et al., 2010; Buchanan et al.,
2016). Cycloheximide application decreased the photosynthetic pigment content,
increased protein degradation, reduced the quantum yield and electron transport of
PSII, affected the donor and acceptor sides of PSII, impeded the collection and
transduction of light energy, and affected PSI, indicating that cycloheximide can
reduce photosynthetic activity (Buchanan et al., 2016; Gao et al., 2016).

The present study aims to investigate the algicidal effectiveness of
cycloheximide against Phaeocystis globosa by analyzing its physiological responses.
Several parameters were assessed, including photosynthetic pigments (chlorophyll a
and carotenoids), photosynthetic activity, total biomass production, caspase-3 activity,
total soluble protein, and the activities of antioxidant enzymes (CAT, POD, and
SOD). Lipid peroxidation (MDA) and dichlorofluorescein (DCF) fluorescence were
measured to evaluate oxidative damage in the algal cells. In addition, alterations in
cell morphology and membrane integrity were examined using transmission electron
microscopy (TEM) after seven days of cycloheximide treatment.
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MATERIALS AND METHODS

Reagents

Raw powder with a purity of 99.9% of cycloheximide was acquired from the
German company Sigma-Aldrich (Sigma-Aldrich Chemie GmbH).
Collection of the P. globose algal samples

Sampling collection of the P. globose, which belongs to the family Asteraceae,
was conducted in the east of the Qaitbay areas (31.22-31.26°N-29.88-29.98°E),
Alexandria, Egypt. These areas are vulnerable to annually recurrent algal blooms
triggering between late April and late May 2025.

Culture preparation of P. globosa algal cells and algicidal effectiveness of
cycloheximide

Phaeocystis globosa algal cells were cultivated for five days to achieve the
phase of logarithmic growth (10° cells/mL) before being employed as an inoculant in
sterile modified Guillard's f/2 nutrient medium, which is suitable for the growth of
most algae (Guillard & Ryther, 1962), at 20°C at a cycle ratio of 12h light: 12h dark
with a 75 mmol photons m?s? light intensity. Cycloheximide dissolved in
dimethylsulfoxide at a concentration of 250ug/ ml was incorporated in 500mL of P.
globosa algal cultured for seven days (Hartwell et al., 1970; Zheng et al., 2013). The
previously described conditions were used for the incubation of all samples and
controls. Each treatment was performed in triplicate.

Determination of photosynthetic pigments

The level of chlorophyll a in the algal medium of P. globosa was estimated
following the methods outlined by Moussa (2001), Moussa and Khodary (2003),
and Moussa and Hassen (2017). Carotenoids were investigated using the technique
of Bazarnova et al. (2024) and Laylani et al. (2024).

Estimation of photosynthetic activity
To examine whether cycloheximide affected the photosynthetic efficiency of P.
globosa, the maximum photochemical quantum yield of photosystem Il (Fv/Fm) was
measured using a Phyto PAM Il phytoplankton & photosynthesis analyzer (WALZ,
Effeltrich, Germany). After sub-sampling at the end of this experiment, a 4-mL
sample was collected from each bottle and was then subjected to photosynthetic
efficiency measurement. Prior to the measurement, the samples were kept in the dark
for 10min to relax the reaction centers of photosystem Il (LUrling et al., 2018). The
Fv/Fm ratio was measured using a saturation pulse and was determined using the
following equations:
Fv=Fm - F0 (1)
Fv/Fm = (Fm—F0)/ Fm 2
Where, FO is the minimum fluorescence level excited by the very low-intensity
measured light, and Fm is the maximum fluorescence level elicited by a saturation
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pulse (Park et al., 2025). The photosynthetic efficiency was determined assuming the
physiological state represented by the highest quantum yield of PSII (Fv/Fm).

Estimation of total algal biomass

After 7 days of growth, aliquots of one liter were centrifuged at 7000 xg for
30min. The algal biomass following centrifugation was dried at 100°C to a stable
constant weight, cooled, and weighed. The results were calculated and presented in g
L~! (Helal et al., 2025).

Estimation of activities of antioxidant enzymes (CAT, POD, and SOD),
malondialdehyde (MDA), total soluble protein, reactive oxygen species (ROS),
and caspase-3 activity

POD and CAT activities were assessed in accordance with the study of Qian et
al. (2009b). SOD activity was measured following the outlines of Trenzado et al.
(2006). Each enzyme's activity was represented on a protein basis. The
malondialdehyde level was estimated by the method of Dogru et al. (2008) and Kong
et al. (2013) to measure the level of lipid peroxidation. Bradford (1976) calculated
the concentrations of total soluble proteins using the bovine serum albumin as the
reference standard. Reactive oxygen species (ROS) accumulation was estimated by
the fluorescent probe, 2',7'-dichlorofluorescein diacetate using the method of Rastogi
et al. (2010). A caspase-3 like activity assay kit (Solarbio, China) was used to assess
P. globosa caspase-3 activity.

Transmission electron microscopy (TEM)

Ultrathin sections stained with lead citrate and 6% uranyl acetate were
examined with a JEM2100F TEM to investigate the ultrastructural changes in P.
globosa cells treated with cycloheximide (Kong et al., 2013).

Statistical analysis

The statistical program (SPSS version 17), United States, Illinois, Inc., was used
to conduct analytical statistics. Tukey's analysis was used and treatment means were
compared at P< 0.05 (Moussa, 2004; Moussa & Galad, 2015b; Abdel-Alim et al.,
2023).

RESULTS AND DISCUSSION
Effect of cycloheximide treatment on chlorophyll a, carotenoid, photosynthetic
activity, biomass production, caspase-3 activity, and total soluble protein in P.
globosa after 7 days of growth

The effect of cycloheximide treatment on chlorophyll a, -carotenoid,
photosynthetic activity, biomass production, caspase-3 activity, and total soluble
protein in P. globosa are shown in Table (1).

Cycloheximide application (250ug/ ml) severely inhibited the photosynthetic
pigment content of chlorophyll a, carotenoid, photosynthetic activity, biomass
production, and total soluble protein by 50.5, 55.1, 50.0, 50.0, and 55.6 %,
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respectively, in P. globosa algal cells as compared to the control after 7 days of
growth. However, cycloheximide treatment increased caspase-3 activity by 400%,
compared to the control (Table 1). The photosynthetic pigment is a crucial marker of
photosynthesis and algal growth (Ahmed et al., 2025). Decreased photosynthetic
efficiency is related to a reduction in the ability of the cells to perform photosynthesis,
impacting their energy production (Lawlor & Tezara, 2009).

Cycloheximide severely inhibited the photosynthetic pigment content of
chlorophyll a and carotenoids, photosynthetic activity, and biomass production since
it is a translation inhibitor that prevents the synthesis of new proteins essential for
pigment biosynthesis, such as enzymes (Gao et al., 2016).

Cycloheximide is frequently used to cause apoptosis through cleaving
polymerase (ADP-ribose), boosting caspase-3 activity, DNA fragmentation, and loss
of cell-cell adhesion, all of which cause a developmental arrest and cell death
(Negron & Lockshin, 2004; Wu et al.,, 2004). Recent evidence indicates that
cycloheximide greatly inhibits protein synthesis (Croons et al., 2008).

Table 1. Effect of cycloheximide application on chlorophyll a,
carotenoid, photosynthetic activity, total biomass production, caspase-
3 activity, and total soluble protein in P. globosa after 7 days of growth

Parameter Control P. globosa
Chlorophyll a a b
(mg g FW) 9.3 4.7
Carotenoid a b
(mg gFW) 25.6 14.1
Photosynthetic activity
0.6 0.3°
(Fv/Fm)
Total biomass production 5 6 13
QL9 ' '
Caspase-3 activity a b
(fold change) 10 40
Total soluble protein . b
(mg LY 72 40

The three-triplicate mean is used to express values. Significant means are those with
different superscript letters (P<0.05), whereas those with the same superscript letters
are not-significant (P>0.05).
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Impact of cycloheximide treatment on antioxidant enzyme activities (POD, CAT,
and SOD), malondialdehyde (MDA), and dichlorofluorescein (DCF) in P. globosa
after 7 days of growth

The effect of cycloheximide treatment (250ug/ ml) on POD, CAT, SOD, MDA,
and DCF in P. globosa after 7 days of growth is illustrated in Table (2).

Cycloheximide application (250ug/ ml) severely decreased the antioxidant
enzyme activities of SOD, POD, and CAT by 54.6, 68.4, and 60.3 %, respectively, in
P. globosa algal cells, compared to the control after 7 days of growth. However,
cycloheximide treatment increased MDA and dichlorofluorescein by 292 and 154 %,
respectively, compared to the control (Table 2).

Cycloheximide is a common protein synthesis inhibitor used in research on
apoptosis, or programmed cell death, and decreased antioxidant enzyme activities of
POD, CAT, and SOD (Furukawa et al., 1997; XU et al., 2015). Treatment with
cycloheximide decreased cell viability, increased caspase-3 activity, induced
apoptosis, reduced antioxidant enzyme activities, and increased ROS production
(Babu et al., 2012; Geng et al., 2015). Cycloheximide increased lipid peroxidation
(Pushpendran et al., 1983; Abe & Hiraki, 2009). Application of cycloheximide
increased oxidative stress and increased ROS (reactive oxygen species) formation
(Mattson & Furukawa, 1997).

Table 2. Effect of cycloheximide treatment on catalase (CAT), superoxide dismutase
(SOD), peroxidase (POD), malondialdehyde (MDA), and dichlorofluorescein (DCF)
in P. globosa after 7 days of growth

Parameter Control P. globosa
(V] mgS'1O p?otein) 183 100°
(V] mgF')lopliotein) %’ 67"
(U mgc':lpp\)-::otein) 6% 38°
(umjﬁ_l) 262 76"
e

The three-triplicate mean is used to express values. Significant means are those with different
superscript letters (P<0.05), whereas those with the same superscript letters are not significant (P>0.05).

Morphological and ultrastructural changes of P. globosa algal cells after
cycloheximide treatment

The structure of subcellular TEM analysis was used to compare P. globosa algal
cells treated with cycloheximide (250ug/ ml) to control cells (Fig. 1). In control cells,
we could see that the morphology was normal, with intact organelle structure and
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typical normal nucleus, chloroplasts, mitochondria, and other organelles (Fig. 1A, B).
After cycloheximide treatment for 24 hours, algal cells appeared to have distinct
plasmolysis; nuclear morphology was still normal at this time, but cytoplasmic
hypervacuolization was less compact than in the control cells.

Nevertheless, the treated cells displayed noticeable vacuolization and
plasmolysis (Fig. 1C- E). After 48h of treatment, nearly every organelle in the treated
cells became compromised, and in certain instances, the chloroplasts suffered
significant damage (Fig. 1F, G). After being exposed to cycloheximide (250ug/ ml)
for 72 hours, P. globosa algae cells displayed increased cytoplasmic vacuolization
and the disintegration of numerous organelles, including the nucleus and chloroplasts
in addition to extreme plasmolysis and vacuolization. Furthermore, the release of
cellular inclusions from cells, which left the cell wall mostly intact, showed that the
cells had entirely stopped performing essential functions with extreme plasmolysis
and vacuolization. Furthermore, the nucleus was significantly swollen and blurry, and
intracellular materials leaked out of the cell via a damaged plasma membrane (Fig.
1H- ).
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Sie

Fig. 1. TEM images of cycloheximide-treated P. globosa algal cells demonstrating the ultrastructure. Control cells (A-B). However, (C-E), (F-
G), and (H-J) represent treatment for 24, 48, and 72h, respectively. nucleus; Py, pyrenoid; CW, cell wall; Chl, chloroplast; M, mitochondria; G,
golgi body; PM, plasma membrane.
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CONCLUSION

The results imply that cycloheximide administration (250ug/ ml) may be utilized as
a sustainable biological control agent to mitigate the negative impacts of P. globosa algal
blooms, especially in water treatment procedures. Current studies indicate that the
mechanisms of inhibition on algal growth mainly take some pathways: photosynthesis
inhibition, destruction of cell structure, inhibition of antioxidant enzymatic activities
(POD, CAT, and SOD), and micromolecular compounds, including carotenoids, which
increased reactive oxygen species (ROS) accumulation leading to cellular damage that
can result in cell death of P. globosa. Cycloheximide treatment increased caspase-3
activity-induced apoptosis, reduced antioxidant enzyme activities, and increased ROS
production. The main manifestations were the induction of oxidative stress, increasing
malondialdehyde content, ROS formation, an impaired cell membrane structure, damage
to the cell membrane structure, and potentially disrupting its barrier function, leading to
cellular damage.
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