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  INTRODUCTION 

Estrogens are hormones present in nearly all phyla of terrestrial and marine 

vertebrates and some invertebrates (Zhu et al., 2003; Osada et al., 2004). Many 

endogenous forms of estrogens exist in organisms. Among them, 17β-estradiol (E2) 

which is considered the most biologically active, whereas estrone (E1) and estriol (E3) 

exhibit comparatively weaker effects (Pinto et al., 2014). Estrogens are most widely 

recognized for their role in regulating gonadal differentiation, reproduction and 

maturation. Nonetheless, they regulate the development and balance of several organs. 

Additionally, estrogens participate in cell regulation and multiplication; they stimulate 

uterine development and are implicated in neuronal development and differentiation 

(Cheshenko et al. 2008).  

Recently, researchers have shown great interest toward environmental pollutants 

capable of mimicking the activity of endogenous estrogens. These substances, termed 

environmental estrogens, are believed to alter the endocrine regulation and contribute to 
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adverse health outcomes in both humans and wildlife, including male reproductive 

disorders. Consequently, they could be considered endocrine disrupting compounds 

(EDCs), or simply endocrine disruptors (El-Sayed Ali et al., 2014; El-Sayed Ali & 

Kheirallah, 2016; Cunha et al. 2022). 

 

In the recent two decades, various review articles have documented the 

occurrence of novel emerging pollutants (Deblonde et al., 2011). Thus, this critical 

review aims to highlight recent advances and emerging perspectives on the classical and 

innovative aspects of alkylphenol and its derivatives as examples of environmental 

toxicants – widely used worldwide - which have severe effects on the fish not only from 

the estrogenic point of view but also from the non-estrogenic mechanism of action and to 

evaluate the potential risk of their usage. Moreover, this review furnishes the researchers 

with a wealthy body of literatures on the alkylphenol-fish interaction on the classical and 

novel endpoints that may be directly or indirectly contribute to the research development. 

Although all the information is published, it is disparate and placed in various journals 

that may not typically be consulted. 

 

Endocrine disruptors: action and mode of action 

Endocrine disrupters or EDCs are exogenous substances that interfere with 

normal hormonal regulation and can alter one or more functions of the endocrine system, 

causing severe effects on the health of intact organisms, or its progeny (Golden et al., 

1998; IPCS/OECD, 1998; Damstra et al., 2002; Marty et al., 2011).  

Extensive research shows that worldwide exposure to EDCs is impacting wildlife 

and may endanger the survival of certain species within ecosystems (Ramasre, 2024). 

Various studies on EDCs relate to reproductive and developmental effects on aquatic 

animals, while much less information is well established about the effect of these 

compounds on terrestrial animals. Aquatic ecosystem often functions as a reservoir for 

pollutants originating from wastewater and atmospheric deposition, thereby posing 

significant risks to associated organisms.  

A frequently cited example of the effect of EDCs is gonadal abnormality and 

reproductive impairment in fish. Reproductive impairment including reduced fertility, 

masculinization of females, and feminization of males have been documented in recent 

years in the vicinity of pollution sources worldwide (Munkittrick et al., 1998; Damstra 

et al., 2002; Matthiessen, 2006). 

Research on wild fish populations have reported intersex conditions as well as 

testicular abnormalities in a significant proportion of males from estuaries, rivers and 

coasts (Lye et al., 1997; Jobling et al., 1998; Allen et al., 1999). Such feminizing effects 

are linked to exposure to estrogens present in the aquatic habitats, and xenoestrogens in 

the environment. Synthetic estrogens are pharmaceutical chemical compounds developed 

to replicate the activity of natural estrogens, including agents such as ethinylestradiol 
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(EE2), a common component of oral contraceptives, and diethylstilbestrol. In contrast, 

xenoestrogens are environmental and industrial contaminants that, although not intended 

for estrogenic purposes, they exhibit estrogen-like activity, and can nonetheless elicit 

effects through the estrogen receptor signaling pathway. 

Classically, estrogens have traditionally been considered to act solely through 

genomic pathways, exerting agonistic steroid-like effects via receptor binding. However, 

substantial evidence indicates that certain estrogenic compounds exert effects 

independent of estrogen receptors (ERs), suggesting that non-genomic pathways also 

contribute to the action of EDCs. This highlights the need for developing diverse test 

methods to assess the EDC potential of commercially available compounds, since 

multiple biochemical pathways may serve as targets. (Marty et al., 2011). 

 

Estrogen/xenoestrogen receptor 

On a cellular scale, estrogens act by binding to intracellular proteins known as 

estrogen receptors (ERs). Six distinct regions have been identified within ER sequences; 

of these, regions E (ligand-binding) and C (DNA-binding) are relatively conserved 

among teleost ERs, whereas the remaining regions display greater divergence. Since the 

functions of these variable regions are not fully understood, the impact of interspecies 

heterogeneity on signal transduction remains unclear (Nimrod & Benson, 1996). 

Binding of natural or xeno-estrogenic compounds to ERs triggers a cascade of molecular 

events that may eventually influence reproduction and development (Vethaak et al., 

2005).  

By binding to ERs, xenoestrogens are able to activate or inactivate a number of 

genes leading to altered production of proteins in target cells (Rampel & Schlenk, 2008).  

The xeno-estrogens are capable to disrupt the physiological pathways of 

endogenous estrogen actions in vertebrates and produce effects on reproductive 

phenotypes such as intersex and reproductive dysfunction, and also evoke non-

reproductive responses as altered regulation of genes, unexpected protein synthesis and 

DNA damage (Rempel & Schlenk, 2008). The early developmental stages show to be 

more susceptible to xenoestrogens, resulting in the direct impact on viability of the young 

animals and long-term effects that influence diverse functions in adults. These 

compounds, as they mimic gonadal steroids, have organizational actions on nervous 

system and behavior.  

Exposing male fish to (xeno-) estrogens in vitro stimulate efficiently the 

production of the estrogen-inducible yolk precursor protein vitellogenin (VTG), while 

simultaneously inducing testicular abnormalities, including the development of mixed 

gonadal tissues (Tyler et al., 1998, Legler et al., 2000). The emphasis on (xeno-) 

estrogens in aquatic environments stems from evidence that wastewater treatment plant 

(WTP) effluents contain estrogenic compounds—including the E2 & E1 (natural 
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estrogens), EE2 (synthetic estrogen), and xeno-estrogens (e.g: alkylphenol surfactants) — 

at concentrations high enough to elicit estrogenic responses in organisms (Tyler et al., 

1998, Legler et al., 2002). Having outlined the mechanisms of EDCs, we now focus on 

alkylphenols as a key class of these pollutants. 

 

  Alkylphenols 

Alkylphenols (APs), alkylphenol ethoxylates (APEs), and their derivatives 

constitute a large group of organic compounds that have been reported to exhibit 

estrogenic activity. Laboratory investigations have demonstrated that these chemicals are 

capable of imitating estradiol’s effects in both in vitro and in vivo models (Nimrod & 

Benson, 1996). Although alkylphenolic compounds bind to the estrogen receptor with 

potencies 2,000–10,000 times lower than 17β-estradiol (Routledge & Sumpter, 1997), 

nonylphenol (NP) and octylphenol (OP) have also been shown to interact with the 

androgen receptor at lower affinity. Nevertheless, both NP and OP exert estrogenic 

effects in fish (Jobling et al., 1995). 

  For over four decades, alkylphenol ethoxylates (APEs) have been broadly 

employed as nonionic surfactants in a wide range of industrial, such as paper and pulp 

processing, textiles, coatings, metal treatment, plastics, elastomers, paints, and agriculture 

pesticides, lubricating, industrial detergent formulations, and cosmetics (Ahel et al., 

1994a). In addition, APEs are applied as offshore cleaners, emulsifiers, and wetting 

agents (Blackburn et al., 1999). Industrial uses alone account for approximately 55% of 

the total APE market. Additional uses of APE include industrial and institutional cleaning 

products (30%), household cleaning products (15%) with less than 1% employed in 

minor uses, including raw materials for APE production, as well as the manufacture of 

phenolic resins, polymers, heat stabilizers, and antioxidants in aviation jet fuel, in 

addition to serving as curing agents (Ying et al., 2002). In the plastics industry, APs are 

additionally used as antioxidants and have been reported to leach from plastics utilized in 

food processing and packaging (Soto et al., 1991). 

  Alkylphenol ethoxylates (APEs) are synthesized by reacting branched-chain 

alkylphenols (APs) with ethylene oxide results in the formation of an ethoxylate chain. 

The principal APs used for this purpose are nonylphenol (NP) and octylphenol (OP). Of 

these, nonylphenol ethoxylates (NPnEOs) dominate the market, representing roughly 80% 

of global production, while octylphenol ethoxylates (OPnEOs) account for the remaining 

~20% (White et al., 1994). Concerns regarding APs and APEs have been heightened in 

environmental research because of their widespread distribution and the persistence of 

their metabolites in aquatic and terrestrial ecosystems (Kolpin et al., 2002; Månsson et 

al., 2008). APs are among the most recalcitrant organic pollutants and are capable of 

bioaccumulation in living organisms (Ahel et al., 1993). Microbial degradation of APEs 

during sewage treatment generates alkylphenols, particularly NP and related compounds 

(Giger et al., 1984). In Europe, NP is the most commercially important AP, with an 
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estimated annual production of ~75,000 tons, about 60% of which is used in the 

manufacture of NPEs (EU, 2000). Due to their toxicity and persistence, many EU 

countries began banning the use of alkylphenols as early as 1976. 

Nonylphenol (NP) is more environmentally persistent than its parent compound, 

nonylphenol ethoxylates (NPEs) (Maguire, 1999); this compound has been 

environmentally detected in surface waters, aquatic sediments, and groundwater 

indicating its widespread distribution across different environmental compartments 

(Bennie, 1999). Recent research has recognized nonylphenol (NP) as the primary 

breakdown product of nonylphenol ethoxylates (NPEs), owing to its limited 

biodegradability, high potential for bioaccumulation in aquatic organisms, and significant 

toxicity and estrogenic effects (Ahel et al., 1994a). 

 

Environmental fate 

The most commercially important APEs are nonylphenol ethoxylates (NPEs) and 

octylphenol ethoxylates (OPEs), with NPEs representing nearly 80% of total APE 

consumption. Global production is estimated at approximately 500,000 tons annually, of 

which about 60% ultimately enters aquatic environments (Sole et al., 2000). To properly 

evaluate their environmental risk, it is essential to understand the environmental behavior, 

transformation pathways, and fate of APEs. Behavior and fate are significantly affected 

by degradation and sorption once these substances enter the environment (Ying et al., 

2002). 

   In land-applied biosolids, APEs generally undergo rapid degradation, with up to 

90% biodegraded within approximately three months. However, this process can be 

considerably slower in waterlogged soils with limited oxygen availability. Since APEs 

tend to adsorb strongly to soil particles, their migration from treated land is unlikely 

unless heavy rainfall induces erosion and sediment transport. When best management 

practices (BMPs) for erosion and runoff control, as mandated by state and federal 

regulations, are implemented, land application sites are typically not significant sources 

of APEs to surface waters (Environment Canada, 2001). 

 

Microbial metabolism  

Microbial degradation of APEs typically begins via initial attack on the ethoxylate 

chain instead of an aromatic ring or hydrophobic alkyl chain (Ahel et al., 1994b, El-

Sayed Ali, 2023a, b). The degradation of ethoxylate chains occurs progressively, either 

through ether bond cleavage or by terminal alcohol oxidation which is subsequently 

followed by cleavage of the resulting carboxylic acid. According to Bell et al. (1989), the 

biotransformation of octylphenol polyethoxylates was assessed in sewage-derived 

bacterial cultures under aerobic as well as anaerobic conditions. Similarly, Ahel et al. 

(1994b) reported comparable results while examining the degradation of octyl- and 
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nonylphenol ethoxylates using bacterial strains isolated from forest soils, wastewater, and 

river water. These studies consistently demonstrate that bacteria convert APEOs into 

short-chain APEOs, alkylphenol carboxylic acids (APECs), and alkylphenols (APs). The 

metabolism of these degradation products seems to proceed at a limited rate (El-Sayed 

Ali et al., 2017; El-Saye Ali et al., 2018) . 

Photochemical breakdown 

Apart from microbial degradation, Ahel et al. (1994c) demonstrated that NP is 

also liable to photochemical breakdown. Experiments conducted in natural lake water 

revealed that NP exhibted a half-life that ranges from 10–15 hours under continuous 

midday summer sunlight in the surface of the water layer, while degradation at depths of 

20–25 cm occurred at a rate about 1.5 times slower. The degradation products were not 

identified in this study. In contrast, photolysis of NPnEO was found to proceed much 

more slowly, suggesting that it is unlikely to represent a significant removal pathway in 

aquatic environments. 

Breakdown during sewage treatment 

APEs are frequently transported to sewage treatment plants, where they undergo 

only partial degradation, yielding alkylphenolic by-products that are subsequently 

discharged into rivers and coastal waters with treated effluent. A modeling study 

estimated that in the UK, approximately 83% of NPE production is released into the 

environment, with about 37% entering aquatic systems (CES, 1993). 

Exposure routes to fish  

            Chemicals can enter animal bodies through multiple pathways. In fish, the 

primary routes of entry are generally considered to be via the gills and the 

gastrointestinal tract through both food and water intake. Additionally, in smaller fish, 

where the surface area-to-volume ratio is relatively high, dermal absorption through the 

skin represents an important route of exposure to toxicants (Lien & McKim, 1993).              

           When toxicants affect aquatic organisms, the precise pathways of entry are often 

uncertain. The degree of toxicity is influenced not only by the uptake, metabolism and 

distribution of the compound but also through its molecular interactions at the site of 

action. Hydrophobic chemicals including 4-NP, when absorbed through the gills or skin, 

may elicit stronger estrogenic effects compared to ingestion via the diet. This is because 

dietary uptake subjects the compound to first-pass metabolism through intestine and liver 

before systemic circulation, where metabolic transformation may reduce the estrogenic 

activity of 4-NP before it reaches sensitive tissues such as the gonads or liver. In contrast, 

the gills provide a highly efficient route for chemical transfer between water and 

bloodstream (Rand, 1995). Moreover, the oxygenated blood leaving the gills in fish, is 

rapidly distributed through major organs, including gonads, allowing toxicants to reach 

target tissues directly, prior to hepatic degradation. Similarly, chemicals absorbed through 

the skin are presumed to bypass immediate metabolism and may therefore reach internal 

organs in their intact form. 
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      To assess the potency of 4-NP by several exposure routes, male fathead minnows 

(Pimephales promelas) were exposed for two weeks either through waterborne exposure 

or via the diet. Liver and blood samples were collected for analysis of vitellogenin 

mRNA expression and plasma vitellogenin concentrations, respectively. Results obtained 

from this study demonstrate that 4-NP exhibits a markedly greater estrogenic potency—

approximately ten times higher—when taken up directly into the  bloodstream via the 

gills or skin of fish, comparing with dietary exposure (Pickford et al., 2003, Barber et 

al., 2007). 

Bioaccumulation and biotransformation  

Bioaccumulation: Aquatic organisms, including both flora and fauna, can serve 

as repositories for lipophilic environmental xenobiotics, accumulating these compounds 

from water, sediments, and food sources. Numerous investigations have shown the 

bioaccumulation of NP in algae, fish, ducks, and marine organisms from freshwater 

systems (Ahel et al., 1993; Lewis & Lech, 1996; Staples et al., 1998; Heinis et al., 1999; 

Dasmahapatra et al., 2023). Algae, in particular, exhibit a strong capacity for NP 

accumulation, with reported bioconcentration factors (BCFs) reaching as high as 10,000. 

In fish tissues, BCFs were estimated to range from 13–410 for NP, 3–300 for NPE1, and 

3–330 for NPE2. Comparable concentrations have also been detected in the tissues of 

wild ducks. The relatively lower NP levels found in some higher organisms may 

represent outcomes shaped by tissue metabolism and elimination processes. However, 

current knowledge of the metabolic fate of alkylphenols in aquatic organisms remains 

limited (Vazquez-Duhalt et al., 2005). 

Biotransformation: Tissue distribution and elimination of NP residues were 

determined in tissues of he rainbow trout (Oncorhynchus mykiss) by injecting the caudal 

vessel with a single dose of 0.375mg NP labeled with 37.5 µCi 3H. The order of residue 

concentration was examined in different tissues at 1, 2, 4, 24, 48, 72 and 144h after 

dosing and showed the following order: bile > faeces > liver > pyloric caeca > kdney > 

brain, gill, gonad, heart, plasma, skeletal muscle and skin. Despite rapid metabolism and 

excretion, a substantial depot of parent compound remained in muscle which could have 

implications for maintenance of NP residues and associated biological activity (Coldham 

et al. 1998). Once absorbed, the lipophilic properties of these persistent contaminants 

favor their accumulation, while their hormonal activity can be altered through 

biotransformation. Under physiological conditions, NP is likely to be stored in adipose 

tissue and subsequently metabolized in the liver, which may promote its distribution to 

hormonally sensitive organs. (Vazquez-Duhalt et al., 2005). 

Moreover, Pedersen and Hill (2002) examined in vivo the accumulation and 

distribution of OP in the soft tissues of rudd (Scardinius erythrophthalmus) during ten 

days. Extraction of radioactive residues of 14C-OP revealed that OP was the predominant 
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compound detected in muscle, ovary, and testis, while in kidney, liver, bile blood and gill, 

it was extensive metabolic transformation. During a 10-day depuration period, a rapid 

decline of soluble residues from tissues was observed. 

Numerous studies have investigated the metabolism of NP and tissue distribution 

in juvenile Atlantic salmon (Salmo salar) using both in vivo and in vitro approaches 

(Meucci & Arukwe, 2006). Arukwe et al. (2000a) evaluated in vivo metabolism by 

administering a single oral dose of (^3H) 4NP to juvenile fish and collecting samples 24, 

48, and 72 hours post-exposure. Findings indicated that 4NP was primarily 

biotransformed into its glucuronide conjugate, with smaller amounts converted into 

hydroxylated and oxidized derivatives. The estimated half-life of carcass and muscle 

tissue residues was between 24 and 48 hours post-exposure. The half-life of residues in 

muscle tissue was estimated to be between 24 and 48 hours after exposure. More 

metabolites were present in urinary samples compared with biliary samples. Arukwe et 

al. (2000b) extended their work to include studies on the in vivo and in vitro metabolism 

as well as tissue distribution of NP in salmon. In vivo experiments involved exposing fish 

either to waterborne (^3H)-4NP for 72 hours or to a single oral dose. In vitro assays used 

hepatocytes isolated from farmed salmon treated with (^3H)-4NP was also realized. The 

results demonstrated that 4NP was predominantly metabolized in vivo into glucuronide 

conjugates and hydroxylated metabolites, with bile serving as the primary excretion 

pathway. Residual levels in carcass and muscle showed a half-life of 24–48 hours for 

both exposure methods. Whole-body autoradiography indicated that intragastric 

administration led to accumulation mainly in the gastrointestinal tract and bile, whereas 

waterborne exposure produced a more uniform distribution across organs, including 

intestinal contents, brain, gills, liver, kidney, skin, and abdominal fat. In vitro 

experiments indicated that βNF pretreatment did not affect either the speed or the profile 

of NP biotransformation in hepatocytes. By exposing fathead minnows (Pimephales 

promelas) to 0.33, 0.93, 2.36 µg/l of NP for 42 days, there was a great accumulation of 

NP in fish tissue, presenting bioconcentration factors (BFs) ranging from 245 to 380 

(Snyder et al., 2001). In addition, Ferreira-Leach and Hill (2001) detected radioactive 

residues of 14C OP in all tissues of the rainbow trout (Onchorynchus mykiss) after 1 day 

of exposure reaching a steady state after 4 days of exposure. The highest concentration 

was found in bile, followed by faeces, pyloric caeca, liver and intestine, accumulated in 

fat with BCFs 1180 and in muscle, brain, gills, eye and bone with bioconcentration factor 

of BCFs between 100 and 260.  

In a study on Atlantic cod (Gadus morhua), Jonsson et al. (2008) administered AP (10 

mg/kg fish) for 4 and 16 days and demonstrated that bile metabolites could be 

characterized after enzymatic deconjugation. 

Estrogenic activities of nonylphenol (ER-mediated) 

Environmental problems associated with estrogenic compounds are often first 

observed in aquatic ecosystems, manifesting as reproductive malfunction such as inter-
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sex conditions and male feminization (Jobling et al., 1998). Potential impacts of 

estrogenic pollutants on reproduction in wild fish have been evaluated using biomarkers 

such as vitellogenin (VTG) stimulation in plasma of male and histopathological changes 

in gonadal tissues (Vethaak et al., 2005). VTG, a yolk protein precursor, is normally 

synthesized in the female liver under the influence of 17β-estradiol and circulates in the 

blood (Mommsen & Walsh, 1988). Notably, male levels are typically negligible 

(Kinnberg et al., 2000). Nevertheless, exogenous estrogens can induce its synthesis, 

making male plasma VTG a well-established biomarker of estrogenic exposure (Sumpter 

& Jobling, 1995). 

In addition to VTG induction, natural estrogens and NP have been shown to cause 

structural and functional disturbances in the testes of teleosts (Christensen et al., 1999; 

Kinnberg et al., 2000). Evidence also confirms that nonylphenol is capable of impairing 

reproductive health across vertebrate groups. For example, Lukáčová et al. (2013) 

demonstrated adverse impacts on fish and mammals, including testicular disruption, 

Sertoli and Leydig cells damage, and diminished sperm production and motility. 

The mode of action of NP and OP is thought to involve binding to estrogen 

receptors (ERs), thereby mimicking or disrupting the normal effects of endogenous 17β-

estradiol (Nimrod & Benson, 1996). Estrogen normally initiates VTG synthesis through 

ER activation (Rasmussen et al., 2005). The ER itself is composed of several domains: A 

variable N-terminal A/B domain; a conserved DNA-binding C domain; a hinge D domain; 

a moderately conserved E domain for ligand binding; and a short, F domain at the 

carboxy terminus that are  poorly conserved (Pakdel et al., 1989). 

ERs have been identified in various vertebrates, including fish, and multiple 

receptor isoforms have been reported in both fish and humans (Hawkins et al., 2000). 

Although ERs from closely related species typically display similar binding affinities for 

both endogenous and exogenous estrogens (Tollefsen et al., 2002, 2008), pronounced 

variations in ligand binding have been reported among receptors from more distantly 

related species (Harris et al., 2002). For instance, the estrogen receptors of the rainbow 

trout (rtER) exhibit considerable divergence in the amino acid sequence of the ligand-

binding domain (E domain), sharing only ~60% similarity with human ERα (hER) 

(Pakdel et al., 1989). This divergence suggests potential differences in ligand-binding 

specificity and/or affinity between fish and human receptors, which may influence how 

endogenous and exogenous estrogens interact across species (Olsen et al., 2005). 

Several investigations have shown that NP exhibits estrogenic activity in teleost 

fish, particularly in freshwater species, through both in vivo and in vitro experiments 

(White et al., 1994; Routledge & Sumpter, 1996, 1997; Toppari et al., 1996; 

Kinnberg et al., 2000). In vivo exposures have consistently demonstrated elevated 

plasma VTG concentrations in NP-treated fish (Christensen et al., 1999). In species such 

as the sheepshead minnow (Cyprinodon variegatus), rainbow trout (Oncorhynchus 
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mykiss), barbs (Barbus graellsi), medaka (Oryzias latipes), tilapia (Oreochromis 

niloticus), and common carp (Cyprinus carpio),  the dynamics of hepatic VTG mRNA 

expression, plasma VTG accumulation, and VTG clearance have been thoroughly 

characterized (Thibaut et al., 1999; Hemmer et al., 2002; Holth et al., 2008; El-Sayed 

Ali et al., 2014a, b; Shaaban et al., 2021; Shaaban et al., 2022a, b). Similar responses 

have been observed in Atlantic salmon, flounder, common carp, and eelpout (Madsen et 

al., 2002; Yadetie & Male, 2002; Rasmussen et al., 2005; Barse et al., 2006). 

Fish embryonic gonads are bipotential, capable of differentiating into either 

ovaries or testes (Demska-Zakęś & Zakęś, 2002). This process is regulated by genetic, 

hormonal, and in some cases environmental factors. Consequently, exposure to 

exogenous hormones or hormone-like chemicals during critical developmental windows 

can interfere with normal sexual differentiation. Numerous investigations have assessed 

the reproductive risks posed by NP in adult fish, revealing disruptions that include altered 

testicular morphology, impaired spermatogenesis, and changes in reproductive behavior 

(Kinnberg et al., 2000; Weber et al., 2002, Miura et al., 2005). Numerous authors 

examined the effects of NP on zebrafish at various stages of life including embryos/larvae 

(El-Sayed Ali, 2010; El-Sayed Ali & Legler, 2011, Ghanem, 2021) and adults. 

Different aspects have been reported as the reduction in egg production (Zoller, 2006), 

increase in bile pyrene metabolites (Holth et al., 2008), inhibition in testicular growth 

and sex differentiation that lead to development of ova-testis and inhibition in testicular 

growth following exposure to AP (Andersen et al., 2003). Stimulation of gonadal 

intersex and secondary sexual characteristics were assessed in Japanese medaka when 

exposed to NP. Exposure to this chemical resulted in pronounced reproductive 

abnormalities, including gonadal intersex in 80% of males, the presence of mixed sexual 

characters in more than 45% of exposed individuals, and complete inhibition of anal fin 

papillae  in all males (Balch & Metcalfe, 2006). 

Exposure to elevated concentrations of water PW released from off-shore oil 

industry operations, which contained alkylphenols (APs), has been shown to disrupt 

reproductive physiology in Atlantic cod (Gadus morhua). Female cod subjected to 

produced water (PW) exhibited elevated plasma VTG compared to controls, along with 

disrupted development of oocytes and decreased levels of estrogens. In respect to males, 

alteration in testis maturity was altered, with an accumulation of spermatogonia and 

primary spermatocytes accompanied by a decline in mature sperm production (Sundt & 

Björkblom, 2011). 

Similarly, Del Giudice et al. (2012) investigated NP-induced VTG synthesis in 

adult male spotted ray (Torpedo marmorata) using in situ hybridization and immune-

histochemistry. Following NP injection, VTG mRNA and protein were detected in liver. 

These findings suggest that in T. marmorata, NP stimulates hepatic VTG production, 

with subsequent protein transport to other tissues, while testicular synthesis remains 

unaffected. 
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In a different context, Gassel et al. (2013) examined juveniles of the yellowtail 

fish (Seriola lalandi) for persistent organic pollutants and nonionic surfactants from the 

North Pacific Central Gyre. NP was detected in approximately one-third of the samples, 

with mean concentrations of 52.8 ± 88.5 ng/g ww overall and 167 ± 72.3 ng/g ww when 

excluding non-detects. Given NP’s strong association with wastewater effluents and its 

limited potential for long-range transport, coupled with prior detection of NP in gyre 

plastics, the authors concluded that plastic-mediated exposure was the most reasonable 

source of NP contamination for that species. 

 

Moreover, when hermaphrodite fish, Mangrove rivulus was subjected to NP, no 

testicular tissue was formed (Tanaka & Grizzle, 2002). Moreover, a clear reduction in 

gonado-somatic index (GSI) was detected in platyfish (Kinnberg et al., 2000) when 

exposed to such class of chemicals. 

Cathepsin D (CAT D) has been considered as a biomarker of xenobiotic exposure 

(Carnevali & Maradonna, 2003). In addition to plasma VTG, eggshell proteins such as 

zona radiata proteins (Zrp) or their hepatic mRNA expression in juvenile male fish have 

also been suggested as biomarkers of endocrine disruption, since they play key roles in 

preventing polyspermy during fertilization and in protecting embryos from mechanical 

damage (Walther, 1993). Jobling et al. (1996), Arukwe et al. (1997) and Oppen-

Berntsen et al. (1999) also supported their use as biomarkers. Based on these 

considerations, Yang et al. (2006) exposed adult zebrafish (both sexes) to NP at levels of 

0.1, 1, 10, 50, 100, and 500μg/ L for twenty- one days. Gonadosomatic index (GSI) in 

males and females, and vitellogenin (VTG) induction in males were applied as 

biomarkers of parental impairment, and the study identified 50μg/ L as the no observed 

effect concentration (NOEC) for both endpoints. Afterward, NP-exposed females and 

males (50μg/ L) were crossed with control partners in clean water for 1 week to assess 

reproductive outcomes. The evaluated endpoints comprised embryonic CAT D activity, 

fecundity, thickness of eggshell, hatching success, and vertebral malformations. Whereas, 

no significant changes were observed in groups with NP-exposed males, exposure of 

females to 50μg/ L NP negatively impacted reproduction, as indicated by decreased CAT 

D activity (P< 0.05), a 23.6% reduction in eggshell thickness, and a significantly higher 

malformation rate (P< 0.001). These findings indicate that NP can cause reproductive 

damage in zebrafish at the parental NOEC and further suggest that CAT D activity and 

eggshell thickness may represent more sensitive biomarkers for assessing the 

reproductive effects of endocrine-disrupting chemicals. 

Novel effects of nonylphenol (non ER-mediated) 

Beside the previously described estrogenic impacts of these chemicals on the liver 

of various aquatic species, Vetillard and Bailhache (2006) explored the molecular 
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effects of 4-NP on additional organs, including the brain. Juvenile rainbow trout 

(Oncorhynchus mykiss) were exposed to 4-NP concentrations ranging from 2.2µg/ L to 

2.2mg/ L, and after 3 and 6 days, changes in the mRNA expression of gonadotropin-

releasing hormone (GnRH) and estrogen receptor (ER) isoforms in the brain, as well as 

ER isoforms and vitellogenin (VTG) in the liver, were analyzed. In the liver, exposure to 

the highest 4-NP concentrations significantly induced VTG and ER long-isoform mRNA 

expression, while transcription of the ER short-isoform remained unchanged. In the brain, 

4-NP caused a dose-dependent reduction in sGnRH2 gene expression, while sGnRH1 and 

ER mRNA levels were unchanged. Furthermore, significant alterations in body weight 

and fork length were observed in the rainbow trout exposed to phenolic compounds for 

22 days (Ashfield et al., 1998). In hepatocytes, 96h exposure to alkylphenols (AP) caused 

loss of membrane integrity, indicative of cytotoxicity (Tollefsen et al., 2008). Metabolic 

inhibition was identified as a more sensitive marker of acute toxicity. In addition, 

epidermal structure was disrupted following NP exposure, showing irregular tissue 

organization, detachment of pavement cells, cytoplasmic vacuolation, severe nuclear 

deformation, and altered mucous cell granulation patterns (Burkhardt-Holm et al., 

2000).  

Depletion of total glutathione (tGSH), CYP1A and CYP3A levels and also EROD 

activities in Atlantic cod (Gadus morhua) were also associated with phenolic compounds. 

However, the expression of the CYP19A2 gene was markedly enhanced in a dose-

dependent manner. The expression of CYP19A1 was basically resistant to these 

compounds in zebrafish in 3 days (Sturve et al., 2006). For the same species, very low 

concentrations (0.02, 2, 20, 40 & 80 ppm) of AP inhibited also the hepatic CYP1A 

enzyme activity and CYP3A protein (Hasselberg et al., 2004).  

Hepatic mRNAs expression was analyzed in zebrafish subjected to elevated 

concentrations of AP (200, 500, 3000, 7000, and 7500ng/ L). In males, 31% of the genes 

showed up-regulation after one week of exposure, with 19% still up-regulated after seven 

weeks. In females, gene up-regulation was limited, affecting only 8% after 1 week and 3% 

after seven weeks. Other effects included a decreased condition factor in males, spinal 

deformities in the F1 generation, and elevated bile pyrene metabolites was also detected 

after 7 weeks of exposure. Additionally, Barse et al. (2006) demonstrated a significant 

decrease in alkaline phosphatase and asprtate aminotransferase activity, alanine 

aminotransferase and acid phosphatase. In common carp, hepatic- and reno-somatic 

indices were elevated relative to controls, whereas the testicular-somatic index was 

decreased, accompanied by histo-architectural alterations in both testicular and hepatic 

tissues. 

Process of parr-smolt transformation in salmonids is controlled by endocrine 

system and could be interrupted by such chemicals (Boeuf, 1993). Exposure of Atlantic 

salmon (Salmo salar L.) smolts to environmentally relevant concentrations of the 

estrogenic compound of 4-NP (5–20 µg/L) during peak migration did not significantly 
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affect gill Na⁺/K⁺-ATPase activity. In contrast, exposure to combined mix of 4-NP and 

atrazine (5.0/1.0 & 10.0/2.0µg/ L, respectively) resulted in pronounced changes, 

including lowered plasma Cl⁻ and Na⁺ concentrations, altered gill Na⁺/K⁺-ATPase 

activity, and elevated mortality following seawater transfer (Moore et al., 2003). 

Consistent results were also recorded by Madsen et al. (2004). 

 

Example of the action of NP on parr-smolt transformation  

Exposure of Salmo salar L. during the critical developmental stage known as 

parr-smolt transformation (PST) is reported to contribute significantly to population 

decline (Fairchild et al., 1999). PST is characterized by complex hormonal changes and 

rapid growth (Høgåsen, 1998). Growth hormone (GH) plays a pivotal role during this 

process, both through its direct stimulation of somatic growth and its indirect role in 

enhancing seawater adaptation (Ágústsson et al., 2001). Many of the physiological 

actions of growth hormone (GH) are exerted indirectly through insulin like growth factor 

I (IGF-I) (Green et al., 1985). Specifically, GH promotes IGF-I synthesis through 

interaction with GH receptors in various tissues, with the liver being the principal site of 

production (Björnsson, 1997). Smolts of Salmo salar were subjected to treatments of 

20µg/ L waterborne 4-nonylphenol (4-NP). Tagged fish were individually sampled 3 

times annually to assess subsequent seawater growth and plasma IGF-I levels. Both body 

mass and circulating IGF-I concentrations were significantly influenced by 4-

nonylphenol exposure, indicating the disruption of normal hormonal functions 

(Arsenault et al., 2004). Moreover, the effects of OP on reducing both physiological and 

behavioral components of smoltification were investigated by Bangsgaard et al. (2006). 

Luo et al. (2005) examined the roles of 4-nonylphenol on ERα gene expression in both 

liver and gills of sockeye salmon to clarify its molecular function during smoltification. 

Fish received treatments twice weekly with either 15 or 150mg NP/kg body weight at 

three developmental stages: Pre-, early and late smolting. Quantification of ERα mRNA 

levels was carried out using real-time PCR. Results showed that basal ERα mRNA 

expression reached its highest levels during early smolting in the liver, gill, and pituitary. 

At this stage, estradiol (E2) levels were increased in the liver significantly, while 4-

nonylphenol exposure did not produce any detectable changes. No notable alterations 

were recorded in the brain. These findings indicate that basal ERα mRNA expression 

varies with developmental stage, suggesting that tissue sensitivity to estrogen shifts 

during smolting. In addition, 4-nonylphenol influenced ERα gene expression differently 

in gills and liver, with effects dependent on the stage of smolt development. 

Endocrinologically, the pathways of estrogenic substances which affect 

smoltification and salt water adaptation, McCormick et al. (2005) treated Atlantic 

salmon with graded doses of 4-nonylphenol (0.5– 150µg/ g) for periods of 7 and 14 days. 

After 14 days, fish were challenged with seawater transfer for 24h to estimate their 
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tolerance. Increases in plasma GH occurred only at intermediate NP doses (10 and 40µg/ 

g), while plasma thyroxine (T4) levels declined in a dose-dependent manner, though this 

inhibitory effect was evident only at 150µg/ g dose after 14 days. These findings suggest 

that smoltification and salinity tolerance may be impaired by exposing to estrogens. 

These compounds impair hypo-osmoregulatory function, while NP-induced suppression 

of thyroid hormone levels may further disrupt the regular transformation of parr-smolt in 

Atlantic salmon. 

Lerner et al. (2007) examined the long term impacts of waterborne nonylphenol 

(NP; 10 or 100µg/ L) on Atlantic salmon yolk-sac larvae by exposing them for 21 days 

and monitoring outcomes up to one year later. NP treatment leads to nearly 50% 

mortality during exposure, with additional deaths occurring 30 and 60 days post-

treatment. After one year, fish exposed as yolk-sac larvae exhibited a reduction in 

sodium-potassium adenosine triphosphatase (Na⁺, K⁺-ATPase) activity in the gill and 

diminished seawater tolerance during smoltification. Behavioral assessments 

demonstrated a two- fold increase in latency to enter seawater and a five-fold reduction in 

seawater preference. Endocrine measurements showed a 20% reduction in plasma 

insulin-like growth factor I (IGF-I) and a 35% decrease in triiodothyronine (T3) in NP-

exposed fish, whereas plasma growth hormone (GH) and thyroxine (T4) were unchanged. 

Additionally, NP-exposed groups displayed higher plasma cortisol levels and impaired 

osmoregulatory performance following handling stress. These findings suggest that the 

early exposure to environmentally realistic NP concentrations may cause both acute and 

late mortality and may impose lasting “organizational” impacts on salmonid life-history 

traits. 

Conclusions and future directions 

Evidence demonstrates that alkylphenols exert severe impacts on various fish species, 

affecting both endocrine and non-endocrine pathways. Despite the wealth of knowledge 

gained from existing literature on the actions of phenolic compounds, further studies are 

needed across different fish species and life stages. In particular, in vivo investigations at 

environmentally relevant concentrations are recommended to better understand 

ecological risks. Moreover, remediation remains a critical area of focus, as alkylphenols 

are difficult to remove through conventional physicochemical methods once they diffuse 

into leachates and wastewaters. Bioremediation, employing organisms with high 

alkylphenol-degrading capacity, represents a promising alternative strategy. 
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