Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 29(5): 2835 – 2850 (2025) www.ejabf.journals.ekb.eg

Impact of the Dietary *Hermetia illucens* Larvae Inclusion as a Sustainable Fish Meal Replacer on Growth Performance, Physiological Status, and Immunological Response of the Nile Tilapia

Salem Almarri, Ahmed AlSaqufi, Abdallah Mansour, Hesham Hassanien*

Animal Production and Aquaculture Department, College of Agricultural and Food Science, King Faisal University, P.O. Box 420 Hofuf 31982 Al-Hasa, Saudi Arabia

*Corresponding Author: helsanwey@kfu.edu.sa

ARTICLE INFO

Article History:

Received: Aug. 8, 2025 Accepted: Oct. 7, 2025 Online: Oct. 22, 2025

Keywords:

Black soldier fly larvae meal, Fish meal substitution, Growth indices, Immune response, The Nile tilapia, Physiological status

ABSTRACT

The consideration of sustainable substitutes for fish meal (FM) in aquafeeds has accelerated with the global rise in demand for protein-rich food from the aquaculture sector. This study examined the impact of FM replacement at incremented levels with black soldier fly (Hermetia illucens) larvae meal (BSFLM) on the Nile tilapia's growth performance, physiological status, and immune response. Six isonitrogenous diets were composed of FM, which was substituted with BSFLM at 0, 20, 40, 60, 80, and 100% replacement rates and fed to juvenile tilapia (4 replicate aquaria of 20 fish per treatment group) over eight weeks. No discernible differences were seen across treatments in feed conversion ratio and other growth metrics, including specific growth rate and final body weight. However, physiological indices, including serum aspartate aminotransaminase (AST), alkaline phosphatase (ALT), creatinine, and oxidative stress markers (malondialdehyde MDA, myeloperoxidase MPO) were significantly elevated at 80-100% inclusion, indicating potential hepatic and renal stress. Conversely, immune responses such as phagocytic, lysozyme, and leukocyte proliferation were enhanced at moderate replacement levels (40-60%) but declined sharply at 100% inclusion. The findings imply that BSFLM may improve immune responses at modest inclusion levels and replace FM in the Nile tilapia diets by up to 60%, without affecting growth or health. Immune and physiological processes may be adversely affected by high inclusion rates. These results support the sustainable use of insect meals at optimal inclusion levels in aguafeeds.

INTRODUCTION

The rapid expansion of global aquaculture, driven by increasing demand for protein-rich food, has intensified the need for sustainable and affordable feed ingredients. Fish meal (FM), which has long been considered the gold standard protein source in aquafeeds because of its high digestibility and balanced amino acid profile, is becoming less viable due to its limited availability, ecological concerns related to overfishing, and volatile market prices (Makkar et al., 2014; Ozyurt et al., 2018). This has prompted

researchers and industry stakeholders to seek alternative protein sources that may satisfy cultured fish's nutritional demands and reduce their environmental impact.

Insect-based meals, particularly those derived from black soldier fly (*Hermetia illucens*), have garnered significant attention as prospective substitutes for fish meal (**Ling et al., 2025**). Black soldier fly larval meal (BSFLM) is rich in advantageous fats, essential amino acids, high-quality protein, and several bioactive compounds, including chitin and antimicrobial peptides (**Henry et al., 2015; van Huis, 2020**). Furthermore, the larvae may be raised in large quantities on organic waste, providing a sustainable solution in line with resource-efficient feed production systems and circular economy concepts (**Siddiqui et al., 2022**).

Several researchers demonstrated the potential of BSFLM to substitute FM in aquaculture diets without compromising growth aspects or feed efficiency (Zhou et al., 2018; Tippayadara et al., 2021; Sudha et al., 2022; Kariuki et al., 2024). For instance, Belghit et al., (2019) reported that BSFLM inclusion in Atlantic salmon diets supported nutrient utilization and normal growth. Similarly, Józefiak et al. (2016) and Devic et al. (2018) observed favorable growth and feed conversion rates in the Nile tilapia and other freshwater species when BSFLM was used as a primary dietary protein source. Despite these encouraging outcomes, concerns remain regarding the physiological and immunological impacts of high BSFLM inclusion levels (Tippayadara et al., 2021). While moderate inclusion has been associated with enhanced immune responses and gut health, excessive dietary BSFLM may introduce challenges due to indigestible components such as chitin, high saturated fat content, or imbalanced nutrient profiles, which could impair liver function, induce oxidative stress, or suppress immunity (Rawski et al., 2020; Wang et al., 2024). The Nile tilapia (Oreochromis niloticus), a globally farmed species valued for its adaptability, fast growth, and economic significance, provides an ideal model for evaluating the nutritional safety and immunological consequences of insect-based feed ingredients (Nobrega et al., 2020).

While previous studies have demonstrated the feasibility of BSFLM as a fish meal substitute in tilapia diets, many have primarily focused on growth performance and basic physiological parameters. The novelty of the present study lies in its comprehensive, simultaneous evaluation of growth, a detailed panel of systemic physiological status indicators (including hepatic, renal, and oxidative stress markers), and multiple facets of the innate immune response across a full spectrum (0–100%) of FM replacement. This integrated approach allows for the identification of a precise, optimal inclusion level that not only supports growth but also promotes physiological well-being and enhances immune competence. Consequently, this work provides a more holistic and nuanced understanding of the implications of BSFLM inclusion, crucial for developing sustainable aquafeeds without compromising fish health. Thus, the current study aimed to evaluate the impacts of increased substitution rates of FM with BSFLM on growth indices, physiological traits, and immune response parameters in the Nile tilapia. The findings

declare the sustainable development of insect-based aquafeeds while maintaining fish health and production efficiency.

MATERIALS AND METHODS

Ethical declaration

The experimental study protocols were accredited by the ethical research council of King Faisal University in Saudi Arabia (Accreditation number: KFU-REC-2023-APRIL-ETHICS95).

BSFLM and experimental diets

A dried BSFLM for animal feed purposes was obtained from a commercial supplier (Hindusthan Protein, Tiruppur, Tamil Nadu, India). The BSFLM was ground to fine particles using an electric miller and the outcome was kept at 4°C for later use. The nutritional value of the BSFLM per 100g of dry matter, according to the pamphlet of the commercial supplier, was 40g protein, 30g fat, 4.5g fiber, 3.6g calcium, 0.9g phosphorus, and 2.3 MJ gross energy. The experimental diets were prepared by substituting BSFLM for FM at a rate of 0 (control), 20, 40, 60, 80, and 100%, respectively. The BSFL powder was mixed well with the components of the diet to reach the final BSFL concentration in the experimental diets, and then properly compacted at a temperature of 100°C into 2-mm-diameter pellets through an extruder machine. Following a 24-hour drying period at room temperature, the diet pellets were kept in plastic bags at 4°C. Ingredients and nutritional assays of the experimental diets were determined by AOAC techniques (AOAC, 2005), as displayed in Table (1).

Experimental protocol

Four hundred eighty fingerlings of the Nile tilapia (*Oreochromis niloticus*) were acquired from an aquaculture company in Riyadh, Saudi Arabia (Saqua, Industrial City II). The fish were first maintained for two weeks in a glass aquarium of 1m³ capacity for acclimation on the control diet and basic Nile tilapia environmental conditions, which included a 12L/12D photoperiod cycle, 6.0mg/ L DO, 7.5 pH, and 28°C (**Tippayadara** *et al.*, 2021). After that, fish fingerlings (22.31±0.156 g average weight) were captured and transferred into 24 aquaria (20 fish per aquarium of 100L volume) supplied with the same environmental conditions and aerated by an air compressor. Fish in each four aquariums were allocated as replicates to one of the six treatment groups according to FM replacement with BSFLM in the experimental diets at a rate of 0, 20, 40, 60, 80, and 100%, respectively. Fish were fed two meals of the experimental diets, quantified every week as 3% of the aquarium fish biomass, and introduced at 8:00 and 15:00 h daily for eight consecutive weeks. Throughout the experiment, 75% of the aquarium's water was siphoned out daily to eliminate waste and leftover feed to preserve the water's quality. This was immediately replaced with fresh, adequately aerated water. As detailed below,

growth performance traits, physiological indices, and immunological response were evaluated for all treatment groups.

Table 1. Nutritional analysis of experimental diets introduced to the Nile tilapia (*Oreochromis niloticus*) fingerlings

Ingredient (g/kg as fed)	FM replacement rate with BSFLM					
Ingredient (g/kg as led)	0%	20%	40%	60%	80%	100%
BSFL meal	0	36	72	108	144	180
Fish meal	180	144	108	72	36	0
Soybean meal	320	310	300	290	285	280
Yellow corn	315	315	315	315	315	315
Wheat bran	60	60	60	60	60	60
Corn gluten	52	62	72	82	87	92
Vegetable oil	50	50	50	50	50	50
Calcium mono-hydrogen phosphate	5	5	5	5	5	5
Lysin	2	2	2	2	2	2
Methionine	2	2	2	2	2	2
Premix ¹	14	14	14	14	14	14
Nutritional analysis (per kg DM)						
Dry matter	908.0	906.5	902.8	907.0	907.5	904.6
Crude protein	349.8	345.5	347.2	347.0	339.8	338.2
Crude lipids	68.3	68.4	67.5	67.3	68.0	67.6
Total ash	75.0	75.2	73.8	72.5	70.7	69.8
Crude fiber	30.7	32.2	29.6	30.1	27.8	28.1
Calcium	8.9	8.7	7.8	7.1	6.8	6.0
Available phosphorus	9.1	9.0	8.5	9.0	8.1	7.9

 $^{^1}$ Contents per kg: 400mg α-tocopherol acetate, 4000 IU cholecalciferol, 40000 IU retinol, 80μg cyanocobalamin, 40mg riboflavin, 30mg thiamine, 12mg menadione, 30mg pyridoxine, 10mg folic acid, 500 mg ascorbic acid, 3mg biotin, 500mg inositol, 100mg pantothenic acid, 250mg ferric citrate, 60mg zinc carbonate, 40mg potassium sulfate, 40mg manganese sulfate, 12 mg Copper sulfate, 10 mg magnesium oxide, 0.24mg sodium selenite, 0.4mg potassium iodide, and 0.2mg cobalt.

Growth performance traits

Feed intake (FI) was determined by collecting and drying the residual feed, then subtracting this quantity from the total feed provided. The mean body weight (BW) of the fish in each tank was evaluated at the commencement and conclusion of the experiment (8 weeks) to ascertain the initial (IBW) and final (FBW) body weight, and compute the body weight gain (BWG) as the difference between FBW and IBW. The additional growth performance metrics for each replicate within the treatment groups were then calculated using the following formulas: Feed conversion ratio (FCR) = FI / BWG; specific growth rate (SGR) = $100 \times (\text{Ln FBW} - \text{Ln IBW}) / d$, where d represents the duration of the feeding cycle in days and Ln denotes the natural logarithm of the values. To assess the cumulative mortality rate (CMR%), the total number of deceased fish

throughout the feeding experiment was calculated as a percentage of the initial number of fish in each tank replication.

Physiological status indices

Per the trial procedure outlined by Martins et al., (2016), three fish were randomly captured from each replication of the treatment group during the 8-week feeding experiment and were immersed in a tank containing 100mg tricaine methane sulfonate (MS-222) per liter of distilled water. After fish anesthesia, blood was withdrawn from the caudal vein and samples were preserved slantly in tubes at 4°C overnight. After clotting, the serum was separated via 1075 × g centrifuging for 20 minutes and preserved at -20°C for further assays. Physiological biomarkers, including creatinine (CRT), alanine (ALT) and aspartate (AST) aminotransferase enzymes, alkaline phosphatase (ALP), lactate dehydrogenase (LDH), myeloperoxidase (MPO), and malondialdehyde (MDA), were evaluated using commercially available colorimetric test kits (Elabscience Biotechnology Inc., Houston, TX, USA), following the manufacturer's guidelines. The AST and ALT activities were evaluated by generating oxaloacetic acid and pyruvic acid, respectively, which conjugate with phenyl hydrazine to generate a reddish-brown phenylhydrazone detectable at 510nm (Desai & Desai, 2008; Campos et al., 2011). The sarcosine oxidase method was used to quantify CRT, yielding a pink chromophore observable at 515nm (Nishida et al., 2015). The assessment of ALP activity was conducted with the methodology outlined by Fernandez and Kidney (2007). This technique hydrolyzes benzene disodium phosphate to get phenol and phosphoric acid, which react with potassium ferricyanide and 4-aminopyrine to produce a red quinone compound detectable at 520nm. LDH activity was assessed by catalyzing the transformation of lactic acid into pyruvate, which then reacted with phenyl hydrazine to form a reddish-brown complex detectable at 540nm (Liao et al., 2021). The ability of MPO to reduce hydrogen peroxide and to generate a yellowish product containing odianisidine, visible at 460 nm, was used to quantify its levels (Mihaila et al., 2021). The MDA content was quantified by reacting with Thio-barbituric acid to produce a red adduct detectable at 532nm (Arora et al., 2022). All absorbance measurements were conducted with an automated microplate scanner (ELx808TM, BioTek Instruments, Winooski, Vermont, USA).

Immune response parameters

Total white blood cell (TWBC) count and heterophil to lymphocyte (H/L) ratio

Blood samples from three fish per replication were taken into tubes and gently mixed with 10% ethylenediaminetetraacetic acid (EDTA) as an anticoagulant after the eight-week feeding period. Following the methods outlined by **Rawling** *et al.* (2009), a hemocytometer Bright-LineTM (American Optical, Buffalo, NY, USA) was used to count the TWBC in a small aliquot of whole blood. Leukocyte differential counts were also

performed using a different drop of blood. Hema-3 solutions (Fisher Scientific, Pittsburgh, PA, USA) were added to the blood smear for staining, and then 200 leukocytes were found and classified. Next, H and L cells were counted and the H/L ratio was computed (**Zhang** *et al.*, **2009**).

Peripheral blood leukocyte (PBL) stimulation index

Blood samples from three fish per replication were mixed with 10% EDTA. Following Carvalho et al. (2018) with minor adjustments, the samples were used for the PBL proliferation test. After extending the blood with PBS (1:2 v/v), it was centrifuged for 30 minutes at room temperature using an equivalent amount of Histopaque-1077 medium (Sigma, MA, USA) at 400 × g. The interface layer's PBLs were removed and given two sterile PBS washes using 600 × g centrifugation for ten minutes each. The cell pellet was reconstituted in 1mL of RPMI-1640 medium (Invitrogen Corp., Grand Island, NY, USA) and counted after staining with trypan blue to scan the viable cells (>95%). Triplicate 96-well U-bottom plates were used to disseminate workable cells at a final concentration of 3×10⁶ cells/mL. Ten µg/mL of lipopolysaccharide (LPS, Sigma, MA, USA) was introduced to stimulate cells, whereas control wells received just RPMI-1640 media. After 18 hours of incubation at 27°C, plates were treated with MTT for 4 hours. Following incubation, plates were centrifuged for five minutes at $110 \times g$; the supernatant was removed, and 100µL of DMSO was used to dissolve the generated formazan crystals. The PBL stimulation index (PBL-SI) was ultimately evaluated by measuring the absorbance at 570nm for both stimulated and non-stimulated control cells using a microplate automated scanner (Bio-Rad 550, Laboratories Inc., USA).

Phagocytosis test

Employing a slightly altered methodology from **Almarri** *et al.* (2023), blood samples were collected from three fish per replication within the treatment groups after the 8-week feeding trial. Leukocytes were isolated and incubated with TRITC-labeled *Candida albicans* suspension (Sigma, MA, USA) at a ratio of 1:4. The mixes were incubated at 37°C for 30 minutes in 24-well plates covered with gelatin plasma. Total phagocytes and those that engulfed at least one yeast cell during incubation were enumerated using a hemocytometer under an inverted microscope. Phagocytic Activity (PA %) = (number of phagocytes engulfing yeast / total phagocytes %).

Lysozyme test

Employing the turbidimetric method established by **Bae** *et al.* (2012), lysozyme activity (LA) was assessed based on its ability to induce cell wall lysis of Gram-positive bacteria. One suspension milliliter of *Micrococcus lysodeikticus* (Sigma-Aldrich, Burlington, MA, USA) was combined with 50 microliters of serum (three samples per

Impact of Dietary *Hermetia illucens* Larvae on Growth Performance, Physiological Status, and Immunological Response of the Nile Tilapia

replicate). During a 30-minute period, absorbance at 450nm was recorded using a spectrophotometer (CE1010, Cecil Instruments Limited, Cambridge, UK) at intervals of 0.5 and 4.5 minutes. The absorbance decreased by 0.001 per unit of lysozyme activity per minute.

Statistical analysis

Fish served as the number of observations for physiological and immunological parameters (n= 12 fish per treatment). In contrast, tanks were designated as the experimental units for growth data (n= 4 observations per treatment). All datasets underwent the Shapiro-Wilk test for normality before statistical analysis. A one-way analysis of variance (ANOVA) accompanied by Tukey's post hoc test was performed using SPSS software (version 22.0; IBM Corp., Armonk, NY, USA, 2013) to evaluate disparities across treatment groups. Furthermore, polynomial contrast analysis was used to assess linear and quadratic trends associated with the increasing quantities of BSFLM replacing FM in the diet. A P-value less than 0.05 was considered statistically significant.

RESULTS

Growth performance

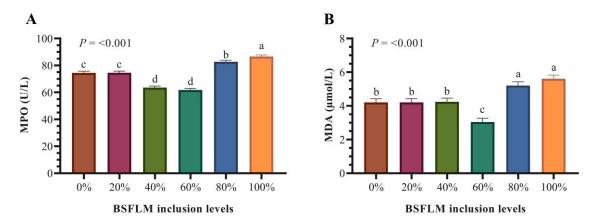
Table (2) shows how the growth indices of the Nile tilapia is affected when FM is substituted with BSFLM. There were no discernible changes among treatment groups in the FBW, BWG, SGR, FI, FCR, or CMR (P> 0.05). Additionally, polynomial comparison analysis revealed no significant linear or quadratic trends in the growth performance metrics (P> 0.05).

Table 2. Impact of replacing black soldier fly meal for fish meal at various levels on the growth indices of the Nile tilapia

Replacement	IBW (g)	FBW (g)	BWG (g)	SGR (%)	FI (a)	FCR	CMR
rate	IBW (g)	FDW (g)	DWG (g)	SGR (%)	FI (g)	FCK	(%)
0%	22.24	45.14	22.90	1.26	49.10	2.14	0.00
20%	22.29	45.75	23.46	1.28	48.12	2.05	1.25
40%	22.26	45.78	23.52	1.29	48.46	2.06	0.00
60%	22.38	46.18	23.80	1.29	47.98	2.02	0.00
80%	22.26	46.47	24.21	1.31	49.28	2.04	1.25
100%	22.18	46.33	24.15	1.32	47.54	1.97	2.50
SEM	1.156	2.072	2.350	0.136	2.296	0.109	1.318
<i>P</i> -value							
Overall	0.997	0.637	0.343	0.836	0.755	0.988	0.349
Linear	0.501	0.532	0442	0.735	0.904	0.419	0.126
Quadratic	0.504	0.193	0.112	0.334	0.488	0.267	0.257

Data represent the means \pm standard error of means (SEM) of 4 replicate aquaria per treatment group. Superscript letters rank the differences between the means within the same column at an overall *p*-value < 0.05. Linear and quadratic effects for increasing the replacement rate of FM with BSFLM in the diet on each parameter are significantly presented at P<0.05. Abbreviations: BSFLM, black soldier fly larvae meal;

BWG, body weight gain; CMR, cumulative mortality rate; FBW, final body weight; FCR, feed conversion ratio; FI, feed intake; FM, fish meal; IBW, initial body weight; SGR, specific growth rate.


Physiological indicators

As seen in Table (3), the dietary FM replacement with BSFLM had a linear and/or quadratically significant impact (P< 0.05) on several physiological parameters. Compared to the control, both ALT and AST activities significantly increased in the 80 and 100% replacement groups (P< 0.001). The 100% BSFLM group had the highest AST (69.67 IU/L) and ALT (29.71 IU/L) values, while the 60% or lower replacement levels had the lowest values. Significant variations were also seen in serum creatinine (CRE) levels, with the 60% group having the lowest value (49.62 μ mol/L) and the 100% BSFLM group having the highest value (60.56 μ mol/L) (P< 0.001). LDH was the greatest in the 100% group and the lowest at the 60% level (P= 0.007), and ALP levels were markedly higher in the 100 and 80% replacement groups (P< 0.001). Considerable (P< 0.001) effects were seen in the redox-related enzymes MPO and MDA, which peaked in the 100% BSFLM group (86.60 U/L and 5.61 μ mol/L, respectively) and decreased in the 60% group (61.77 U/L and 3.04 μ mol/L, respectively) (Fig. 1).

Table 3. Impact of replacing black soldier fly meal for fish meal on the physiological status of the Nile tilapia

Replacement	AST,	ALT,	CRE,	ATD II/I	LDH,	MPO	MDA
rate	IU/L	IU/L	μmol/L	ALP, U/L	U/L	(U/L)	$(\mu mol/L)$
0%	54.35 °	22.32°	54.93 ^b	46.15 abc	154.14 ab	74.48 ^c	4.20 b
20%	54.25 ^c	22.36 °	54.82 ^b	45.15 bc	149.97 ^{ab}	74.57 ^c	4.20 ^b
40%	51.57 ^{cd}	20.81 ^c	51.28 bc	44.08 ^c	148.30 ab	63.52 ^d	4.24 ^b
60%	50.35 ^d	19.34 ^c	49.62 ^c	44.41 ^c	146.53 ^b	61.77 ^d	3.04 ^c
80%	64.23 ^b	26.10 ^b	49.94 ^c	48.71^{ab}	161.38 a	82.67 ^b	5.21 ^a
100%	69.67 ^a	29.71 a	60.56 a	48.85 ^a	162.16 a	86.60 a	5.61 ^a
SEM	1.294	1.190	1.508	1.244	5.058	1.199	0.220
P-value							
Overall	< 0.001	< 0.001	< 0.001	< 0.001	0.007	< 0.001	< 0.001
Linear	< 0.001	< 0.001	0.189	0.001	0.018	< 0.001	< 0.001
Quadratic	< 0.001	< 0.001	< 0.001	0.001	0.007	< 0.001	< 0.001

Data represent the means \pm standard error of means (SEM) of 12 replicate samples per treatment group. Superscript letters rank the differences between the means within the same column at an overall P-value <0.05. Linear and quadratic effects for increasing the replacement rate of FM with BSFLM in the diet on each parameter are significantly presented at P<0.05. Abbreviations: ALT, alanine aminotransferase; ALP, alkaline phosphatase; AST, aspartate aminotransaminase; BSFLM, black soldier fly larvae meal; CRE, creatinine; FM, fish meal; LDH, lactate dehydrogenase; MDA, malondialdehyde; MPO, myeloperoxidase.

Fig. 1. Effect of replacing fishmeal by increasing levels of black soldier fly larvae meal (BSFLM) on myeloperoxidase (MPO; A) and malondialdehyde (MDA; B) of the Nile tilapia, *Oreochromis niloticus*

Immune response

Table (4) shows how the immune responses of the Nile tilapia are affected when BSFLM is added to their meals instead of FM. For every immune response indicator, linear and quadratic trends were significant (P< 0.05). Compared to the control fish, the TWBC count climbed linearly (P< 0.05) to the maximum values at 60% replacement rate and subsequently quadratically fell to the lowest value at 100% replacement rate.

Table 4. Impact of replacing black soldier fly meal for fish meal on the immune response of the Nile tilapia

Replacement	TWBC	TT/T 4*	DDI CI	DA (0/)	TA (TIL T)	
rate	$(10^3/\mu L)$	H/L ratio	PBL-SI	PA (%)	LA (U/mL)	
0%	4.46 bc	0.44 ^b	3.11 ^b	11.78 ^b	15.37 bc	
20%	4.88 ^b	$0.45^{\ b}$	2.12 ^b	16.13 ^b	18.00 ^b	
40%	5.69 a	0.44 ^b	3.67 ^a	20.78 a	22.97 a	
60%	6.23 ^a	0.41 $^{\rm c}$	4.14 ^a	26.74 a	25.37 a	
80%	3.88 ^{cd}	0.52 a	3.20 ^b	14.81 ^c	13.54 ^{cd}	
100%	3.50^{d}	0.53 ^a	1.13 ^c	7.43 ^d	11.71 ^d	
SEM	0.552	0.010	0.584	0.547	2.772	
P-value						
Overall	0.022	< 0.001	0.003	< 0.001	0.006	
Linear	0.014	< 0.001	0.044	< 0.001	0.059	
Quadratic	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	

Data represent the means \pm standard error of means (SEM) of 12 replicate samples per treatment group. Superscript letters rank the differences between the means within the same column at an overall *P*-value <0.05. Linear and quadratic effects for increasing the replacement rate of FM with BSFLM in the diet on each parameter are significantly presented at P<0.05. Abbreviations: BSFLM, black soldier fly larvae meal;

FM, fish meal; H/L ratio, heterophil to lymphocyte cell ratio; LA, lysozyme activity; PA, phagocytic activity; PBL-SI, peripheral blood leukocyte stimulation index; TWBC, total white blood cells.

In comparison with the control group, the addition of BSFLM in the fish meals had a linear and quadratically significant impact on the H/L ratio, with the greatest values seen in the 80 and 100% groups and the lowest values in the 60% group (P< 0.05). At 60% replacement, the PBL-SI peaked, and at 100% replacement, it declined (P< 0.05). Likewise, the 60% group had the greatest PA, whereas the 100% replacement group had the lowest (P< 0.05). LA showed a similar trend, peaking at 60% and dropping significantly after 100% replacement (P< 0.05).

DISCUSSION

Fish nutritionists are committed to researching innovative feeding techniques to maximize the production of the Nile tilapia since it is a well-liked, affordable, and nutrient-dense source of animal protein (**Dawood** *et al.*, **2020**; **Mansour**, **2025**). Despite being a common source of protein in aquafeeds for a long time, FM is becoming less viable and unsustainable (**Ozyurt** *et al.*, **2018**). The present research assessed how the addition of BSFLM as a sustainable FM substitute in the Nile tilapia diets affected their growth performance, physiological state, and immunological response.

BSFLM is a nutritionally sufficient FM replacement in tilapia diets, as shown by the absence of significant changes in FI, FBW, BWG, SGR, and FCR across treatments. According to earlier research, BSFLM may be used in place of FM in tilapia and other fish species without affecting growth (Devic et al., 2018; Dietz & Liebert, 2018; Ushakova et al., 2018; Tippayadara et al., 2021). These results are consistent with those findings. The tilapia groups' similar feed intakes indicate that the diets are palatable, which confirms earlier findings that different aquaculture species accept black soldier fly larvae (Dumas et al., 2018; Belghit et al., 2019; Abdel-Tawwab et al., 2020; Fisher et al., 2020; Li et al., 2020).

Although BSFLM incorporation into tilapia diets seems applicable up to 100%, without negatively affecting growth and feed efficiency; such high inclusion levels may impair physiological and immune parameters. The elevated serum AST, ALT, and creatinine levels in the 80 and 100% replacement groups suggest potential hepatic and renal stress at high inclusion levels of BSFLM (Sangsawang et al., 2024). The rise in ALT and AST, particularly in the 100% BSFLM group, may indicate hepatocellular damage or altered metabolic activity due to potential accumulation of indigestible components such as chitin or saturated fats found in insect meals (Fontes et al., 2019). In contrast, the moderate intake of chitin in the 40 and 60% groups may initiate chitinolytic enzymes activities that improve gut health and digestion (Rimoldi et al., 2019). Increased levels of ALP and LDH, especially at higher replacement rates in the current study, may further reflect tissue stress and metabolic disturbances (Chang et al., 2020; Hassanien et al., 2023). Moreover, the pronounced elevation of MPO and MDA at 80 and 100%

BSFLM inclusion indicates enhanced oxidative stress and inflammation (**Alrashada** *et al.*, **2023**; **Hassanien** *et al.*, **2023**). This suggests that although BSFLM is a viable FM substitute, excessive inclusion may exceed the physiological adaptability of the Nile tilapia, potentially due to residual antimicrobial peptides, lipid peroxidation products, or high chitin content in insect meal (**Ling** *et al.*, **2025**).

The immune response data further highlight the dose-dependent effect of BSFLM on the Nile tilapia. Moderate inclusion levels (40–60%) significantly improved immune markers, including TWBC, phagocytic activity, lysozyme activity, and PBL stimulation index. These findings are consistent with studies showing that low-to-moderate levels of insect meal can enhance innate immune responses in fish by acting as natural immunostimulants (Xiao et al., 2018; Foysal et al., 2019; Tippayadara et al., 2021). This may be due to the likely immunostimulatory compounds in insect meals, including lauric acid, antimicrobial peptides, and chitin-derived β-glucans (van Huis, 2020; **Tippayadara** et al., 2021). It has been reported that dietary BSFLM comprises large levels of chitin implicated in boosting the number of microbial colonies in the fish gut, therefore functioning as prebiotic compounds that might produce immunomodulatory consequences on fish (Bruni et al., 2018; Terova et al., 2019). However, immune performance sharply declined at 100% replacement with BSFLM, evidenced by reduced PBL stimulation, lysozyme activity, and phagocytic function. The increase in H/L ratio at 80 and 100% BSFLM inclusion also indicates elevated physiological stress, commonly associated with immune suppression or suboptimal dietary conditions (Goessling et al., 2025). This immune suppression at higher levels of BSFLM may be linked to nutrient imbalances, excessive chitin, or the presence of bioactive substances that modulate immune function negatively at high concentrations (Rawski et al., 2020).

CONCLUSION

This research shows that BSFLM can successfully replace up to 60% of the FM in the Nile tilapia diets, without affecting survival, feed efficiency, or growth performance. The immunomodulatory advantages of BSFLM are suggested by moderate inclusion levels (40–60%), which even improved immune function and supported physiological wellness. However, greater replacement rates (80–100%) were linked to worse immunological responses and greater stress markers, suggesting potential nutritional or metabolic abnormalities at excessive inclusion levels. Our results indicate that to improve fish performance and environmental sustainability in aquaculture systems, BSFLM could be used as a sustainable substitute for FM in aquafeeds, especially at moderate inclusion rates.

FUNDING

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Grant No. KFU252303].

REFERENCES

- **Abdel-Tawwab, M.; Khalil, R.H.; Metwally, M.S.; Shakweer, M.A.K. and Abdel-Latif, H.M.R.** (2020). Effects of black soldier fly (*Hermetia illucens* L.) larvae meal on growth performance, organs-somatic indices, body composition, and hemato-biochemical variables of European sea bass, *Dicentrarchus labrax*. *Aquaculture*, 522: 735136.
- **Almarri, S.H.; Khalil, A.A.; Mansour, A.T. and El-Houseiny, W. (2023).** Antioxidant, immunostimulant, and growth-promoting effects of dietary *Annona squamosa* leaf extract on Nile tilapia, *Oreochromis niloticus*, and its tolerance to thermal stress and *Aeromonas sobria* infection. *Animals*, 13(11): 1821.
- **Alrashada, Y.N.; Hassanien, H.A.; Abbas, A.O.; Alkhamis, S.A. and Alkobaby, A.I.** (2023). Dietary propolis improves the growth performance, redox status, and immune response of Nile tilapia upon a cold-stress challenge. *PLoS One*, 18(10): e0293727.
- **AOAC** (2005). Official Methods of Analysis of AOAC International. 18th Edition. AOAC International, Gaithersburg, MD, USA.
- **Arora, S.; Singh, P.; Tabassum, G.; Dohare, R. and Syed, M.A. (2022).** miR-495–3p regulates sphingolipid metabolic reprogramming to induce Sphk1/ceramide mediated mitophagy and apoptosis in NSCLC. *Free Radic Biol. Med.*, 189: 71–84.
- **Bae, J.Y.; Park, G.H.; Lee, J.Y.; Okorie, O.E. and Bai, S.C. (2012).** Effects of dietary propolis supplementation on growth performance, immune responses, disease resistance and body composition of juvenile eel, *Anguilla japonica. Aquac. Inter.*, 20: 513–523.
- Belghit, I.; Liland, N.S.; Gjesdal, P.; Biancarosa, I.; Menchetti, E.; Li, Y.; Waagbø, R.; Krogdahl, Å. and Lock, E.J. (2019). Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (*Salmo salar*). *Aquaculture*, 503: 609–619.
- **Bruni, L.; Pastorelli, R.; Viti, C.; Gasco, L. and Parisi, G. (2018).** Characterisation of the intestinal microbial communities of rainbow trout (*Oncorhynchus mykiss*) fed with *Hermetia illucens* (black soldier fly) partially defatted larva meal as partial dietary protein source. *Aquaculture*, 487: 56–63.
- Campos, F.; Sobrino, T.; Ramos-Cabrer, P.; Argibay, B.; Agulla, J.; Pérez-Mato, M.; Rodríguez-González, R.; Brea, D. and Castillo, J. (2011). Neuroprotection

- by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study. *J. Cereb. Blood Flow*, 31(6): 1378–1386.
- Carvalho, P.L.P.F.; Yamamoto, F.Y.; Barros, M.M. and Gatlin, D.M. (2018). L-glutamine in vitro supplementation enhances Nile tilapia *Oreochromis niloticus* (Linnaeus, 1758) leukocyte function. *Fish Shellfish Imm.*, 80: 592–599.
- Chang, C.H.; Zhou, X.W.; Wang, Y.C. and Lee, T.H. (2020). Differential effects of hypothermal stress on lactate metabolism in fresh water- and seawater-acclimated milkfish, *Chanos chanos. Comp. Biochem. Phy.*, 248: 110744.
- **Dawood, M.A.O.; Amer, A.A.; Elbialy, Z.I. and Gouda, A.H. (2020).** Effects of including triticale on growth performance, digestive enzyme activity, and growth-related genes of Nile tilapia (*Oreochromis niloticus*). *Aquaculture*, 528: 735568.
- **Desai, S.N. and Desai, P.V. (2008).** Aspartate aminotransferase and alanine aminotransferase activities of rat brain during crush syndrome. *Neurosci. Let.*, 447(1): 58–61.
- **Devic, E.; Leschen, W.; Murray, F. and Little, D.C.** (2018). Growth performance, feed utilization and body composition of advanced nursing Nile tilapia (*Oreochromis niloticus*) fed diets containing Black Soldier Fly (*Hermetia illucens*) larvae meal. *Aquac. Nutr.*, 24(1): 416–423.
- **Dietz, C. and Liebert, F. (2018).** Does graded substitution of soy protein concentrate by an insect meal respond on growth and N-utilization in Nile tilapia (*Oreochromis niloticus*)? *Aquac. Rep.*, 12: 43–48.
- **Dumas, A.; Raggi, T.; Barkhouse, J.; Lewis, E. and Weltzien, E. (2018).** The oil fraction and partially defatted meal of black soldier fly larvae (*Hermetia illucens*) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (*Oncorhynchus mykiss*). *Aquaculture*, 492: 24–34.
- **Fernandez, N.J. and Kidney, B.A. (2007).** Alkaline phosphatase: beyond the liver. *Vet. Clin. Pathol.*, 36(3): 223–233.
- Fisher, H.J.; Collins, S.A.; Hanson, C.; Mason, B.; Colombo, S.M. and Anderson, D.M. (2020). Black soldier fly larvae meal as a protein source in low fish meal diets for Atlantic salmon (*Salmo salar*). *Aquaculture*, 521: 734978.
- Fontes, T.V.; de Oliveira, K.R.B.; Almeida, I.L.G.; Orlando, T.M.; Rodrigues, P.B.; da Costa, D.V. and Rosa, P.V.E. (2019). Digestibility of insect meals for Nile tilapia fingerlings. *Animals*, 9(4): 181.
- **Foysal, M.J.; Fotedar, R.; Tay, C.Y. and Gupta, S.K. (2019).** Dietary supplementation of black soldier fly (*Hermetica illucens*) meal modulates gut microbiota, innate immune response and health status of marron (*Cherax cainii*, Austin 2002) fed poultry-by-product and fishmeal based diets. *PeerJ.*, 7: e6891.
- Goessling, J.F.; Kennedy, H.; Mendonça, M.K. and Wilson, A. (2015). A meta-analysis of plasma corticosterone and heterophil: lymphocyte ratios is

- there conservation of physiological stress responses over time? *Funct. Ecol.*, 29(9): 1189–1196.
- Hassanien, H.A.; Alrashada, Y.N.; Abbas, A.O. and Abdelwahab, A.M. (2023). Dietary propolis complementation relieves the physiological and growth deterioration induced by *Flavobacterium columnare* infection in juveniles of common carp (*Cyprinus carpio*). *PLoS One*, 18(10): e0292976.
- Henry, M.; Gasco, L.; Piccolo, G. and Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. *Anim. Feed Sci. Technol.*, 203: 1–22.
- **Van Huis, A. (2020).** Insects as food and feed, a new emerging agricultural sector: a review. *J. Insects Food Feed*, 6(1): 27–44.
- Józefiak, D.; Józefiak, A.; Kierończyk, B.; Rawski, M.; Świątkiewicz, S.; Długosz, J. and Engberg, R.M. (2016). Insects A Natural Nutrient Source for Poultry A Review. *Ann. Anim. Sci.*, 16(2): 297–313.
- Kariuki, M.W.; Barwani, D.K.; Mwashi, V.; Kioko, J.K.; Munguti, J.M.; Tanga, C.M.; Kiiru, P.; Gicheha, M.G. and Osuga, I.M. (2024). Partial replacement of fishmeal with black soldier fly larvae meal in Nile tilapia diets improves performance and profitability in earthen pond. *Sci. Afr.*, 24: e02185.
- Li, Y.; Kortner, T.M.; Chikwati, E.M.; Belghit, I.; Lock, E.J. and Krogdahl, Å. (2020). Total replacement of fish meal with black soldier fly (*Hermetia illucens*) larvae meal does not compromise the gut health of Atlantic salmon (*Salmo salar*). *Aquaculture*, 520: 734967.
- Liao, L.; Zhou, M.; Wang, J.; Xue, X.; Deng, Y.; Zhao, X.; Peng, C. and Li, Y. (2021). Identification of the antithrombotic mechanism of Leonurine in adrenalin hydrochloride-induced thrombosis in zebrafish via regulating oxidative stress and coagulation cascade. *Front. Pharmacol.*, 12: 742954.
- Ling, S.L.Y.; Shafiee, M.; Longworth, Z.; Vatanparast, H.; Tabatabaei, M. and Liew, H.J. (2025). Black soldier fly larvae meal (BSFLM) as an alternative protein source in sustainable aquaculture production: a scoping review of its comprehensive impact on shrimp and prawn farming. *Anim. Feed Sci. Tech.*, 319: 116004.
- Makkar, H.P.S.; Tran, G.; Heuzé, V. and Ankers, P. (2014). State-of-the-art on use of insects as animal feed. *Animal Feed Science and Technology*, 197: 1–33.
- **Mansour, A.T.** (2025). Challenges and innovative solutions in sustainable aquaculture: how can it contribute to food security and environmental protection. *Anim. Rep.*, 1: 1–13.
- Martins, T.; Valentim, A.M.; Pereira, N. and Antunes, L.M. (2016). Anaesthesia and analgesia in laboratory adult zebrafish: a question of refinement. *Laboratory Animals*, 50(6): 476–488.

- Mihaila, A.C.; Ciortan, L.; Macarie, R.D.; Vadana, M.; Cecoltan, S.; Preda, M.B.; Hudita, A.; Gan, A.M.; Jakobsson, G.; Tucureanu, M.M.; Barbu, E.; Balanescu, S.; Simionescu, M.; Schiopu, A. and Butoi, E. (2021). Transcriptional profiling and functional analysis of N1/N2 neutrophils reveal an immunomodulatory effect of S100A9-blockade on the pro-inflammatory N1 subpopulation. *Front. Immunol.*, 12: 708770.
- Nishida, A.; Funaki, H.; Kobayashi, M.; Tanaka, Y.; Akasaka, Y.; Kubo, T. and Ikegaya, H. (2015). Blood creatinine level in postmortem cases. *Sci. Justice*, 55(3): 195–199.
- **Nobrega, R.O.; Banze, J.F.; Batista, R.O. and Fracalossi, D.M. (2020).** Improving winter production of Nile tilapia: what can be done? *Aquac. Rep.*, 18: 100453.
- Ozyurt, G.; Boga, M.; Uçar, Y.; Boga, E.K. and Polat, A. (2018). Chemical, bioactive properties and in vitro digestibility of spray-dried fish silages: comparison of two discard fish (*Equulites klunzingeri* and *Carassius gibelio*) silages. *Aquac. Nutr.*, 24(3): 998–1005.
- **Rawling, M.D.; Merrifield, D.L. and Davies, S.J. (2009).** Preliminary assessment of dietary supplementation of Sangrovit® on red tilapia (*Oreochromis niloticus*) growth performance and health. *Aquaculture*, 294(1-2): 118–122.
- Rawski, M.; Mazurkiewicz, J.; Kierończyk, B. and Józefiak, D. (2020). Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: the effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. *Animals*, 10(11): 2119.
- **Rimoldi, S.; Gini, E.; Iannini, F.; Gasco, L. and Terova, G. (2019).** The effects of dietary insect meal from *Hermetia illucens* prepupae on autochthonous gut microbiota of rainbow trout (*Oncorhynchus mykiss*). *Animals*, 9(4): 143.
- Sangsawang, A.; Kovitvadhi, S.; Pewhom, A.; Kovitvadhi, U.; Kovitvadhi, A.; Wongoutong, C.; Chatchaiphan, S. and Paankhao, N. (2024). Impacts of substituting fish meal with full-fat or defatted black soldier fly (*Hermetia illucens*) larvae on growth, quality, and health of Nile tilapia (*Oreochromis niloticus*) fingerlings. *Aquac. Rep.*, 38: 102348.
- Siddiqui, S.A.; Ristow, B.; Rahayu, T.; Putra, N.S.; Yuwono, N.W.; Nisa', K.; Mategeko, B.; Smetana, S.; Saki, M.; Nawaz, A. and Nagdalian, A. (2022). Black soldier fly larvae (BSFL) and their affinity for organic waste processing. *Waste Manag.*, 140: 1–13.
- **Sudha, C.; Ahilan, B.; Felix, N.; Uma, A. and Prabu, E.** (2022). Effects of dietary protein substitution of fishmeal with black soldier fly larval meal on growth and physiological responses of juvenile striped catfish, *Pangasianodon hypophthalmus*. *Aquac. Res.*, 53(5): 2204–2217.

- Terova, G.; Rimoldi, S.; Ascione, C.; Gini, E.; Ceccotti, C. and Gasco, L. (2019). Rainbow trout (*Oncorhynchus mykiss*) gut microbiota is modulated by insect meal from *Hermetia illucens* prepupae in the diet. *Rev. Fish Biol. Fish.*, 29: 465–486.
- **Tippayadara, N.; Dawood, M.A.O.; Krutmuang, P.; Hoseinifar, S.H.; Van Doan, H. and Paolucci, M. (2021).** Replacement of fish meal by black soldier fly (*Hermetia illucens*) larvae meal: effects on growth, haematology, and skin mucus immunity of Nile tilapia, *Oreochromis niloticus*. *Animals*, 11(1): 1.
- Ushakova, N.A.; Ponomarev, S.V.; Bakaneva, Y.M.; Fedorovykh, Y.V.; Levina, O.A.; Kotel'nikov, A.V.; Kotel'nikova, S.V.; Bastrakov, A.I.; Kozlova, A.A. and Pavlov, D.S. (2018). Biological efficiency of the prepupae *Hermetia illucens* in the diet of the young Mozambique tilapia *Oreochromis mossambicus*. *Biol. Bull.*, 45(4): 382–387.
- Wang, P.; Yan, X.; Zhang, X.; Zhu, Z.; Xu, Q.; Hou, J.; Chen, J.; Gisbert, E. and Zhou, J. (2024). Increasing levels of fishmeal replacement by defatted black soldier fly larvae meal reduced growth performance without affecting fillet quality in largemouth bass (*Micropterus salmoides*). Fish Physiol. Biochem., 50: 2255–2274.
- Xiao, X.; Jin, P.; Zheng, L.; Cai, M.; Yu, Z.; Yu, J. and Zhang, J. (2018). Effects of black soldier fly (*Hermetia illucens*) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (*Pelteobagrus fulvidraco*). *Aquac. Res.*, 49(4): 1569–1577.
- Zhang, L.; Yue, H.Y.; Zhang, H.J.; Xu, L.; Wu, S.G.; Yan, H.J.; Gong, Y.S. and Qi, G.H. (2009). Transport stress in broilers: I. Blood metabolism, glycolytic potential, and meat quality. *Poult. Sci.*, 88(10): 2033–2041.
- **Zhou, J.S.; Liu, S.S.; Ji, H. and Yu, H.B.** (2018). Effect of replacing dietary fish meal with black soldier fly larvae meal on growth and fatty acid composition of Jian carp (*Cyprinus carpio* var. Jian). *Aquac. Nutr.*, 24(1): 424–433.