Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 29(6): 253 – 268 (2025) www.ejabf.journals.ekb.eg

Comparative Impacts of Plant-Derived Functional Diets (Azolla, Duckweed, and Napier Grass) on Growth, Hematology, and Serum Biochemistry of Grass Carp (Ctenopharyngodon Idella)

Muhammad Shafiq¹, Basim. S. A. Al Sulivany^{2, 3*}, Nuha Hameed Albassam⁴, Nidhal Tahseen Taha Al-Taee⁵, Ayesha Shahid⁶, Ali Hassan⁷, Muhammad Owais⁷, Syed Sibt E Hassan⁸

*Corresponding Authors: basim.ahmed@uoz.edu.krd

ARTICLE INFO

Article History:

Received: Aug. 5, 2025 Accepted: Oct. 8, 2025 Online: Nov. 8, 2025

Keywords:

Azolla,
Duckweed,
Napier grass,
Growth,
Hematology,
Serum biochemistry,
Ctenopharyngodon idella

ABSTRACT

This study assesses the effects of partial dietary replacement with three plantbased ingredients, Azolla (Azolla pinnata), Duckweed (Lemna minor), and Napier grass (Pennisetum purpureum), on growth performance, hematological indices, and serum biochemical parameters in grass carp (Ctenopharyngodon idella). A 60-day feeding trial was conducted using 240 juvenile fish (initial weight 14.38 ± 0.12 g) randomly distributed into four dietary groups: a control (T0) and three experimental diets containing 10% Azolla (T1), Duckweed (T2), or Napier grass (T3). Each treatment was replicated three times. Growth parameters, feed utilization, hematological profiles, and serum biomarkers were assessed post-trial. Results indicated that the T2 (Duckweed) group exhibited significantly superior final body weight (58.1 \pm 1.4 g), weight gain (43.8 \pm 1.5 g), specific growth rate (2.757 \pm 0.044 % day⁻¹), feed conversion ratio (2.171 \pm 0.035), and protein efficiency ratio (1.531 \pm 0.032) compared to the control and other treatments (P< 0.05). Hematological analysis revealed significantly elevated red and white blood cell counts, hemoglobin, and hematocrit values in the T2 group. Serum biochemical profiles indicated higher total protein, albumin, and globulin levels, along with reduced glucose, cholesterol, triglycerides, and hepatic enzyme activities (AST, ALT, and ALP) in Duckweed-fed fish. Azolla supplementation yielded intermediate results, while Napier grass led to the poorest performance across all parameters. The study concludes that Duckweed at 10% inclusion is a highly effective, sustainable feed ingredient for enhancing growth and health in grass carp aquaculture, whereas Napier grass is less suitable as a primary dietary component.

¹Department of Zoology, University of Education, Township Lahore, Pakistan

²Department of Biology, College of Science, University of Zakho, Zakho, 42002, Duhok, Kurdistan Region, Iraq

³Anesthesia Department, college of health sciences, Cihan University-Duhok

⁴Department of Animal Production, College of Agriculture, University of Tikrit, Salah Al-deen, Iraq

⁵University of Mosul, College of Agriculture and Forestry, Department of Animal Production, Mosul, Iraq

⁶Department of Zoology, Government College University Lahore, Pakistan

⁷Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan

⁸School of Life Sciences, Shanxi University, China

INTRODUCTION

Aquaculture sectors have developed worldwide to support optimal fish growth and health, contributing significantly to nutritional supply and global food security (Obiero et al., 2019; Reshi et al., 2025). The fastest aquaculture practices use sustainable, cost-effective, nutritionally balanced feed to advance the quality of fish (Hossain et al., 2024). C. idella in the freshwater aquaculture of Asia and other parts of the world holds a prominent position due to its consumer acceptability, rapid growth rate, and herbivorous feeding habit (Hassoun et al., 2022; Mohammed et al., 2024). Its capability to employ plant-based feedstuffs makes it a gifted species for assessing alternative feed resources; predominantly, feed costs account for more than 60% of total aquaculture production expenditures (Olaleru et al., 2024; Iheanacho et al., 2025). Fish diets' ingredients for the fish growth frequently rely on soybean meal and fishmeal as primary protein sources, but these are expensive, inadequate in supply, and compete with human and livestock food necessities (Uddin et al., 2023). Nutritionally rich, low-cost, and eco-friendly feed substitutes such as Azolla (Azolla pinnata), Duckweed (Lemna minor), and Napier grass (Pennisetum purpureum) partially replace conservative feedstuffs in aquaculture diets (Wang et al., 2017; Hossain et al., 2024). Azolla is documented as a valuable unconventional feed resource, and it is a free-floating aquatic fern with essential amino acids, minerals, and bioactive compounds and high crude protein content (20–30%) (Naseem et al., 2021). Partial replacement of soybean meal and fishmeal with Azolla meal in fish diets progresses immune response, feed utilization, growth performance, and is considered a sustainable ingredient for aquaculture feeds that also enhances nutritive value due to its ability to fix atmospheric nitrogen in symbiosis with cyanobacteria (Korsa et al., 2024; Anany et al., 2025). Duckweed has also been acknowledged as another free-floating macrophyte that contains balanced amino acids, vitamins, and crude protein (25–35%), a promising protein source in aquafeeds with a quick biomass production rate that supports sustainable feed availability (Ahmad et al., 2022; Du et al., 2025). Duckweed also has positive effects on the dietary inclusion on feed conversion ratio, survival rate, and growth performance in carp species in tilapia without adverse effects on hematological parameters and with better antioxidant and immunomodulatory properties (Deepti et al., 2025). Napier grass (Pennisetum purpureum) is anticipated as a feed improvement in aquaculture systems and widely cultivated as fodder for livestock (Islam et al., 2024). It is rich in vitamins, secondary metabolites, crude fiber, carbohydrates, and contains protein content (8–12%) that is comparatively lower than that of Azolla and Duckweed, which may increase digestive physiology and overall fish health (Tran et al., 2020). Based on their natural herbivorous feeding behavior, grass carp were given diets containing Napier grass to improve gut function, reduce production costs, and support sustainable aquaculture practices (Kurniasih et al., 2024). Dietary treatments in aquaculture provide valuable insights into growth performance, hemato-biochemical indices and metabolic responses of fish (Eissa et al., 2025). Hematological parameters such as hemoglobin concentration, red blood cell count, white blood cell count and hematocrit percentage serve as indicators of oxygencarrying capacity, general health and immune status (Nisa et al., 2024). Similarly, biochemical markers such as serum proteins, glucose, cholesterol, triglycerides, and hepatic enzymes (AST, ALT, ALP) are widely used to assess nutritional status, stress response, and liver function in fish (Al Sulivany et al., 2025). Disparities in these indices can imitate the physiological adaptability of fish to different dietary intrusions and are therefore essential in determining the effectiveness of alternative feed ingredients (Herrera et al., 2019). Although Azolla, Duckweed, and Napier grass show promise as feed supplements, little is known about their comparative effects on grass carp growth and hemato-biochemical responses. Most earlier studies examined single ingredients rather than evaluating them side by side, and limited attention has been given to their influence on serum biochemical markers. Therefore, this study assesses the impact of these plant meals on growth, feed utilization, and health parameters of grass carp. It is assumed that their inclusion would improve physiological indices, lower feed costs, increase growth performance, and support sustainable aquaculture practices.

MATERIALS AND METHODS

Experimental site

This experiment was designed at the University of Education, Township Lahore, Punjab, Pakistan. The main purpose of this study was to examine the dietary supplementation, viz, Azolla (*Azolla pinnata*), Duckweed (*Lemna minor*), and Napier grass (*Pennisetum purpureum*), on growth parameters, haematology and serum biochemical parameters in *Ctenopharyngodon idella* (Grass carp).

Experimental design and fish rearing conditions

A total of 240 healthy juvenile C. idella (average weight 14.38 ± 0.12 g) were purchased from the Government fish hatchery, Lahore and acclimated for 14 days before the start of the feeding trial. During acclimation, fish were maintained in 2000-L fiberglass tanks supplied with continuous aeration and were fed a standard commercial carp diet (32% crude protein) at a rate of 3% body weight twice daily (**Abdulrahman &** Al Sulivany, 2025). Only clinically healthy individuals displaying uniform size, active swimming behavior, bright red gills, and intact fins were selected for the experiment. Four experimental diets were formulated: a control group (T0, without plant supplementation), an Azolla-based diet (T1), a Duckweed-based diet (T2), and a Napier grass-based diet (T3). Each treatment was tested in triplicate using 12 circular fiberglass tanks (300 L capacity each). Fish were randomly stocked at a density of 20 fish per tank (60 fish per treatment). Tanks were continuously aerated using diaphragm air pumps (Hailea® V-60, China) connected to 8 mm PVC airline tubing and cylindrical diffusers (Boyur AS-02, China) to ensure uniform oxygenation and gentle water circulation. Water quality was maintained within optimal limits during the whole 60-day study trial. The water temperature was maintained between 27-29°C using thermostatically controlled heaters, and above the 6.0mg/ L DO level was maintained. pH was stabilized between 7.3–7.6 using food-grade sodium bicarbonate as needed, while total ammonia nitrogen levels were kept below 0.1mg/ L through partial water replacement (25% daily). Water quality parameters were monitored twice daily using a multiparameter water quality meter (Hanna Instruments HI98194, USA) (Owais et al., 2024b; Asad et al., 2025).

Experimental diets and feeding protocol

The 32% crude protein experimental diets were formulated. The basal diet comprised feed ingredients such as wheat bran, rice bran, fish meal, soybean meal, mustard oil cake, and a vitamin-mineral premix. The control diet (T0) with no plant material, while Azolla meal (T1), Duckweed meal (T2), and Napier grass meal (T3) were incorporated at a fixed inclusion level of 10% (100 g/kg feed). The detailed component of the experimental diets is presented in Table (1). All feed ingredients were dried, ground to a fine powder, and accurately weighed using an electronic balance. Ingredients were systematically assorted by means of a mechanical feed mixer to confirm homogeneity. Warm distilled water (35°C) was added gradually to achieve a workable dough consistency, which was then passed through a pellet mill to produce 2mm diameter pellets. Pellets were dried at 28°C under forced air for 48 hours and stored in airtight polyethylene bags at –20°C until use. During the feeding trial, fish in each tank were fed their respective diets at 3% of their total body weight per day, divided into two equal meals (09:00 and 17:00).

Table 1. Ingredient composition (g/kg) of experimental diets supplemented with Azolla, Duckweed, and Napier (10% inclusion level)

Ingredient	Control Diet (T0)	Azolla Diet (T1)	Duckweed Diet (T2)	Napier Diet (T3)
Fish meal	15	15	15	15
Soybean meal	25	22	22	22
Mustard oil cake	15	15	15	15
Wheat bran	20	18	18	18
Rice bran	20	18	18	18
Azolla meal		10		
Duckweed meal			10	
Napier grass meal				10
Vitamin-mineral premix	2	2	2	2
Binder (gelatin/starch)	3	3	3	3
Total	100	100	100	100

Note. The vitamin–mineral premix was incorporated at a level of 2 g per 100 g of diet. Each 100 g of feed formulated with this premix supplied approximately the following nutrients: Vitamin A – 720 IU, Vitamin D₃ – 160 IU, Vitamin E – 20 IU, Vitamin C – 9 mg, Thiamine (B₁) – 0.15 mg, Riboflavin (B₂) – 1 mg, Pyridoxine (B₆) – 0.8 mg, Cyanocobalamin (B₁₂) – 0.002 mg, Niacin – 5.5 mg, 4 mg (Pantothenic acid), – 0.008 mg (Folic acid), 0.18 mg (Biotin), Copper – 0.6 mg, Iron – 11 mg, Zinc – 3 mg, Manganese – 1.8 mg, Iodine – 0.06 mg, Selenium – 0.02 mg, and Cobalt – 0.012 mg. This premix ensured that all essential micronutrient requirements of grass carp were adequately met throughout the experimental period.

Comparative Impacts of Plant-Derived Functional Diets (Azolla, Duckweed, and Napier Grass) on Growth, Hematology, and Serum Biochemistry of Grass Carp (*Ctenopharyngodon Idella*)

Calculation of Growth Parameters

After the end of the experiment duration, for 24 hours, all the fish in the group were fasted, and then with clove oil (50 mg/L), all the fish were anaesthetized and weighed to determine the final body weight. The subsequent growth catalogues were calculated using standard formulas (Al Sulivany et al., 2024b; Owais et al., 2024a).

WG, g (Weight Gain) = Final body weight – Initial body weight

SGR, %/day (Specific Growth Rate) = (ln Final weight–ln Initial weight)/Number of
days (ln Final weight – ln Initial weight) / Number of days (ln Final weight–ln Initial
weight)/Number of days × 100

FI, g/fish (Feed Intake) = Total feed consumed / Number of fish

FCR (Feed Conversion Ratio) = Total feed intake (g) / Total weight gain (g)

PER (Protein Efficiency Ratio) = Weight gain (g) / Protein intake (g)

SR, % (Survival Rate) (= (Final number of fish / Initial number of fish) × 100.

Analysis of haematological parameters and blood collection

After measuring the growth parameters, blood samples were collected by using sterile 3mL syringes from the caudal vein. For the haematological analysis, each sample was divided into two parts: one part was sifted into EDTA-coated tubes to prevent coagulation, and the second part was shifted into plain gel tubes for subsequent serum biochemical assessment. The hematological parameters viz Hb, g/dL (hemoglobin concentration), RBCs, 10^6 /mm³ (red blood cell count), MCV, fL (mean corpuscular volume), hematocrit (%), MCH, pg (mean corpuscular hemoglobin), MCHC, g/dL (mean corpuscular hemoglobin concentration), and white blood cells (× $10^3 \mu L^{-1}$).

These measurements followed the methodology described by **Al Sulivany** *et al.* (2024a). The following standard formulas were used to calculate red blood cell indices:

MCV (fL) =
$$(10 \times PCV) / RBCs$$

MCH (pg) = $(10 \times Hb) / RBCs$
MCHC (g/dL) = $(100 \times Hb) / PCV$

These procedures were applied consistently to all treatments to ensure accurate assessment of the fish haematological parameters.

Serum biochemical parameters

The second part of blood collected was allowed for clotting at room temperature up to 30 minutes, and then centrifuged at 3500 rpm for 10 minutes to separate the serum. The clear supernatant was extracted and stored at -20° C until biochemical analysis. Glucose, cholesterol, and triglycerides were determined by using commercial diagnostic

kits (Merck, Germany) and measured spectrophotometrically (UV–Via spectrophotometer, Shimadzu, Japan) following the manufacturer's instructions (**Xiao** *et al.*, **2023**). Albumin levels were estimated via the bromocresol green (BCG) dye-binding method, with readings recorded at 630nm. Globulin concentration was calculated by subtracting albumin from total protein values:

Globulin (g/dL) = Total protein – Albumin

Total protein concentration in serum was quantified using the biuret method, based on the formation of a violet-colored complex between peptide bonds and copper ions in an alkaline medium, with the absorbance at 540nm using a UV-Vis spectrophotometer. Serum enzyme activities such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) were assayed using commercially available kinetic enzyme assay kits, which measure the rate of NADH oxidation linked to transamination reactions (Owais et al., 2025).

Statistical analysis

ANOVA (One-way analysis of variance) was performed to identify significant differences among treatments by using SPSS software (version 26.0), followed by Tukey's HSD post hoc test (Serban et al., 2024; Mustafa et al., 2025).

RESULTS

The significant result of dietary treatment (P< 0.05) was recorded on the growth performance and feed utilization of the fish, while the survival rate persisted unaffected across all groups (P > 0.05) (Table 2). Final body weight and weight gain were significantly influenced by the experimental diets. Fish fed the T2 diet containing 10% duckweed achieved the highest final weight (58.1 \pm 1.4 g) and weight gain (43.8 \pm 1.5 g), which was significantly greater than that of the control group (T0: 47.1 ± 1.3 g and $33.1 \pm$ 1.4 g, respectively) and the T3 Napier grass group (44.1 \pm 1.2 g and 29.4 \pm 1.8 g, respectively). The T1 Azolla group (54.0 \pm 1.2 g and 39.6 \pm 1.4 g) exhibited intermediate values that were not statistically different from the T0 control. This growth pattern was reflected in the specific growth rate (SGR, P = 0.005), with the T2 group again demonstrating the highest SGR ($2.757 \pm 0.044 \% \text{ day}^{-1}$), significantly outperforming the T0 $(2.372 \pm 0.049 \% \text{ day}^{-1})$ and T3 $(2.247 \pm 0.017 \% \text{ day}^{-1})$ groups. Feed intake also varied significantly (P=0.002). Total feed consumption was the highest in the T2 group $(98.1 \pm 2.4 \text{ g/fish})$, followed by T1 $(97.1 \pm 2.6 \text{ g/fish})$; both were significantly greater than the intake of the T0 (92.1 \pm 2.3 g/fish) and T3 (91.0 \pm 2.7 g/fish) groups. More critically, feed conversion ratio (FCR) was significantly improved (P=0.001) in the T2 group (2.171 \pm 0.035) compared to the control (2.68 \pm 0.028). The T3 group displayed the poorest FCR (3.047 \pm 0.050). Similarly, the protein efficiency ratio (PER, P = 0.003) was the highest in the T2 group (1.531 \pm 0.032), which was significantly superior to the T0 (1.23 \pm 0.040) and T3 (1.077 \pm 0.043) diets. In contrast, the survival rate was high and

Comparative Impacts of Plant-Derived Functional Diets (Azolla, Duckweed, and Napier Grass) on Growth, Hematology, and Serum Biochemistry of Grass Carp (*Ctenopharyngodon Idella*)

not significantly different (P > 0.05) among all dietary treatments, ranging from 94.1 to 100.2%. Initial weights were uniform across all groups at the start of the trial (P = 0.081).

Table 2. Effect of dietary supplementation with Azolla, Duckweed, and Napier grass on growth parameters, feed efficiency, and survival rate in *C. idella*

Parameter	T0	T1	T2	Т3	<i>P</i> -value	
	Control	Azolla (10%)	Duckweed(10%)	Napier (10%)	r -value	
Initial weight (g)	$14.1\pm0.01^{\rm a}$	$14.4\pm0.04^{\rm a}$	$14.3\pm0.06^{\rm a}$	14.7± 0.01a	0.081	
Final weight (g)	47.1 ± 1.3^{b}	$54.0\pm1.2^{\rm ab}$	58.1 ± 1.4^a	44.1 ± 1.2^{c}	0.002	
Weight gain (g)	$33.1\pm1.4^{\rm b}$	$39.6{\pm}~1.4^{ab}$	$43.8{\pm}~1.5^a$	29.4 ± 1.8^{c}	0.004	
SGR (% day ⁻¹)	$2.372\pm0.04^{\mathrm{b}}$	2.622 ± 0.041^{ab}	$2.757 \pm 0.044^{\rm a}$	2.247 ± 0.017^c	0.005	
Feed intake	$92.1\pm2.3^{\rm b}$	$97.1 \pm 2.6^{\mathrm{ab}}$	$98.1 \pm 2.4^{\rm a}$	$91.0\pm2.7^{\rm b}$	0.002	
FCR	2.68 ± 0.028^{b}	2.364 ± 0.042^{ab}	$2.171 \pm 0.035^{\rm a}$	3.047 ± 0.050^{c}	0.001	
PER	$1.23\pm0.040^{\mathrm{b}}$	1.424 ± 0.048^{ab}	$1.531 \pm 0.032^{\rm a}$	1.077 ± 0.043^{c}	0.003	
Survival (%)	$96.2\pm1.3^{\rm a}$	$95.2\pm1.4^{\rm a}$	$100.2 \pm 0.1^{\rm a}$	$94.1 \pm 2.4^{\rm a}$	0.004	

Note. SGR = Specific Growth Rate (% day⁻¹), Feed intake = Total amount of feed consumed per fish during the experimental period (g/fish), FCR = Feed Conversion Ratio, and PER = Protein Efficiency Ratio.

The analysis of hematological parameters revealed significant alterations in response to the different dietary treatments (P < 0.05), except MCHC, which remained statistically unchanged across all groups (P > 0.05). A significant effect was observed on RBC (P=0.004). The highest RBC was recorded in the T2 Duckweed group, which was significantly greater than that of the T0 and T3 Napier groups. The T1 Azolla group displayed an intermediate value that was not statistically different from the T2 group. Similarly, WBC was significantly influenced by the diets (P=0.005). The T2 group demonstrated the highest value (32.1 \pm 1.4 \times 10³ μ L⁻¹), which was significantly elevated compared to the T0 (26.1 \pm 1.2 \times 10³ μ L⁻¹) and T3 (23.1 \pm 1.2 \times 10³ μ L⁻¹) groups. On the other hand, the Hb concentration varied significantly among treatments (P=0.005). The T2 Duckweed and T1 Azolla groups recorded higher Hb levels, which were significantly superior to the T0 Control group (8.2 \pm 0.4 g dL⁻¹). The T3 Napier group yielded the lowest value (7.5 \pm 0.2 g dL⁻¹), which was significantly lower than that of the control. This trend was mirrored in the Ht levels (P = 0.003). The T2 and T1 groups showed significantly increased hematocrit values compared to the T0 group. The T3 group exhibited a significantly depressed hematocrit value of 25.1 ± 1.1%. Significant differences were found in red blood cell indices. The MCV, P = 0.004 was significantly lower in the T2 group (214 \pm 0.4 fL) compared to all other groups (T0: 234 \pm 0.4 fL; T1: 224 ± 0.3 fL; T3: 227 ± 0.7 fL). Likewise, the MCH, P = 0.005, was significantly reduced in the T2 group (59.2 \pm 1.7 pg) compared to the T0 (67.4 \pm 1.6 pg), T1 (62.4 \pm 2.4 pg), and T3 (68.4 \pm 2.1 pg) groups. In contrast, the MCHC showed no significant differences between the dietary treatments (Table 3).

Table 3. Effect of dietary supplementation with Azolla, Duckweed, and Napier grass on						
the hematological parameters of <i>C. idella</i>						
Downerston	Т0	T1	T2	Т3	<i>P</i> -	
Parameter	Control	Azolla	Duckweed	Napier	value	

Parameter	Т0	T1	T2	T3	P-
	Control	Azolla	Duckweed	Napier	value
RBC (×10 ⁶ μL ⁻¹)	1.22 ± 0.03^{b}	1.48 ± 0.02^{ab}	$1.59 \pm 0.03^{\mathrm{a}}$	$1.18\pm0.02^{\rm c}$	0.004
WBC (×10 ³ μ L ⁻¹)	$26.1 {\pm}~1.2^{b}$	27.1 ± 1.4^{ab}	$32.1\pm1.4^{\rm a}$	$23.1{\pm}~1.2^{b}$	0.005
Hemoglobin (g dL^{-1})	$8.2 \pm 0.4^{\text{b}}$	9.4 ± 0.3^{ab}	9.7± 0.1ª	7.5± 0.2°	0.005
Hematocrit (%)	$27.1 \pm 0.5^{\text{b}}$	$34.1 {\pm}~0.7^{ab}$	$35.1\pm0.6^{\rm a}$	25.1± 1.1°	0.003
MCV (fL)	$234 {\pm}~0.4^{b}$	224 ± 0.3^{b}	$214 \pm 0.4^{\rm a}$	$227 \pm 0.7^{\text{b}}$	0.004
MCH (pg)	$67.4 \pm 1.6^{\text{b}}$	62.4 ± 2.4^{b}	$59.2\pm1.7^{\rm a}$	$68.4\pm2.1^{\text{b}}$	0.005
MCHC (g dL ⁻¹)	$29.1 {\pm}~0.4^{\rm a}$	28.2± 0.1a	$29.6\pm0.4^{\mathrm{a}}$	$30.1\pm0.3^{\rm a}$	0.002

The dietary regimens exerted a significant influence on the serum biochemical profile of the fish, reflecting alterations in protein metabolism, energy status, and liver function (Table 4). An important effect was observed on total serum protein levels (P =0.003). The highest concentration was recorded in the T2 group (4.1 \pm 0.14 g dL⁻¹), which was significantly greater than that of the T0 $(3.24 \pm 0.17 \text{ g dL}^{-1})$ and T3 $(3.1 \pm$ 0.17 g dL⁻¹) groups. Both albumin and globulin levels were significantly elevated in the T2 $(2.1 \pm 0.03 \text{ g dL}^{-1} \text{ and } 2.1 \pm 0.15 \text{ g dL}^{-1})$ and T1 $(1.92 \pm 0.14 \text{ g dL}^{-1} \text{ and } 1.92 \pm 0.12 \text{ g})$ dL^{-1}) groups compared to the control (1.67 \pm 0.03 g dL^{-1} and 1.62 \pm 0.03 g dL^{-1}) and T3 $(1.52 \pm 0.12 \text{ g dL}^{-1} \text{ and } 1.54 \pm 0.14 \text{ g dL}^{-1})$ groups. Serum glucose levels were significantly modulated by the diets (p = 0.002). The T2 and T1 groups demonstrated significantly lower glucose concentrations compared to the T0 and T3 groups. A similar trend was observed in lipid metabolites. Both cholesterol and triglycerides were significantly lower in the T2 group compared to the control. The T3 group recorded the highest values for cholesterol (157.2 \pm 0.2 mg dL⁻¹) and triglycerides (91.2 \pm 0.4 mg dL⁻¹). The activities of hepatic enzymes, AST, ALT, and ALP, were significantly affected. The T2 Duckweed group consistently showed the lowest enzyme activities (AST: $36.6 \pm 0.2 \text{ U L}^{-1}$; ALT: $23.1 \pm 0.3 \text{ U L}^{-1}$; ALP: $122 \pm 0.2 \text{ U L}^{-1}$), which were significantly lesser than control group (AST: 44.4 ± 0.3 U L⁻¹; ALT: 32.1 ± 0.4 U L⁻¹; ALP: 152.4 ± 0.5 U L⁻¹). Conversely, the T3 Napier group exhibited significantly elevated activities for all three enzymes (AST: 53.5 ± 0.4 U L⁻¹; ALT: 36.1 ± 0.4 U L⁻¹; ALP: $163.1 \pm 0.6 \text{ U L}^{-1}$).

Comparative Impacts of Plant-Derived Functional Diets (Azolla, Duckweed, and Napier Grass) on Growth, Hematology, and Serum Biochemistry of Grass Carp (*Ctenopharyngodon Idella*)

Table 4. Serum biochemical parameters of *C. idella* fed experimental diets supplemented with different herbal ingredients

Parameter	T0	T1	T2	Т3	p-
rarameter	Control	Azolla	Duckweed	Napier	value
Total protein (g dL ⁻¹)	3.24± 0.17 ^b	3.82 ± 0.21^{ab}	4.1 ± 0.14^{a}	3.1± 0.17°	0.003
Albumin (g dL ⁻¹)	1.67 ± 0.03^{b}	$1.92 {\pm}~0.14^{\rm a}$	$2.1 {\pm}~0.03^{\rm a}$	1.52 ± 0.12^{b}	0.004
Globulin (g dL ⁻¹)	1.62 ± 0.03^{b}	$1.92 {\pm}~0.12^{\rm a}$	$2.1{\pm}~0.15^{\rm a}$	1.54 ± 0.14^{b}	0.003
Glucose (mg dL ⁻¹)	62.2 ± 0.1^a	57.1 ± 0.4^{b}	53.6 ± 0.3^{b}	66.4±0. 3ª	0.002
$AST (U L^{-1})$	$44.4 {\pm}~0.3^{\rm b}$	$39.3{\pm}0.~4^{ab}$	$36.6 \pm 0.2^{\rm a}$	$53.5 \pm 0.4^{\circ}$	0.001
$ALT (U L^{-1})$	$32.1 {\pm}~0.4^{\rm b}$	$26.1 \pm 0.5^{\mathrm{ab}}$	$23.1 \pm 0.3^{\rm a}$	36.1±0. 4°	0.004
$ALP (U L^{-1})$	152.4 ± 0.5^{b}	137.3 ± 0.6^{ab}	122±0. 2ª	$163.1 \pm 0.6^{\circ}$	0.003
Cholesterol (mg dL ⁻¹)	148.9±0.6 в	$142.4{\pm}0.7^{ab}$	$138.1 {\pm}~0.3^{\rm a}$	157.2±0. 2°	0.004
Triglycerides (mg dL ⁻¹)	87.1 ± 0.4^{b}	79.4 ± 0.4^{ab}	76.7 ± 0.8 a	91.2±0. 4°	0.002

Note. AST = Aspartate Aminotransferase (U L^{-1}), ALT = Alanine Aminotransferase (U L^{-1}), and ALP = Alkaline Phosphatase (U L^{-1}).

DISCUSSION

The present study was conducted on Ctenopharyngodon idella to examine the effect of dietary supplementation with Azolla, Duckweed, and Napier grass on growth performance, feed utilization, hematological indices, and serum biochemical parameters. among all the dietary supplements, Duckweed (10% inclusion) produced the most promising results in terms of growth performance and other parameters, while Napier grass supplementation produced the least desirable outcomes. These results highlight the potential of Duckweed and Azolla, to a lesser extent, as sustainable and nutritionally beneficial feed components for grass carp aquaculture. The duckweed-fed group, compared with the control and Napier-fed fish, highlights the significant enhancement in final body weight, weight gain, and specific growth rate. This is consistent with Achoki et al. (2024) and Vulpe et al. (2025), who described improved growth performance and feed efficiency in carps fed diets encompassing Lemna minor. Similarly, Goswami et al. (2022) and Sarkheil et al. (2024) described improved antioxidant responses and feed conversion ratios in tilapia supplemented with Duckweed meal. Duckweed, recognized as a high-nutritional-quality protein source, contains a balanced amino acid profile, 25–35% crude protein, which supports muscle deposition and protein synthesis in fish (Can Karaca et al., 2023). The Azolla did not differ significantly from the control in most growth parameters and produced intermediate results, although a trend toward improvement. Previous studies have shown that Azolla meal, without damaging growth, can partially substitute fishmeal or soybean meal in aquafeeds (Rahmah et al., 2022; Sallam et al., 2024). Oyedara et al. (2022) explained that Azolla has moderate beneficial effects compared with Duckweed and less pronounced growth-promoting effects relative to Duckweed. However, differences in antinutritional factors and protein digestibility encompass 20–30% crude protein, essential amino acids, and bioactive compounds (**Shea** *et al.*, 2024).

In contrast, Napier grass supplementation compared with the other groups caused significantly higher feed conversion ratio, lower growth performance, and reduced protein efficiency ratio. Kuangkam et al. (2024) described that Napier grass is widely used as livestock fodder and has inadequate nutrient digestibility and assimilation in grass carp with lower crude protein content (8–12%). Klahan et al. (2024) recommended the use of Napier grass as a partial roughage source rather than a primary dietary supplement in aquaculture feeds. In the current study, hematological catalogues serve as sensitive biomarkers of physiological adaptability, immune status, and fish health. Duckweed supplementation significantly improved hematocrit levels, WBC, RBC counts, and hemoglobin concentration compared with the control and Napier groups. Additionally, higher WBC counts in the Duckweed and Azolla groups recommend a delicate immune response in stress adaptation and pathogen defense. These enhancements upgraded oxygen transport and immune competence in Duckweed-fed fish. Similar findings were reported by Li et al. (2021) and Bardhan et al. (2024), who highlighted that raised RBC and Hb values are characteristics of improved oxygen-carrying capacity and erythropoiesis under nutritionally balanced diets. Azolla supplementation upgraded hematological catalogues to a lesser extent than Duckweed. These results align with Abu-**Zahra** et al. (2025), who reported improved immune parameters in fish fed Azolla meal. In contrast, Napier grass supplementation caused significantly miserable RBC, Hb, and hematocrit values, potentially reflecting mild physiological stress and poor nutrient utilization. Concentrated hematological catalogues in fish have been linked to nutritional shortages, impaired erythropoietic activity (Aaqillah-Amr et al., 2024). Duckweed-fed fish group in this study showed significantly higher globulin concentrations, total protein, and albumin, compared with control and Napier-fed fish, indicating boosted immune function and protein metabolism. Similar outcomes were observed in tilapia; Duckweed supplementation raised improved disease resistance and serum protein fractions (Tadesse et al., 2024). Azolla supplementation produced comparable but slightly lower enhancements, documenting the findings of Minahal et al. (2024), who distinguished increased improved immune status and serum protein in rohu fed Azolla diets. Serum glucose levels were significantly lower in Duckweed- and Azolla-fed groups. Liu et al. (2024) described stress-induced hyperglycemia and impaired carbohydrate metabolism in nutritionally challenged fish in the Napier-fed group, with higher glucose levels. cholesterol and triglyceride levels were significantly reduced in Duckweed-fed fish compared with control and Napier groups. Lower serum lipid concentrations are associated with better energy utilization and lipid utilization, as supported by **Jiang** et al. (2024), who observed similar decreases in serum lipids following dietary inclusion of plant-based extracts. Conversely, Napier-fed fish showed raised cholesterol and triglycerides, representing a potential risk of fatty liver growth due to inefficient lipid metabolism. Hepatic enzyme activities (AST, ALT, ALP) were significantly reduced in Duckweed-fed fish compared with control and Napier groups. Similar trends were reported by **Trejo-Escamilla** *et al.* (2021), who described lower AST and ALT activities with better liver fish integrity in fish receiving balanced plant-based diets. **Guzmán-Carrasco** *et al.* (2024) studied reduced enzyme activities in the Duckweed group, inferring that this ingredient provides hepatic health.

CONCLUSION

This study deduces that Azolla, Duckweed, and Napier grass have different impacts on the growth and physiology of grass carp (*Ctenopharyngodon idella*). Duckweed at 10% inclusion produced the best results for growth, feed use, and blood health, while Azolla provided moderate benefits, and Napier grass was the least effective due to its lower protein and higher fiber content. Overall, Duckweed and Azolla appear to be promising, low-cost feed resources for sustainable carp farming, whereas Napier grass may serve only as a partial roughage ingredient.

REFERENCES

- Aaqillah-Amr, M. A.; Hidir, A.; Ikhwanuddin, M.; Fatan, N. A.; Muhammad-Rahimi, R.; Ning-Shahira, S. and Yossa, R. (2024). Effects of insect meals on fish digestibility, blood parameters, and economic performance: a meta-analysis. Journal of Insects as Food and Feed, 11(5), 833-859.
- **Abdulrahman, P. and Al Sulivany, B.** (2025). Dietary Quercus infectoria mitigates lead nitrate toxicity in common carp (*Cyprinus carpio*): Impacts on growth performance, condition factors, weight–length relationship, hematological responses, and detoxification potential during 60-day exposure. Egyptian Journal of Aquatic Biology and Fisheries, 29(2), 383-405.
- Abu-Zahra, N. I.; Gouda, M.; Elseify, M. M.; Abass, M. E.; El-Gohary, M. S. and El-Sokary, E. T. (2025). Azolla pinnata mitigates pendimethalin-induced immunotoxicity, oxidative stress and histopathological changes in *Oreochromis niloticus*. Scientific Reports, 15(1), 16226.
- Achoki, J. K.; Kaingu, C. K.; Oduma, J. A.; Orina, P. S.; Ondiba, R. N.; Nyabwanga, R. N. and Getabu, A. M. (2024). Does duckweed (*Lemna minor*) feed inclusion play a role in growth, feed conversion ratio and reproductive performance (fertilization, hatchability and survivability rates) in omnivorous fish? Evidence in Nile tilapia (*Oreochromis niloticus* Linnaeus, 1758). Aquaculture, Fish and Fisheries, 4(4), e70000.
- **Ahmad, A.; Hassan, S. W. and Banat, F.** (2022). An overview of microalgae biomass as a sustainable aquaculture feed ingredient: food security and circular economy. Bioengineered, 13(4), 9521-9547.

- Al Sulivany, B. S.; Abdulla, I. T.; Mohammed, C. M.; Shaheen, M. S.; Hassan, M. M. and Salih, S. J. (2024a). Spirulina (*Arthrospora platensis*) in the diet reduces sodium arsenate impacts on kidney enzyme activities, histopathology, and arsenic accumulation in rat models. Egyptian Academic Journal of Biological Sciences, D. Histology & Histochemistry, 16(1), 1-10.
- Al Sulivany, B. S.; Gali Romani, F. A.; Mohammed, D. A. and Khaleefah, R. S. (2024b). Winter dietary protein impacts on growth performance of *Cyprinus carpio*. Egyptian Journal of Aquatic Biology and Fisheries, 28(5).
- Al Sulivany, B. S.; Owais, M.; Dernekbaş, S.; Fazal, R. M.; Selamoglu, Z. and Shahid, A. (2025). Salinity and organic feed optimization for Artemia franciscana culture: Differential survival responses to *Chlorella vulgaris* and *Saccharomyces cerevisiae* in nauplii and adults. Iraqi Journal of Aquaculture, 22(1).
- Anany, E. M.; Ibrahim, M. A.; El-Razek, I. M. A.; El-Nabawy, E. S. M.; Amer, A. A.; Zaineldin, A. I.; and Dawood, M. A. (2025). Combined effects of yellow mealworm (*Tenebrio molitor*) and *Saccharomyces cerevisiae* on the growth performance, feed utilization, intestinal health, and blood biomarkers of Nile tilapia (*Oreochromis niloticus*) fed fishmeal-free diets. Probiotics and Antimicrobial Proteins, 17(3), 1387-1398.
- Asad, F.; Al Sulivany, B. S.; Hassan, H. U.; Nadeem, A.; Rohani, M. F.; Owais, M.; ... and Arai, T. (2025). Evaluating the differential effect of growth and health parameters on *Oreochromis niloticus* and *Cirrhinus mrigala* under different rice protein concentrations. Egyptian Journal of Aquatic Research, 51(1), 107-116.
- **Bardhan, A.; Abraham, T. J.; Das, R. and Patil, P. K.** (2024). Visualization of poikilocytosis as an emerging erythrocytic biomarker for fish health assessment. Animal Research and One Health, 2(2), 136-157.
- Can Karaca, A.; Nickerson, M.; Caggia, C.; Randazzo, C. L.; Balange, A. K.; Carrillo, C.; ... and Capanoglu, E. (2023). Nutritional and functional properties of novel protein sources. Food Reviews International, 39(9), 6045-6077.
- **Deepti, M.; Kaur, V. I.; Ansal, M. D.; Hundal, J. S.; Barik, S. and Tyagi, A.** (2025). Evaluating the efficacy of duckweed paste as a multifunctional organic binder in fish feed formulation. Aquaculture International, 33(3), 1-22.
- **Du, H.; Peng, C.; Li, Y.; Shi, X.; Liu, C.; Liu, W. and Wang, L.** (2025). Absorption of microplastics by terrestrial plants and their ecological risk. New Contaminants, 1(1).
- Eissa, E. S. H.; Monier, M. N.; Abd El-Aziz, Y. M.; Saadony, S.; Abu Husein, M. S.; Abd El Megeed, O. H. and Sakr, S. E. S. (2025). The efficacy of dietary commercial probiotic (*Bacillus subtilis*) on growth performance, hematobiochemical response, and histological status of red tilapia (*Oreochromis* sp.). Journal of Applied Aquaculture, 37(1), 45-66.

- Comparative Impacts of Plant-Derived Functional Diets (Azolla, Duckweed, and Napier Grass) on Growth, Hematology, and Serum Biochemistry of Grass Carp (*Ctenopharyngodon Idella*)
- Goswami, R.K.; Sharma, J.; Shrivastav, A.K.; Kumar, G.; Glencross, B. D.; Tocher, D.R. and Chakrabarti, R. (2022). Effect of *Lemna minor* supplemented diets on growth, digestive physiology and expression of fatty acid biosynthesis genes of *Cyprinus carpio*. Scientific Reports, 12(1), 3711.
- Guzmán-Carrasco, A.; Kapravelou, G.; López-Jurado, M.; Bermúdez, F.; Andrés-León, E.; Terrón-Camero, L. C. and Martínez, R. (2024). A novel plant-based nutraceutical combined with exercise can revert oxidative status in plasma and liver in a diet-induced obesity animal model. Antioxidants, 13(3), 274.
- Hassoun, A.; Cropotova, J.; Trif, M.; Rusu, A. V.; Bobiş, O.; Nayik, G. A. and Regenstein, J. M. (2022). Consumer acceptance of new food trends resulting from the fourth industrial revolution technologies: A narrative review of literature and future perspectives. Frontiers in Nutrition, 9, 972154.
- **Herrera, M.; Mancera, J. M. and Costas, B.** (2019). The use of dietary additives in fish stress mitigation: Comparative endocrine and physiological responses. Frontiers in Endocrinology, 10, 447.
- **Hossain, M. M.; Rahman, M. H.; Tina, F. W. and Shahjahan, M**. (2024). Present scenario and prospects of the use of aquatic plants in aquaculture: A review. Aquaculture International, 32(5), 6791-6825.
- Hossain, M. S.; Small, B. C.; Kumar, V. and Hardy, R. (2024). Utilization of functional feed additives to produce cost-effective, ecofriendly aquafeeds high in plant-based ingredients. Reviews in Aquaculture, 16(1), 121-153.
- **Iheanacho, S.; Hornburg, S. C.; Schulz, C. and Kaiser, F.** (2025). Toward resilient aquaculture in Africa: Innovative and sustainable aquafeeds through alternative protein sources. Reviews in Aquaculture, 17(2), e13009.
- Islam, M. R.; Garcia, S. C.; Islam, M. A.; Bashar, M. K.; Roy, A.; Roy, B. K. and Clark, C. E. F. (2024). Ruminant production from Napier grass (Pennisetum purpureum Schum): A review. Animals, 14(3), 467.
- Jiang, J.; Lu, X.; Dong, L. X.; Peng, D.; Zhang, J. M.; Tian, J. and Jiang, M. (2024). Dietary cholesterol intervention could alleviate the intestinal injury of Oreochromis niloticus induced by plant-based diet via the intestinal barriers. Fish and Shellfish Immunology, 150, 109621.
- Kaur, M.; Shitanaka, T.; Surendra, K. C. and Khanal, S. K. (2025). Macroalgae-derived bioactive compounds for functional food and pharmaceutical applications: A critical review. Critical Reviews in Food Science and Nutrition, 65(21), 4172-4194.
- Klahan, R.; Krajabthong, K.; Maksiri, W.; Tamruangit, J.; Whangchai, N.; Pimpimol, T. and Whangchai, K. (2024). The influence of Napier grass biomass mixed feed on the biorefinery indicator for Nile tilapia production. Biomass Conversion and Biorefinery, 14(1), 1251-1260.

- **Korsa, G.; Alemu, D. and Ayele, A.** (2024). Azolla plant production and their potential applications. International Journal of Agronomy, 2024(1), 1716440.
- Kuangkam, P.; Whangchai, N.; Pimpimol, T.; Senphan, T.; Puntharod, R. and Sompong, U. (2024). Enhancing enzyme digestibility of red tilapia (Oreochromis niloticus and O. mossambicus) and improving water quality in fish farming using Napier grass silage. Agriculture and Natural Resources, 58(1), 89-100.
- Kurniasih, T.; Zulkarnain, R.; Wijaya, R.; Lesmana, D.; Mumpuni, F. S.; Panigoro, N. and Fitria, Y. (2024). Digestibility of plant-based feeds in omnivorous, carnivorous, and herbivorous fish: A review of Nile tilapia (Oreochromis niloticus Linnaeus, 1758), North African catfish (Clarias gariepinus Burchell, 1822), and grass carp (Ctenopharyngodon idella Valenciennes, 1844). Aquaculture, Aquarium, Conservation and Legislation, 17(6), 2994-3014.
- Li, Z. Z.; Jia, D. L.; Wang, H.; Zhou, X. F.; Cheng, Y.; Duan, L. S. and Guo, J. R. (2021). To research the effects of storage time on autotransfusion based on erythrocyte oxygen-carrying capacity and oxidative damage characteristics. Cell Transplantation, 30, 09636897211005683.
- Liu, X.; Sun, C.; Zhou, Q.; Zheng, X.; Jiang, S.; Wang, A. and Liu, B. (2024). Ferulic acid relieves the oxidative stress induced by oxidized fish oil in Oriental river prawn (Macrobrachium nipponense) with an emphasis on lipid metabolism and gut microbiota. Antioxidants, 13(12), 1463.
- Minahal, Q.; Fatima, S.; Komal, W. and Liaqat, R. (2024). Effects of different stocking densities on growth, nutritional quality, stress and antioxidant response in Labeo rohita cultured in in-pond raceway system. PLoS One, 19(5), e0298753.
- Mohammed, H. H.; Ebrahim, M.; Youssef, M. I.; Saleem, A. S. Y. and Abdelkhalek, A. (2024). Behavior and management of carp fish: A review. Open Veterinary Journal, 14(1), 1.
- **Naseem, S.; Bhat, S. U.; Gani, A. and Bhat, F. A.** (2021). Perspectives on utilization of macrophytes as feed ingredient for fish in future aquaculture. Reviews in Aquaculture, 13(1), 282-300.
- Nisa, K.; Islami, S.; Listiyaningsih, E.; Arisandi, R. and Nurhaniefah, A. A. (2024). Comparison of red blood cell parameters as metabolic indicators in stunted and non-stunted children. International Journal of Nutrition, Pharmacology, Neurological Diseases, 14(2), 213-219.
- Obiero, K.; Meulenbroek, P.; Drexler, S.; Dagne, A.; Akoll, P.; Odong, R. and Waidbacher, H. (2019). The contribution of fish to food and nutrition security in Eastern Africa: Emerging trends and future outlooks. Sustainability, 11(6), 1636.
- Olaleru, I. F.; Kareem, O. K.; Busari, I. O.; Solana, O. I.; Okereke, C. and Faloye, T. O. (2024). Exploring the root and tubers: Alternative plant protein sources for sustainable nutrition for aquaculture in Nigeria. In Sustainable Feed Ingredients

- Comparative Impacts of Plant-Derived Functional Diets (Azolla, Duckweed, and Napier Grass) on Growth, Hematology, and Serum Biochemistry of Grass Carp (*Ctenopharyngodon Idella*)
 - and Additives for Aquaculture Farming: Perspectives from Africa and Asia (pp. 217-240). Singapore: Springer Nature Singapore.
- Owais, M.; Al Sulivany, B.; Abdulhalim, B. A. and Mehroz, R. (2024a). The Pangas catfish Pangasius pangasius: Growth efficiency and nutritional composition under a variety of saltwater challenges. Egyptian Journal of Aquatic Biology and Fisheries, 28(6).
- Owais, M.; Al Sulivany, B. S.; Fazal, R. M. and Abdellatif, M. (2024b). Evaluating growth and nutrient composition of African catfish under different salinities. Science Journal of University of Zakho, 12(4), 407-412.
- Owais, M.; Mohammed, D. A.; Mhammad, H. A.; Al Sulivany, B. S.; Dernekbaşı, S. and Fazal, R. M. (2025). The role of silica nanoparticles in modulating growth performance, enzyme activity, and heavy metal accumulation in muscle tissue of common carp (*Cyprinus carpio* L.). Science Journal of University of Zakho, 13(2), 197-205.
- Oyedara, O. O.; Rufai, A. B.; Okunlola, G. O. and Adeyemi, F. M. (2022). Nutritional and endophytic composition of edible tubers of tiger nut (*Cyperus esculentus* L.). Biologicals, 15(4), 4603.
- Rahmah, S.; Nasrah, U.; Lim, L. S.; Ishak, S. D.; Rozaini, M. Z. H. and Liew, H. J. (2022). Aquaculture wastewater-raised Azolla as partial alternative dietary protein for *Pangasius* catfish. Environmental Research, 208, 112718.
- **Reshi, Q. M.; Ahmad, I.; Nabi, N.; Ahmed, I. and Sidiq, M.** (2025). Global food insecurity: Role of fishes to compensate food insecurity and nutritional demand. In Food Security, Nutrition and Sustainability Through Aquaculture Technologies (pp. 73-93). Cham: Springer Nature Switzerland.
- Sallam, G. R.; Helal, A. M.; Mabrouk, H. A.; Hermina, A. H.; Habib, Y. J.; Fayed, W. M. and Shehata, A. I. (2024). Comparative impact of replacing fishmeal with Azolla on growth, water quality, and physiology of red tilapia fingerlings at varying salinities. Journal of Animal Physiology and Animal Nutrition, 108(5), 1370-1382.
- Sarkheil, M.; Zahedi, S.; Safari, O. and Ahmadniaye Motlagh, H. (2024). Effects of humic acid on nutrient removal efficiency of aquatic duckweed (Lemna minor) and both growth performance and hemato-biochemical parameters of Nile tilapia (*Oreochromis niloticus*) cultured in a water recirculating system. International Journal of Phytoremediation, 26(4), 481-492.
- Shea, Z.; Ogando do Granja, M.; Fletcher, E. B.; Zheng, Y.; Bewick, P.; Wang, Z. and Zhang, B. (2024). A review of bioactive compound effects from primary legume protein sources in human and animal health. Current Issues in Molecular Biology, 46(5), 4203-4233.
- **Tadesse, Z.; Getachew, A.; Workiye, G.; Addisu, D. and Tadesse, S.** (2024). Effect of partial replacement of fishmeal with duckweed (*Lemna* sp.) on the growth

- performance of juvenile Nile tilapia (*Oreochromis niloticus* L.) in tanks. Livestock Research Results, 594.
- **Tran, T. L. N.; Miranda, A. F.; Abeynayake, S. W. and Mouradov, A.** (2020). Differential production of phenolics, lipids, carbohydrates and proteins in stressed and unstressed aquatic plants, *Azolla filiculoides* and *Azolla pinnata*. Biology, 9(10), 342.
- **Trejo-Escamilla, I.; López, L. M.; Gisbert, E.; Sanchez, S.; Rodarte-Venegas, D.; Álvarez, C. A. and Galaviz, M. A.** (2021). Soybean protein concentrate as a protein source for totoaba (*Totoaba macdonaldi*) juveniles: Effect on intermediary metabolism and liver histological organization. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 262, 111062.
- **Uddin, M. H.; Razzak, M. R. and Rahman, A. A.** (2023). Sustainable supply chain management practices, dynamic capabilities and competitive advantage: Evidence from Bangladesh ready-made garments industry. Business Strategy and Development, 6(2), 176-188.
- **Vulpe, C. B.; Toplicean, I. M.; Agachi, B. V. and Datcu, A. D.** (2025). A review on uses of *Lemna minor*, a beneficial plant for sustainable water treatments, in relation to bioeconomy aspects. Water, 17(9), 1400.
- Wang, W.; Sun, J.; Liu, C. and Xue, Z. (2017). Application of immunostimulants in aquaculture: Current knowledge and future perspectives. Aquaculture Research, 48(1), 1-23.
- Xiao, Y.; Pietzner, A.; Rohwer, N.; Jung, A.; Rothe, M.; Weylandt, K. H. and Elbelt, U. (2023). Bioactive oxylipins in type 2 diabetes mellitus patients with and without hypertriglyceridemia. Frontiers in Endocrinology, 14, 1195247.
- Şerban, D.-A.; Barbacariu, C. A.; Burducea, M. Ivancia, M. and Creangă, Ş. (2024). Comparative Analysis of Growth Performance, Morphological Development, and Physiological Condition in Three Romanian *Cyprinus carpio* Varieties and Koi: Implications for Aquaculture. Life, 14(11), 1471. https://doi.org/10.3390/life14111471
- Mustafa M. H.; Al Sulivany, B. S. A; Albassam, N. H.; Yousif, A. I.; Al-Taee, N. T. T.; Saeed, K.; Hassan, A. and Owais, M. (2025). Acute and Chronic Fluoride Exposure Impairs Blood Physiology, Immunity, and Metabolic Disruptions in *Labeo rohita*. Egyptian Journal of Aquatic Biology and Fisheries, 29(5), 2429-2448. doi: 10.21608/ejabf.2025.425263.6609