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ARTICLE INFO ABSTRACT

Avrticle History: Sphaerospermopsis aphanizomenoides is an invasive cyanobacterial species
Received: July 25,2025  recently detected in the Macta Marshes, a Ramsar-listed wetland in
Accepted: Oct. 5, 2025 northwestern Algeria recognized for its ecological importance to
Online: Oct. 30, 2025 Mediterranean biodiversity. In recent years, this area experienced advanced
eutrophication affecting numerous watercourses and small lakes. The

present study provides a morphological, molecular and physiological
characterization of S. aphanizomenoides strain isolated from a summer
bloom in the marshes, where chlorophyll a concentration reached 141.6ug/1,
indicating an eutrophic aquatic ecosystems with high phytoplankton
biomass. Morphological identification supported by 16SrDNA gene
sequencing confirmed the species identity. Physiological assays revealed
that the strain can grow in nitrate-free media, whereas phosphate limitation
significantly reduced its development. Moreover, the ability of the strain to
grow under complete darkness highlights its adaptive strategies to low light
conditions. These findings demonstrate the remarkable adaptability of
Sphaerospermopsis aphanizomenoides and its potential role in algal blooms,
underscoring the need for further research into its ecological impact and
proliferation mechanisms.
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Global climate change and eutrophication are increasingly influencing the
distribution and seasonal dynamics of cyanobacterial communities worldwide
(Kleinteich et al., 2024). Certain harmful filamentous cyanobacteria that were initially
identified in the tropics are also migrating to temperate regions like North America,
Europe, and Northeast Asia (Kim et al., 2020), although the spread of cyanobacteria to
new areas is mainly facilitated by human activities, while natural means such as birds,
rivers, or wind also play a crucial role (Curren & Leong, 2020). Aphanizomenonaceae is
a newly proposed family of filamentous cyanobacteria that includes 12 planktic genera;
the morphological characteristics of this family include the formation and distribution of
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heterocysts and akinetes along the trichomes (Célia-Sant’Anna et al., 2019). However,
the application of contemporary molecular tools and phylogenetic interference
accelerated the revision and expansion of cyanobacterial taxonomy in the early twenty-
first century (Kastovsky, 2023). Therefore, recent investigations, based on the 16SrDNA
gene sequence and the production of secondary metabolites (Zapomélova et al., 2009),
reclassified the traditional nostocacean genus Anabaena to the newly established genus
Sphaerospermopsis (Zapomélova et al., 2011). The species is recognized by trichomes
with large spherical akinetes and short cylindrical to spherical heterocysts situated
adjacent to or between the akinetes (Hindak et al., 2000).

These Nostocales species have the highest affinity for phosphorus, which gives them
a significant competitive advantage during their invasion (Sukenik et al., 2012). These
invasive species can produce cyanotoxins that can be hazardous to the liver, brain, skin,
and kidneys (Napiorkowska et al.,, 2023). Due to their wide distribution,
bioaccumulation capacity and toxic effects, cyanotoxins like cylindrospermopsin and
microcystins are the most relevant worldwide (Weralupitiya et al., 2022). Recent
studies by Hinojosa et al. (2023) and Plata-Calzado (2023) have shown that these
toxins exhibit dual activity, affecting both cells and the nervous system. Furthermore, the
thermostable tricyclic structure of some cyanobacterial toxins presents a significant
challenge for water treatment plants, as conventional methods are often unable to remove
toxins effectively (Wu et al., 2015). In Europe, Sphaerospermopsis aphanizomenoides
formerly known as Aphanizomenon sphaericum Kisselev is regarded as an invasive
species of cyanobacterium which gained attention due to its potential to produce harmful
cyanotoxins (Sabour et al., 2005; Kastovsky et al., 2010; Ballot et al., 2014) and its
ability to thrive in different environments (Zapomélova et al., 2009, 2012). The growth
dynamics of this species are affected by environmental factors, particularly nutrient
availability and light intensity, which play key roles in its development and proliferation
(Wiedner et al., 2007).

Given the increasing frequency of cyanobacterial blooms and the global spread of
invasive species, several reports have documented the presence of cyanobacteria in socio-
economically important ecosystems in Algeria, particularly in the eastern part of the
country (Saoudi et al., 2017; Touati et al., 2019; Benredjem et al., 2022, 2023). In the
northwestern region, the waters of the Macta Marshes (RAMSAR site) play a critical role
in irrigation, livestock, nutrient retention and support for aquatic fauna and flora, as well
as in recreational activities. Despite the marshes significance, research in this area has
largely focused on hydrological analysis and the impact of climate change on the Macta
wetland (Katelyn et al., 2024). To our knowledge, no studies have been conducted to
assess the presence of this invasive cyanobacterium and research on Sphaerospermopsis
aphanizomenoides in this region remains limited. The main objectives of this study were
to confirm the occurrence of S. aphanizomenoides in the Macta Marshes, and perform its
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morphological, molecular and physiological characterization in order to contribute to the
management of eutrophication-affected aquatic ecosystems.

MATERIALS AND MET HODS

1. Site characterization

The water quality of the Macta Marshes has declined due to increasing
agricultural runoff, industrial effluents and untreated domestic discharges. As a result,
these anthropogenic pressures have caused nutrient enrichment and eutrophication.
Recent studies have also identified overexploitation and hydrological closure of the
Macta wetland as major contributors to environmental degradation (Kherbache & Molle,
2023). Samples were collected from the Macta Marshes (35°47'04.81"N, 0°06'29.73"0,
Fig. 1) during summer (August, 2021). Water samples were collected from a depth of 4—
20cm of the water surface in sterile glass bottles. Plankton samples were taken using a
plankton net (20pum-mesh size). A pooled-sample aliquot (250mL) was preserved
immediately with Lugol’s solution for cyanobacterial identification. The trophic state of
the marshes and phytoplankton biomass was quantified as chlorophyll a concentration
(ug L ™). (Meriluoto et al., 2005). Salinity, pH, and temperature were measured in situ
with a multiparameter probe (ExStik Series EC500); samples were then stored and
transported in the dark at 4°C. These data contributed to a better understanding of the
strain’s natural habitat and guided the optimization of culture conditions. Laboratory
analyses were conducted in the Aquaculture and Bioremediation Laboratory,
Biotechnology Department, University of Oran 1 (Algeria).
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Fig. 1. Site of cyanobacterial bloom sampling in Macta Marshes, northwestern Algeria,
during August 2021
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2. Morphological characterization

Cyanobacterial isolates were purified by serial dilution and cultured in BG-11
medium optimized for growth under axenic laboratory conditions. The strains were
maintained in designated liquid media at 28 + 2°C under =2500 Lux white fluorescent
light with a 12:12h light-dark cycle for 15 days (Lee et al., 2014). Morphological
features were examined using an Olympus light microscope at magnifications of 100x,
400x%, and 1000x, focusing on colony shape, cell diameter, and mucilage characteristics
(Zapomélova et al., 2009; McGregor et al., 2018).

3. Molecular characterization

Cyanobacterial cultures were harvested at exponential growth phase by
centrifugation of 5mL aliquots at 15,000 x g for 1 minute. DNA was extracted from the
cell pellets using the Plant Genomic DNA Extraction Kit and stored at —20°C. DNA
quality and integrity were verified by electrophoresis on a 1.0% agarose gel. The 16S
rRNA gene was amplified via PCR using primers 27F1
(AGAGTTTGATCCTGGCTCAG) and 809R (GCTTCGGCACGGCTCGGGTCGATA)
targeting a 780 bp fragment, following Jungblut et al. (2006). PCR reactions (25uL
total volume) included 50ng template DNA, 0.3uM primers, 1x Thermopol buffer, 200
MM dNTPs, and 0.025U/ pL Taqg polymerase, thermocycled on an Applied Biosystems
ABI 9700. Amplicons were visualized by ethidium bromide staining after electrophoresis
on 0.8% agarose gels under UV light. Bidirectional Sanger sequencing was performed by
GENWIZ (Leipzig, Germany). Resulting sequences were compared to NCBI references
and deposited in GenBank (accession no. PP999716). Phylogenetic analyses were
conducted with MEGA v7.0.21 using the neighbor-joining method (Saitou & Nei, 1987).

4. Physiological characterization

Cyanobacterial isolates were cultivated in BG-11 medium with modified nutrient
conditions to assess the effects of nutrient absence and light limitation. Three
experimental regimes were used: BG-11 without nitrate (NOs™), BG-11 without
phosphate (PO,%7), and complete darkness; a control consisted of standard BG-11.
Cultures were maintained in defined liquid media at 25 + 1°C under approximately 2,500
lux of white fluorescent light with a 12h light/ 12h dark cycle for 10 days. Chlorophyll-a
was measured every two days to monitor growth, using the Burnison extraction with
dimet hyl sulfoxide (DMSQO) and a 1.0% agarose gel check for integrity. Chlorophyll-a
was quantified following Seely et al. (1972). Each condition was run in triplicate.
Chlorophyll-a (mg L—1) was calculated as A x D x F, where A is absorbance at 666 nm,
F is the conversion factor (11.3), and D is the extract volume/sample volume. Statistical
analysis of daily chlorophyll-a changes was performed with Statistica 12, with a post hoc
Tukey test (P< 0.05) to identify significant differences. The physiological assays were
conducted to identify the environmental factors limiting toxic cyanobacteria growth,
providing critical insights for mitigating eutrophication in aquatic ecosystems.
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RESULTS

1. Site parameters assessment

The potential environmental factors and their observed ranges in the study area
were measured to provide a snapshot of the physical and chemical conditions influencing
the aquatic ecosystem at the time of sampling. In August (2021), the chlorophyll-a
concentration in the water was measured at 141.6 ug L™, indicating a high phytoplankton
biomass. Simultaneously, the pH was 8.2, reflecting a slightly alkaline environment,
while the temperature reached 28.4°C. Additionally, the salinity measured 6.2 ppt
suggested moderately brackish conditions.

2. Morphological characterization
Table (1) presents morphological characteristics of the isolate, with corresponding

photomicrographs shown in Fig. (2), following the morphological features of
Zapomelova et al. (2009).

Fig. 2. Morphology of Sphaerospermopsis aphanizomenoides (CYA2) showing:
(A) Light micrographs showing different morphological forms of the isolate from Macta
Marshes: trichomes (T), akinetest (A), heterocysts (H), and terminal cells (TC). (B)
lustrations of S. aphanizomenoides (Forti) (Zapomélovaetal. (2009). Scale bar =
10 pm.
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Table 1. Morphological characteristics of S. aphanizomenoides isolate from the Macta
Marshes. W- width (um)

Isolate Trichome Vegetative cells Heterocytes Akinetest Terminal cells
type
barrel shaped to spherical or spherical or slightly
Sphaerospermopsis straight cylindrical slightly elongated widely oval elongated
aphanizomenoides rounded ends
Cya2 (PP999716) W=48-75um W=63-87um W=9.5-14 um or conical

3. Molecular characterization
= DNA quality assessment

Genomic DNA was successfully extracted. The integrity and quality of DNA
were checked on 1.0 % agarose gel (Fig. 3).

Fig. 3. Gel electrophoresis of genomic DNA extraction from isolate of
Sphaerospermopsis aphanizomenoides, 1% agarose gel

= 16SrDNA gene analysis

In this study, cyanobacteria were identified using polymerase chain reaction
(PCR) targeting the 16SrDNA gene. Gel electrophoresis analysis revealed distinct
amplicon patterns from sample, with DNA extracts showing sizes of 780bp for 16SrDNA

(Fig. 4).
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Fig. 4. PCR product the band size 780 bp of 16SrDNA. M: Marker
(DNA ladder 100 pb), - C: Negative control, 1: Sphaerospermopsis aphanizomenoides

= Phylogenetic study

BLAST analysis showed high sequence similarities ranging from 97.65 to 97.99%
between the 16S rDNA gene sequence of cyanobacterial isolate from the Macta Marshes
and strain sequence from the Nostocales order accessible in GenBank (Table 2).

Table 2.16S rDNA gene-sequence-based identity (%) between the cyanobacterial
isolates from the Macta Marshes and their closest match available in Genbank (NCBI)

Query Percent

Isolates Closest Match (Accession Number) Coverage ldentity
(%) (%)
Sphaerospermopsis aphanizomenoides IFCC-AAQ5 (KY(077261.1) 100 97.65
Sphaerospermopsis Sphaerospermopsis reniformis NIES-1943 (LC455633.1) 98 97.99

aphanizomenoides

Cya?2 (PP999716) Sphaerospermopsis aphanizomenoides NRERC-603 (MT294023.1) 98 97.86
Sphaerospermopsis aphanizomenoides NRERC-607 (MT294021.1) 98 97.74

The phylogenetic tree analysis of 16SrDNA sequences (Fig. 5) revealed that the
isolate Sphaerospermopsis aphanizomenoides CYA2 grouped within a well-supported


https://www.ncbi.nlm.nih.gov/nucleotide/KY077261.1?report=genbank&log$=nucltop&blast_rank=1&RID=9E0DW8BN016
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1566846255
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cluster containing reference strains of the same species, including S. aphanizomenoides
IFCC-AAQ5 (Turkey), S. reniformis NIES-1943 (Japan), and S. aphanizomenoides
NRERC-603 and NRERC-607 (South Korea), all retrieved from the GenBank database.

o LC455623.1:5-798 Sphaer reni is NIES-1948 gene for 165 ribosomal RNA partial sequence

76} JFO08971.1:1-794 Uncultured cyanobacterium clone A35 16S ribosomal RNA gene partial sequence

27} LC455633.1:5-798 pt is reni is NIES-1943 gene for 165 ribosomal RNA partial sequence

53 MT294023.1:1-794 Sphaerospermopsis aphanizomencides NRERC-603 16S ribosomal RNA gene partial sequence

87 MT284029.1:1-794 Sphaerospermopsis reniformis NRERC-608 16S ribosomal RNA gene partial sequence

99 MT294026.1:1-794 Sphaerospermopsis aphanizomenoides NRERC-606 165 ribosomal RNA gene partial sequence

KYO077262.1:39-836 Sphaerospermopsis aphanizomenoides IFCC-AAD1 16S ribosomal RNA gene partial sequence

F L MT294021.1:1-795 per YPSi i ides NRERC-607 16S ribosomal RNA gene partial sequence

| PP999716.1:1-808 Sphaero i i wides CYAZ 16S ribosomal RNA gene partial sequence

100 I— KY077261.1:2-808 Sphaerospermopsis aphanizomenoides IFCC-AADS 165 ribosomal RNA gene partial sequence

0.50

Fig.5. Phylogenetic analysis of Sphaerospermopsis aphanizomenoides (CYA2).
Neighbor-joining tree based on 16S rDNA sequences showing the relationship of the
Macta Marshes isolate (S. aphanizomenoides CYAZ2) to reference cyanobacterial strains
from GenBank. The uncultured cyanobacterium JF90897 was used as the outgroup.

4. Physiological characterization

Table (3) presents the results of chlorophyll-a production under the three tested
conditions. The results show that the absence of nitrate induced a significant increase in
chlorophyll-a production, peaking at Day 6 (15.4 £+ 0.02 mg/L), before gradually
decreasing. The absence of phosphate led to stagnation in chlorophyll-a production, with
values close to the initial control, while cultures in total darkness exhibited no significant
increase in biomass, remaining relatively stable throughout the experiment.

Table 3. Chlorophyll-a concentration (mg/L) under different conditions

Conditions JO J2 Ja J6 J8 J10

Control 515+0.05% 8.54+0.34" 12.05+0.55° 19.54+0.02° 9.44+0.02° 7.29+0.10°

Nitrate-Free 532+0.05% 7.27+046° 105+0.02° 15.4 +0.02¢ 7.3+0.02" 46+0.05°

Phosphate-Free 5.24+0.07% 3.68+0.17% 4.00+£0.19% 6.44+0.10° 571+011° 477+012%®

Total darkness  5.10+0.02% 4.02+1.22° 4.00+0.19° 397+0.24° 478+0.01™ 522+0.05°

Values are presented as meanzstandard deviation. Letters (a, b, ¢) indicate significant differences
(P< 0.05) within each condition.
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DISCUSSION

1. Site characterization

The summer temperature recorded at the Macta Marshes was 27.9°C + 0.6
(August 28.4°C), showing that S. aphanizomenoides is a more effective competitor than
native species at higher temperatures (McGregor et al., 2018). Laboratory experiments
indicate that this species thrives at 20- 30°C, although optimal temperatures vary between
strains (Savadova-Ratkus et al., 2021). The chlorophyll a concentration measured at the
site is 141.6pg/ L, which indicates that the area is eutrophic and confirms previous
hydrological studies (Lakhdari, 2021). Moreover, cyanobacteria are often associated
with eutrophic environments where water transparency is low, including S.
aphanizomenoides (Budzynska et al., 2017). However, a significant correlation (P<
0.05) was observed between the abundance of Sphaerospermopsis aphanizomenoides and
chlorophyll-a concentration (Figueiredo et al., 2022), consistent with observations in the
Macta Marshes, indicating that eutrophic conditions strongly favor the proliferation of
this species. The in situ pH of 8.2 lies within the optimal growth range reported for
S. aphanizomenoides (7.0-9.4) (Budzynska et al., 2019), suggesting that local alkalinity
levels are conductive to its growth. Likewise, the salinity, measurement at 6.2 ppt,
reflects a slightly brackish environment, which may further support the species ecological
success. Consistent with these field conditions, laboratory experiments have shown that
S. aphanizomenoides can withstand NaCl concentrations between 100 and 800 mmol L™
(Usmonkulova et al., 2022); nevertheless, fluctuations in salinity are known to
significantly influence its growth (Suikaité et al., 2023), highlighting the combined
influence of eutrophic conditions and moderate salinity on the species proliferation.

2. Morphological characterization

Ecosystems functioning relies on dynamic interactions among species driven by
nutrient cycling while environmental disturbances can alter these relationships, favoring
opportunistic taxa and initiating successional processes (Muthukumar et al., 2007).
However, Sphaerospermopsis aphanizomenoides is increasingly reported as an emrging
cyanobactrium associated with harmful blooms (Budzynska et al., 2017). In the present
study, a polyphasic approach combining optical microscopy, culture-based
characterization and 16SrDNA gene sequencing was used to identify and describe
cyanobacterial isolates from the Macta Marshes, with the isolated strain of
S. aphanizomenoide exhibiting morphological traits consistent with those previously
reported (Zapomélova et al., 2008; Stiken et al., 2009; Komarek et al., 2013; Ballot
et al., 2014). However, compared with descriptions by Zapomélova et al. (2008) and
Miller et al. (2022), our isolate displayed wider vegetative cells, heterocysts and
akinetes (4.8-7.5 pm, 6.3-8.7 um, and 9.5-14 pm, respectively). This morphological
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variability likely reflects adaptive responses to environmental and culture conditions,
including nutrient availability, temperature and light intensity.

3. Molecular characterization

For the current study, the 16S rDNA gene raw forward and reverse sequences
were assembled and subsequently submitted to the GenBank database under accession
number PP999716. However sequence of the cyanobacteria isolate from the Macta
Marshes and the sequences of Nostocales strains that are available in GenBank showed
strong sequence similarities, ranging from 97.65 to 97.99%, with a query coverage of
100%, according to BLAST analysis. The closest match was obtained with S.
aphanizomenoides IFCC-AAQ05 (GenBank accession no. KY077261.1). These results
confirm that the morphological and phylogenetic identifications are consistent, indicating
that the studied isolate belongs to S. aphanizomenoides, with only minor intraspecific
genetic variation observed. The correspondence with S. reniformis is also interesting,
suggesting a close phylogenetic relationship or conserved sequences. Additionally, a
typical invasive Nostocalean cyanobacterium, S. aphanizomenoides has been reported in
various parts of the world, including South America (Bittencourt et al., 2011), Africa
(Cirés & Ballot, 2016) and Asia (Wu et al., 2016). Researchers have reported finding S.
reniformis and S. aphanizomenoides in various countries and these two species are
thought to be capable of producing toxins (Kastovsky et al., 2018), responsible for
inhibiting the synthesis of proteins and glutathione, which can have hepatotoxic,
cytotoxic, neurotoxic, and dermatotoxic effects (Rodriguez et al., 2023). According to
the study of Cordeiro et al. (2022), two Nostocalean strains, BACAO0025 and
BACAO0031, tested positive for production of toxins and was confirmed by ESI-LC-
MS/MS/MS. In recent decades, many parts of the world have experienced warmer
springs, which has increased the chances of earlier cyanobacterial blooms (Qin et al.,
2021). Nonetheless high temperatures and nutrient loading favor cyanobacterial harmful
algal blooms (CHABS) (Van de Waal et al., 2023).

4. Physiological characterization

Sphaerospermopsis  aphanizomenoides appears to have spread from
subtropical/tropical regions to temperate areas, where it is currently classified as an
"alien" or "invasive" species. Despite this fact, Nostocalean cyanobacteria can effectively
survive by forming akinetes, which can germinate and grow in the unfavorable conditions
like winter season (Ho et al., 2024). Although our results indicate significant growth even
without nitrate, research has highlighted that species such as Aphanizomenon gracile and
Sphaerospermopsis aphanizomenoides have exhibited high growth rates under varying
nutrient conditions, underscoring their adaptability (Savadova et al., 2021). This could
explain why our cyanobacterial species continued to grow efficiently under "Nitrate-
Free" conditions. In addition, the absence of phosphate strongly limits the growth of
cyanobacteria, which is supported by several recent studies. For instance, a study
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revealed that phosphate is often the limiting nutrient in freshwater ecosystems, and its
addition can significantly increase cyanobacterial biomass (Kramer et al., 2022). This is
corroborated by another research that demonstrated that cyanobacteria, such as
Dolichospermum, require not only phosphate but also an adequate supply of nitrogen to
maximize their growth. However, the present investigation indicate that light is essential
for the growth of cyanobacteria, which is supported by a study that observed fluctuations
in temperature and light conditions influence the growth dynamics and toxin production
in cyanobacteria (Savadova et al., 2021). The ability of cyanobacteria to adapt to
conditions of low nutrient availability has been documented in several studies. For
example, some species exhibit a preference for storing phosphorus rather than using it
immediately for growth, allowing them to survive in environments where nutrients are
limited (Burford et al., 2023). This could explain why our results show variability in the
response of cyanobacteria to different nutrient conditions.

CONCLUSION

This study provides a comprehensive characterization of Sphaerospermopsis
aphanizomenoides isolated from a bloom in the Macta Marshes, a wetland in
northwestern Algeria. Morphological identification supported by 16SrDNA gene
sequencing confirmed the taxonomic position of the isolate. Physiological assays
demonstrated that the strain can grow in nitrate-free medium, while phosphate limitation
significantly restricted its development. These species also exhibited the ability to grow
under complete darkness, albeit at a reduced rate. These findings highlight the ecological
plasticity and resilience of S. aphanizomenoides, which may explain its successful
establishment in eutrophic aquatic environments. Understanding these adaptive traits is
crucial for predicting and managing future cyanobacterial blooms under changing
environmental conditions. Furthermore, the occurrence of this invasive species in the
region underscores its ongoing expansion and ecological significance in North African
wetlands.
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