Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 29(5): 2701 – 2716 (2025) www.ejabf.journals.ekb.eg

Effect of Tidal Fluctuations on Water and Soil Quality in Shrimp Ponds

Heri Ariadi^{1*}, Linayati Linayati¹, Tri Yusufi Mardiana¹, Abdul Wafi², Farchan Mushaf Al Ramadhani³

¹Department of Aquaculture, Faculty of Fisheries, Pekalongan University, Sriwijaya Street No. 03, Pekalongan 51111, Central Java, Indonesia

²Department of Aquaculture, Faculty of Sains and Technology, Ibrahimy University, KHR. Syamsul Arifi Street No. 01-02, Situbondo 68374, East Java, Indonesia

³Department of Agrotechnology, Faculty of Agriculture, Pekalongan University, Sriwijaya Street No. 03, Pekalongan 51111, Central Java, Indonesia

*Corresponding Author: ariadi_heri@yahoo.com

ARTICLE INFO

Article History:

Received: Oct. 28, 2024 Accepted: Sep. 20, 2025 Online: Oct. 18, 2025

Keywords:

Climate change, WQI, Shrimp, SQI, Weather

ABSTRACT

The effect of tidal fluctuations on rising sea levels has altered the ecological dynamics of coastal waters. Therefore, this study aimed to evaluate water and soil quality in shrimp farming ponds due to the effect of tidal fluctuation. A causal ex-post facto design concept was used with observed indicator variables, including water quality, soil quality, and tidal wave fluctuation data. The results showed that TOM 152.64-169.56 mg/L and NO₂ 1.064 mg/L exceeded the threshold values for water quality parameters. Soil pH values, redox potential, organic carbon, organic matter, and CEC ranged from 7.7 to 7.9, 11.79 to 16.80 mey, 0.36 to 0.45 mg/L, 0.45 to 0.50 mg/L, and 27 to 30 mg/L, respectively. Meanwhile, WQI and SQI of ponds ranged from 0.11 to 0.60 and 0.09 to 0.54, within the poor (0.33) and interval III (0.31) categories, respectively. The average tidal wave height in Probolinggo Waters over one year ranged from 0.84 to 2.90m. Additionally, the relationship between WQI, SQI, and tidal waves was described by the model Y = 1.000 + 2.480x. Several parameters had significant effect on the relationship, including TOM, Mg, hardness, CO₃, HCO₃, alkalinity, NH₄, NO₂, OM, and CEC. The increase in sea level is linked to changes in the biophysical environment and is associated with the impact of climate change on sea level rise. This study concluded that water and soil quality conditions in shrimp pond ecosystems in the coastal area of Probolinggo deteriorated in terms of suitability due to the intense and dynamic effects of rising tidal waves.

INTRODUCTION

Climate change has altered the biophysical conditions of coastal environments, leading to a rise in sea levels (**Toledo** *et al.*, **2024**). This is caused by the melting of ice in

the polar regions due to global temperatures, which are affected by the intensifying release of carbon elements into the air (Mahmood et al., 2023). This condition has implications for activities in coastal areas (Cepic et al., 2022). Additionally, a visible effect of climate change is the unstable fluctuation of tidal periods (Hayford et al., 2021).

Shrimp farming is a fishery activity widely developed in coastal areas and extensively practiced due to the profitable nature and promising business prospects (Soeprapto et al., 2023). Moreover, the activity is highly vulnerable to the effects of climate change and unstable tidal conditions (Pereira et al., 2023). This is inseparable from the phenomenon of tidal fluctuations as a timing mechanism for filling water into shrimp ponds (Martínez-Córdova et al., 2013).

The quantity and quality of seawater affected by tidal fluctuation are essential considerations for farmers (Ni et al., 2021). In this context, seawater serves as a source for shrimp habitat in ponds and water quality significantly affecting the stability of the ecosystem (Ferreira et al., 2011; Ariadi et al., 2019a). The success of the farming cycle is also affected by the composition structure of soil (Musa et al., 2020). Good soil conditions support the success rate of shrimp farming. Furthermore, quality of water and soil are biophysical parameters considered to support the operational cycle of shrimp farming (Ariadi et al., 2019a; Musa et al., 2020).

Effect of rising sea levels is believed to affect ecological changes in coastal areas through the fluctuating effects of tidal surges (**Pereira** *et al.*, **2023**). Fluctuations occurring in coastal areas change the biophysical conditions of coastal waters (**Chapman** *et al.*, **2020**). Some of the changes in biophysical conditions include soil erosion, the presence of permanent waterlogging, as well as changes in water and soil quality (**Alducci & Hynes, 2023**). Based on the analysis, this study aimed to evaluate water and soil quality conditions in shrimp farming ponds due to the effect of tidal phenomena. This research is expected to provide information regarding the status of climate change impacts on aquaculture activities in coastal areas.

MATERIALS AND METHODS

This research was carried out in the shrimp ponds of PT. Manunggal Setia Makmur in Probolinggo, Indonesia (7°45′S 113°13′E and 7.750°S 113.217°E). The location of the research pond is an area designated for active intensive shrimp farming in that region. The research method used was a causal *ex-post facto* design, which included data collection based on real conditions in the field without changing the variables. In addition, the data included parameters of pond water quality, pond soil quality, and tidal fluctuations, and the data collection was conducted periodically every 4 days.

The observed parameters of water quality were pH, salinity, total organic matter (TOM), Ca, Mg, hardness, CO₃, HCO₃, alkalinity, NH₄, and NO₂. The pH of pond water and salinity were measured using ecotestr 07 pH meter and ATAGO series 1911 hand

refractometer. In addition, parameters such as Ca, Mg, hardness, CO₃, HCO₃, and alkalinity were measured using titrimetry method (**López** *et al.*, **2019**). NH₄ and NO₂ parameters were obtained using the spectrofotometry method (**Ruwoldt** *et al.*, **2023**). For soil parameters such as pH, redox potential, organic carbon (OC), organic matter (OM), and cation exchange capacity (CEC), the compulsive exchange method was used for measurement (**FAO**, **1980**). Tidal data were obtained from records by Meteorological, Climatological, and Geophysical Agency of Probolinggo City.

The study data were analyzed descriptively using qualitative methods with the assistance of Microsoft Excel 2013 and dynamic modeling analysis with Stella software version 9.02. Furthermore, the estimation of WQI and SQI values was calculated based on the formula (Ma et al., 2013).

Table 1. Classification of water quality index (WQI) and soil quality index (SQI) values

The value of WQI	Water/soil condition	Interval classes	The value of SQI
>0.80	Excellent	I	>0.75
0.60 < WQI < 0.80	Good	II	0.50 < SQI < 0.75
0.30 < WQI < 0.60	Poor	III	0.25 < SQI < 0.50
0.05 < WQI < 0.30	Badly	IV	0.03 < SQI < 0.25

RESULTS AND DISCUSSION

1. Water quality

The parameters of water quality in shrimp ponds are reported in Table (2) within the standard quality values for farming (**Ariadi** *et al.*, **2019a**). The parameters above the standard quality threshold are TOM 152.64-169.56 mg/L and the concentration of OM for shrimp farming is <90 mg/L (**Chapman** *et al.*, **2020**). The nitrite (NO₂) concentration in pond 1 was at 1.064 mg/L and the high levels caused methemoglobin in shrimp hemocyanin (**Li** *et al.*, **2023**).

Table 2. Water quality parameters in research ponds

	Water Quality Parameters										
Location	pН	Salinity	TOM	Ca	Mg	Hardness	CO ₃	HCO ₃	Alkalinity	NH ₄	NO ₂
									(mg/L)		
Dand 1	8.0 ±	31 ±	157.48 ±	515 ±	2226 ±	2741 ±	8 ±	123 ±	130 ± 1.48	$0.982 \pm$	$1.064 \pm$
Pona 1	0.33	5.10	0.29	3.42	3.21	3.42	4.53	4.95	130 ± 1.48	1.11	1.08
Pond 2	8.0 ±	31 ±	169.56 ±	$507 \pm$	2190 ±	$2697 \pm$	$11 \pm$	$122 \pm$	120 + 2.10	$0.910 \pm$	$0.476 \pm$
Pona 2	0.31	5.96	0.10	3.65	3.75	3.68	6.39	2.29	132 ± 2.18	1.10	0.70
Dand 2	8.0 ±	31 ±	$152.64~\pm$	$515 \pm$	$2255 \pm$	$2770 \pm$	9 ±	$124 \pm$	133 ± 3.41	$1.158 \pm$	$0.741 \pm$
Pond 3	0.30	5.99	1.44	2.45	2.35	2770 ± 3.48	6.23	2.12	133 ± 3.41	1.32	1.02

The dynamic water quality parameters in ponds correlate with the productivity of farming and the quantity of inputs. The provision of farming inputs such as feed, lime, and fertilizer can also affect the ecosystem dynamics (Satanwat et al., 2020). Furthermore, shrimp are organisms sensitive to changes in water patterns within the habitats (Bhatt et al., 2024). These organisms become stressed and die when water quality conditions are poor (Ariadi et al., 2023).

The stability of pond water quality is an indicator of the condition of shrimp farming medium. Poor water quality can be interpreted as the environmental conditions being unsuitable for farming (**Huang** et al., 2022). This is also affected by unpredictable weather conditions due to the effect of climate change (**Ariadi** et al., 2023). In addition, fluctuations in air temperature and sunlight intensity indirectly affect water quality in shrimp ponds (**Chapman** et al., 2020).

2. Soil quality

Soil quality in silvofishery land is presented in Table (3). The parameters tend to be stable and within the standard values for farming activities. Soil pH, redox potential, OC, OM, and CEC values range from 7.7 to 7.9, 11.79 to 16.80 mev, 0.36 to 0.45 mg/L, 0.45-0.50 mg/L, and 27-30 mg/L. The stable soil condition is due to pond construction using HDPE model to minimize direct contact between fish farming activities and soil (Chen *et al.*, 2024).

	Soil Quality Parameters							
Location	pН	Redox (mev)	OC (mg/L)	OM (mg/L)	CEC (mg/L)			
Pond 1	7.8 ± 0.09	14 ± 5.02	0.45 ± 0.12	0.47 ± 0.17	27 ± 4.91			
Pond 2	7.9 ± 0.11	16.8 ± 5.81	0.36 ± 0.06	0.45 ± 0.10	28 ± 6.56			
Pond 3	7.7 ± 0.16	11.79 ± 5.63	0.39 ± 0.07	0.50 ± 0.12	30 ± 4.93			

Table 3. Soil quality parameters in research ponds

Soil is an important indicator analyzed before constructing farming ponds. Compact soil conditions will affect the biophysical parameters of farming sites (**Hasibuan** *et al.*, **2023**). In this context, soil that tends to be porous also has a negative effect on shrimp farming activities due to the ease of water seepage (**Ariadi**, **2020**). Indirectly, soil quality conditions also affect the cation exchange process and nutrient elements in the surrounding pond environment (**Du** *et al.*, **2024**).

Microorganisms in soil under certain conditions are also described as more diverse than in water. This is attributed to the high level of primary productivity and soil also acts as a biophysical parameter affecting the process of OM decomposition (**Rocha** *et al.*, **2022**; **Hasibuan** *et al.*, **2023**).

3. Water quality index (WQI) and soil quality index (SQI)

The estimated values of WQI and SQI during the study period are interpreted in Fig. (1) and the values vary each month. WQI and SQI values of ponds range from 0.11 to 0.60 and 0.09 to 0.54, within the poor (0.33) and interval III (0.31) categories, respectively. The poor status is due to effect of biotic and abiotic factors from the surrounding environment (Musa et al., 2020).

The poor values of WQI and SQI show that the aquatic land conditions at shrimp farm location are not very ideal for farming. The status of the values can change when self-purification processes are used and there is a decrease in the intensity of pollutant waste in the surrounding aquatic environment (Ni et al., 2021). The poor values of WQI and SQI can also be caused by high pollution from shrimp farming activities and runoff from domestic waste (Ma et al., 2013). Additionally, poor quality of water and soil is due to unstable weather conditions, affecting biological, physical, and chemical processes in the land and pond waters (Ariadi et al., 2023; Soeprapto et al., 2023). These situations require environmental engineering processes to prevent the disruption of shrimp farming operations.

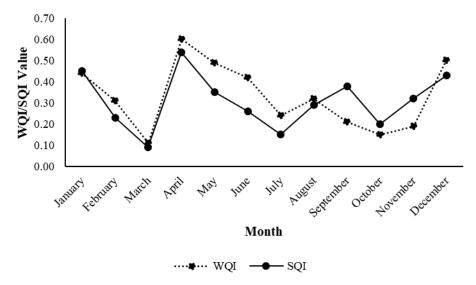


Fig. 1. WQI and SQI fluctuations values in research ponds

WQI and SQI are quantitative analysis methods for determining land suitability status from a perspective (Mardiana et al., 2024). Data from the WQI and SQI analyses can serve as a reference for establishing land use patterns and resource management (Cavalcante et al., 2021). Low WQI and SQI scores indicate that the land is contaminated and may have low nutrient content (Linayati et al., 2024). Additionally, WQI and SQI scores reflect the status of land use in that area, which is often intensive due to resource management activities or runoff (Pravalie et al., 2020).

4. Seawater tides

The dynamics of tidal fluctuations are described in Fig. (2) and the height in waters of Probolinggo ranges from 0.84 to 2.90 meters throughout the year. Therefore, the coastal waters of Probolinggo have a fluctuating tide level. The highest and lowest tides occur in February and December, respectively. The highest and the lowest tides in February and December occur as the peak of the rainy and transitional season. The dynamics of tidal fluctuations continue to fluctuate over time following climate change patterns (**Liu** et al., 2022; Wang et al., 2023).

Tidal fluctuations affect the sea level dynamically as well as the rate of evaporation, and rainfall (Wang et al., 2023; Koutitonsky et al., 2024). Rainfall increases when the sea level rises significantly during rainy conditions (Ariadi et al., 2023). Tides also affect the distribution patterns of organisms in aquatic ecosystems (Liu et al., 2022).

Tidal fluctuations impact the patterns of biophysical cycle changes in the environment (Aziz et al., 2024). Changing environmental conditions will affect the natural state of an ecosystem. This can occur due to the influence of various related parameters (Mardiana et al., 2024). In some cases, the effects of tidal fluctuations have physically altered environmental conditions in coastal areas (Dong et al., 2024). The rise of tidal and soil erosion due to changes in natural vegetation affect the physical land changes in coastal regions (Liu et al., 2022; Dong et al., 2024).

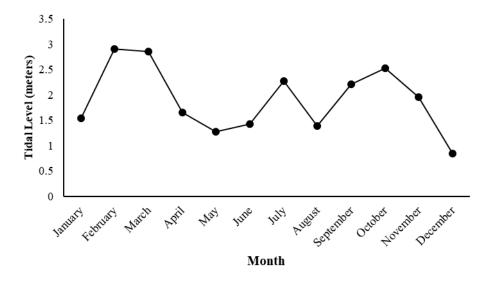


Fig. 2. Fluctuations in tidal dynamics of sea water

Coastal areas are highly susceptible to extreme tidal fluctuations due to effect of climate change (Sabdaningsih et al., 2023). Meanwhile, intensive climate change has affected unstable weather and wind distribution patterns simultaneously (Parvin et al., 2023; Pereira et al., 2023). This shows a correlative relationship between the dynamics of tidal fluctuations and effects of global climate change.

5. Correlative relationship between WQI, SQI, and tidal wave

The values of WQI and SQI correlate with the dynamics of tidal fluctuations, as shown in Fig. (3). WQI and SQI values range from 0.11 to 0.60 and 0.09 to 0.54, fluctuating correlatively with tidal waves of 0.84 to 2.90 meters. The graph shows that when the values decrease, there is an increase in tidal wave (Fig. 3). Therefore, the decline in the status of WQI and SQI in farming ponds is affected by the increase in tidal wave level (Mahmood *et al.*, 2023).

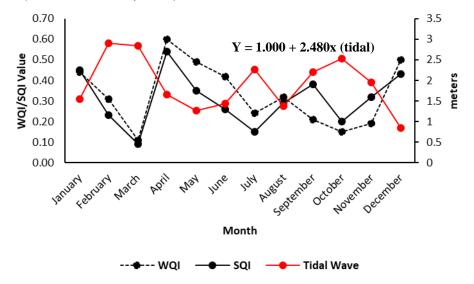


Fig. 3. Correlation of WQI, SQI values and tidal wave

High tidal waves are detrimental to farming ecological sites, affecting the level of pollutant waste (**Kim** et al., 2022; **Fanous** et al., 2023). The abnormal conditions in tidal waves can affect land and water conditions in farming sites (**Fuentes-Santos** et al., 2021). This provides options for the development of eco-friendly practices in shrimp farming activities.

Shrimp are organisms sensitive to changes in environmental conditions (McLean et al., 2020). Changes in water and land conditions automatically affect the operational cycle of shrimp farming (Ariadi et al., 2019b). The intense effect in coastal waters necessitates a more effective shrimp farming model (Pereira et al., 2023).

The regression model shows the value Y = 1.000 + 2.480x, suggesting that there is a decrease in WQI and SQI values by 2.48 for every increase of 1 meter in tidal wave. The model interprets the correlative effect between variables, where WQI and SQI may change over time following the surrounding environmental conditions (Ma et al., 2013). The dynamic changes in environmental conditions and the worsening impacts of climate change affect land suitability status (Ariadi., 2023). Coastal areas, which consist of brackish water, will experience significant dynamic changes due to the alterations in their surrounding environment (Aziz et al., 2024).

6. Correlation water and soil quality

Several water quality parameters showing a high correlation degree include TOM, Mg, hardness, CO₃, HCO₃, alkalinity, NH₄, and NO₂. The parameters with low correlation levels include salinity, TOM, CO₃, and NO₂ (Table 4). Furthermore, the dynamics have a continuous correlative effect on aquatic ecosystems (Wafi *et al.*, 2021).

Table is conformed to the same of water quarty parameters											
	pН	Salinity	TOM	Ca	Mg	Hardness	CO_3	HCO ₃	Alkalinity	NH ₄	NO_2
pН	1										
Salinity	.412*	1									
TOM	890**	369*	1								
Ca	.084	.188	118	1							
Mg	.123	.234	174	.989**	1						
Hardness	.116	.226	164	.993**	1.000**	1					
CO_3	.961**	.445*	895**	.048	.092	.084	1				
HCO_3	885**	063	.829**	024	047	043	892**	1			
Alkalinity	345	.573**	.336	.016	.036	.032	301	.699**	1		
NH_4	669**	656**	.533**	183	225	217	646**	.451*	073	1	
NO_2	377*	873**	.356	181	190	189	429*	.131	401*	.525**	1

Table 4. Correlation test results of water quality parameters

Based on the test description, there is a strong correlation in water quality parameters. Therefore, the contamination of water parameter can affect others and the correlative relationship shapes the characteristics of a site (Ariadi et al., 2019a; Newman, 2023). This is because polluted waters also have poor-quality profiles (Soeprapto et al., 2023). In ponds, multi-parameter water correlations and developed farming patterns significantly affect shrimp life and pond waters' characteristics (Ariadi, 2020; Satanwat et al., 2023).

Soil parameters with a high level of correlation include OM with CEC, while those with low correlation comprise redox potential and OM (Table 5). The high correlation of OM with CEC is due to the release of anions and cations in soil material types (**Boyd** *et al.*, 2007).

Table	5. Correlation	test resu	lts of	soil qual	ity paran	neters
_	nН	redov	OC	OM	CFC	

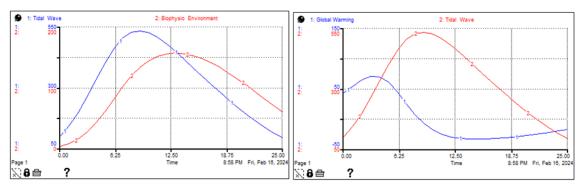
	pН	redox	OC	OM	CEC
pН	1				
redox	174*	1			
\mathbf{OC}	.114	.254	1		
\mathbf{OM}	320	.209*	207	1	
CEC	.263	137	302	303**	1

^{*}Correlation is significant at the 0.05 level (2-tailed)

^{*}Correlation is significant at the 0.05 level (2-tailed)

^{**}Correlation is significant at the 0.01 level (2-tailed)

^{**}Correlation is significant at the 0.01 level (2-tailed)


Soil parameters do not directly affect shrimp farming activities due to the presence of pond liner model. Meanwhile, most intensive shrimp ponds use HDPE liners as media to minimize soil porosity in coastal areas (Lavoie et al., 2022; Naranjo-Páramo et al., 2022). Additionally, the use of HDPE ponds also affects the stability of water temperature (Naranjo-Páramo et al., 2022; Eldesouky et al., 2023).

Effect of climate change, such as rising sea levels, affects the correlation between water and soil quality in coastal areas. Changes in water volume and the solubility of seawater cation ions also affect the biophysical structure (**Hayford** *et al.*, 2021). The process of changing the biophysical characteristics of the environment due to rising sea levels occurs because of water intrusion processes (**Robinson** *et al.*, 2015). Therefore, continuous seawater intrusion processes affect environmental sanitation conditions (**Protano** *et al.*, 2000).

7. Global warming and tidal wave

The dynamic modeling system analysis shows that rising sea levels correlate with effect of changes in the biophysical environment. Additionally, there is a correlation between effects of climate change and rising sea levels, as shown in Fig. (4). Therefore, there is a cause-and-effect relationship between climate change, tidal waves, and changes in the biophysical conditions of the environment. Effect of climate change on the environment occurs partially and simultaneously depending on the level of effects produced (Mahmood et al., 2023).

Changes in soil physical structure in coastal areas are affected by erosion and sedimentation processes, which are slower in sandy soil compared to clay (**Hu** *et al.*, **2022**). Additionally, sandy soil tends to be porous, and susceptible to erosion by water (**Ariadi**, **2020**). The rate of soil erosion can also intensify with increasing tidal waves and seawater volume (**Koutitonsky** *et al.*, **2024**).

Fig. 4. Dynamic model analysis of the impact of increasing tidal waves on changes in environment biophysical conditions

Effect of tidal waves on the biophysical parameters of coastal water environments gradually affects the condition of water and soil quality (Ya et al., 2023). In shrimp farming, water, and soil quality are the main resources managed for framing sites (Ariadi et al., 2019a; Wafi et al., 2021). The unstable conditions of water and soil also affect the feasibility of land and water (Pimentel et al., 2023).

The dynamic pattern of tidal waves affects the biophysical land conditions in shrimp farming areas. Meanwhile, intense tidal waves can affect the physical structure of soil and changes in the aquatic ecosystem (Parvin et al., 2023; Ya et al., 2023). In this context, the indicators observed from changes in the biophysical structure of coastal land are WQI and SQI. Water and soil quality changes can also affect the environmental profile of shrimp farming activities (Tong et al., 2020). In shrimp pond ecosystems, the parameters operate dynamically and are interrelated (Alarcón-Silvas et al., 2021). These conditions affect coastal shrimp farming activities' feasibility status and biophysical environment.

Shrimp farming in coastal areas that relies on seawater resources is becoming increasingly resilient to the impacts of climate change. The effects of climate change, particularly the rise in tidal level, will influence the physical condition of the land in those areas (Ya et al., 2023). For farming activities, this situation is significant due to the increasingly limited land use conversions (Ariadi., 2023). In addition to land conversion, another impact is the change in groundwater quality in coastal areas compared to conditions before the effects of climate change occurred.

CONCLUSION

The condition of water and soil quality in the shrimp pond ecosystem in the coastal area of Probolinggo is experiencing a decline in quality, affecting the suitability status of land and water due to the impact of the intensifying and dynamic tidal wave. The increase in tidal wave height correlates with the quality status of water and soil in the pond environment.

This issue requires serious attention, as it will affect the sustainability of shrimp productivity. Consequently, the communities in coastal areas may face difficulties in utilizing aquatic resources. Therefore, relevant studies are essential to understand the patterns of coastal resource use impacted by the effects of climate change. This improvisation is urgently needed in light of the increasingly serious impacts of climate change in coastal areas.

CONFLICT OF INTEREST

All authors declare that they have no conflict of interest.

REFERENCES

- Alarcón-Silvas, S. G.; León-Cañedo, J. A.; Fierro-Sañudo, J. F.; Ramírez-Rochín, J.; Fregoso-López, M. G.; Frías-Espericueta, M. G.; Osuna-Martínez, C. C. and Páez-Osuna, F. (2021). Water quality, water usage, nutrient use efficiency and growth of shrimp *Litopenaeus vannamei* in an integrated aquaponic system with basil *Ocimum basilicum*. *Aquaculture*, 543, 1–10. https://doi.org/10.1016/j.aquaculture.2021.737023
- **Alducci, B. and Hynes, S.** (2023). Protecting coastal infrastructure in the face of increasing climate related pressures: A cost-benefit analysis of maintaining a tidal kayaking feature in Ireland. *Marine Policy*, 150, 1–10. https://doi.org/10.1016/j.marpol.2023.105550
- Ariadi, H. (2020). Oksigen Terlarut dan Siklus Ilmiah Pada Tambak Intensif. Guepedia.
- Ariadi, H. (2023). Dinamika Wilayah Pesisir. UB Press.
- **Ariadi, H.; Azril, M. and Mujtahidah, T.** (2023). Water quality fluctuations in shrimp ponds during dry and rainy seasons. *Croatian Journal of Fisheries*, 81(3), 127–137. https://doi.org/10.2478/cjf-2023-0014
- **Ariadi, H.; Fadjar, M.; Mahmudi, M. and Supriatna.** (2019a). The relationships between water quality parameters and the growth rate of white shrimp (*Litopenaeus vannamei*) in intensive ponds. *AACL Bioflux*, 12(6), 2103–2116.
- **Ariadi, H.; Mahmudi, M. and Fadjar, M.** (2019b). Correlation between density of vibrio bacteria with *Oscillatoria* sp. abundance on intensive *Litopenaeus vannamei* shrimp ponds. *Research Journal of Life Science*, 6(2), 114–129. https://doi.org/10.21776/ub.rjls.2019.006.02.5
- **Aziz, F.; Wang, X.; Mahmood, M.Q.; Guild, R.** (2024). Wastewater flooding risk assessment for coastal communities: Compound impacts of climate change and population growth. *Journal of Hydrology*, 645, 132136. https://doi.org/10.1016/j.jhydrol.2024.132136.
- Bhatt, P.; Brown, P. B.; Huang, J.Y.; Hussain, A. S.; Liu, H. T. and Simsek, H. (2024). Algae and indigenous bacteria consortium in treatment of shrimp wastewater: A study for resource recovery in sustainable aquaculture system. *Environmental Research*, 250, 118447. https://doi.org/10.1016/j.envres.2024.118447
- **Boyd, C. A.; Boyd, C. E. and Rouse, D. B.** (2007). Potassium budget for inland, saline water shrimp ponds in Alabama. *Aquacultural Engineering*, *36*(1), 45–50. https://doi.org/10.1016/j.aquaeng.2006.06.002
- Cavalcante, D.M.; Silva, A.P.F.; de Almeida, B.G.; Freire, F.J.; Silva, T.H.S.; Cavalcante, F.M.S. (2021). Physical soil quality indicators for environmental assessment and agricultural potential of Oxisols under different land uses in the Araripe Plateau, Brazil. *Soil and Tillage Research*, 209, 104951. https://doi.org/10.1016/j.still.2021.104951

- **Cepic, M.; Bechtold, U. and Wilfing, H.** (2022). Modelling human influences on biodiversity at a global scale–A human ecology perspective. *Ecological Modelling*, 465, 1–13. https://doi.org/10.1016/j.ecolmodel.2021.109854
- Chapman, E. J.; Byron, C. J.; Lasley-Rasher, R.; Lipsky, C.; Stevens, J. R. and Peters, R. (2020). Effects of climate change on coastal ecosystem food webs: Implications for aquaculture. *Marine Environmental Research*, *162*, 1–10. https://doi.org/10.1016/j.marenvres.2020.105103
- Chen, B.Y.; Huang, P.L.; Hou, Y.L.; Lan, H.Y.; Huang, C.T. and Nan, F.H. (2024). The economic feasibility of aquavoltaics in Taiwan A case study of whiteleg shrimp (*Litopenaeus vannamei*) culture. *Aquaculture*, 581, 740454. https://doi.org/10.1016/j.aquaculture.2023.740454
- Dong, W.S.; Ismailluddin, A.; Yun, L.S.; Ariffin, E.H.; Saengsupavanich, C.; Maulud, K.N.A.; Ramli, M.Z.; Miskon, M.F.; Jeofry, M.H.; Mohamed, J.; Mohd, F.A.; Hamzah, S.B.; Yunus, K. (2024). The impact of climate change on coastal erosion in Southeast Asia and the compelling need to establish robust adaptation strategies. *Heliyon*, 10, e25609. https://doi.org/10.1016/j.heliyon.2024.e25609
- **Du, Y.; Tian, Z.; Zhao, Y.; Wang, X.; Ma, Z. and Yu, C.** (2024). Exploring the accumulation capacity of dominant plants based on soil heavy metals forms and assessing heavy metals contamination characteristics near gold tailings ponds. *Journal of Environmental Management*, 351, 119838. https://doi.org/10.1016/j.jenvman.2023.119838
- **Eldesouky, H. M. G.; Thiel, R. and Brachman, R. W. I.** (2023). Assessment of geomembrane strain from pond liner bubbles. *Geotextiles and Geomembranes*, 51(6), 28–40. https://doi.org/10.1016/j.geotexmem.2023.07.002
- **Fanous, M.; Daneshkhah, A.; Eden, J. M.; Remesan, R. and Palade, V.** (2023). Hydro-morphodynamic modelling of mangroves imposed by tidal waves using finite element discontinuous Galerkin method. *Coastal Engineering*, *182*, 1–19. https://doi.org/10.1016/j.coastaleng.2023.104303
- FAO. (1980). Soil and Plant Testing and Analysis. FAO Soil Buletin.
- **Ferreira, N. C.; Bonetti, C. and Seiffert, W. Q.** (2011). Hydrological and water quality indices as management tools in marine shrimp culture. *Aquaculture*, *318*(3–4), 425–433. https://doi.org/10.1016/j.aquaculture.2011.05.045
- Fuentes-Santos, I.; Labarta, U.; Fernández-Reiriz, M. J.; Kay, S.; Hjøllo, S. S. and Alvarez-Salgado, X. A. (2021). Modeling the impact of climate change on mussel aquaculture in a coastal upwelling system: A critical assessment. *Science of the Total Environment*, 775, 1–12. https://doi.org/10.1016/j.scitotenv.2021.145020
- Hasibuan, S.; Syafriadiman, S.; Aryani, N.; Fadhli, M. and Hasibuan, M. (2023). The age and quality of pond bottom soil affect water quality and production of *Pangasius hypophthalmus* in the tropical environment. *Aquaculture and Fisheries*,

- 8(3), 296–304. https://doi.org/10.1016/j.aaf.2021.11.006
- **Hayford, H. A.; Gilman, S. E. and Carrington, E.** (2021). Tidal cues reduce thermal risk of climate change in a foraging marine snail. *Climate Change Ecology*, *1*, 1–13. https://doi.org/10.1016/j.ecochg.2021.100003
- **Hu, S.; Xing, R.; Wang, H. and Chen, L.** (2022). Comparing spatial-temporal characteristics of dissolved nitrogen and phosphorus in water of sea cucumber *Apostichopus japonicas* culture ponds between sandy and muddy sediments. *Aquaculture*, 552, 737990. https://doi.org/10.1016/j.aquaculture.2022.737990
- **Huang, C.; Luo, Y.; Zeng, G.; Zhang, P.; Peng, R.; Jiang, X. and Jiang, M.** (2022). Effect of adding microalgae to whiteleg shrimp culture on water quality, shrimp development and yield. *Aquaculture Reports*, 22, 1–9. https://doi.org/10.1016/j.aqrep.2021.100916
- **Kim, D.; Ko, J.; Jo, J.; Ryu, J. and Choi, K.** (2022). Decoupling natural and man-made impacts on the morphologic and sedimentologic changes in the tidal flats, Saemangeum area, west coast of Korea: Implications for benthic ecosystem stability. *Science of The Total Environment*, 807, 151779. https://doi.org/10.1016/j.scitotenv.2021.151779
- Koutitonsky, V.; Zyserman, J. A.; Zourarah, B.; Orbi, A.; El Khalidi, K. and Benali, A. (2024). Tidal asymmetry and mud transport in Oualidia Lagoon: Actual conditions in 2012 and rehabilitation scenarios. *Water Science and Engineering*, 1–8. https://doi.org/10.1016/j.wse.2024.01.002
- Lavoie, F. L.; Kobelnik, M.; Valentin, C. A.; Tirelli, É. F. D. S.; Lopes, M. D. L. and Silva, J. L. D. (2022). Evaluation of exhumed HDPE geomembranes used as a liner in Brazilian shrimp farming ponds. *Case Studies in Construction Materials*, *16*, 4–12. https://doi.org/10.1016/j.cscm.2021.e00809
- **Li, Y.; Ye, Y.; Jiang, Q.; Yang, Y.; Liu, X.; Zhao, Y. and Che, X.** (2023). Comparison of immune defense and antioxidant capacity between broodstock and hybrid offspring of oriental river shrimp (*Macrobrachium nipponense*): Response to acute nitrite stress. *Aquaculture Reports*, 33, 1–9. https://doi.org/10.1016/j.aqrep.2023.101776
- Linayati.; Nhi, N.H.Y.; Ariadi, H.; Mardiana, T.Y.; Fahrurrozi, A.; Syakirin, M.B. (2024). Relationship Between Abundance of *Clamydomonas* spp and *Chlorella* spp on Clinical Performance of Red Tilapia *Oreochromis niloticus* in Silvofishery Ponds. *Croatian Journal of Fisheries*, 82(1), 33-42. DOI: https://doi.org/10.2478/cjf-2024-0004
- **Liu, J.; Yu, X. and Du, J.** (2022). Tidally driven submarine groundwater discharge to a marine aquaculture embayment: Insights from radium and dissolved silicon. *Marine Pollution Bulletin*, 178, 113620. https://doi.org/10.1016/j.marpolbul.2022.113620
- López, L. R.; Mora, M.; Baeza, J. A.; Lafuente, J. and Gabriel, D. (2019). Titrimetry as a tool for the on-line monitoring of biological activity in a desulfurizing

- biotrickling filter under aerobic conditions. *Process Safety and Environmental Protection*, 124, 151–157. https://doi.org/10.1016/j.psep.2019.02.010
- **Ma, Z.; Song, X.; Wan, R. and Gao, L. (2013).** A modified water quality index for intensive shrimp ponds of *Litopenaeus vannamei*. *Ecological Indicators*, 24, 287–293. https://doi.org/10.1016/j.ecolind.2012.06.024
- Mahmood, R.; Zhang, L.; Li, G.; Roy, N. R.; Rawnaq, N.; Yan, M.; Dong, Y. and Chen, B. (2023). Geospatial assessment of intrinsic resilience to the climate change for the central coast of Bangladesh. *Climate Risk Management*, 40, 1–27. https://doi.org/10.1016/j.crm.2023.100521
- Mardiana, T.Y.; Ariadi, H.; Al Ramadhani, F.M.; Syakirin, M.B. and Linayati. (2024). Dynamic Modeling System of Cholorophyceae Abundance in Pen-Culture Ponds During the Dry Season. *Ecological Engineering & Environmental Technology*, 25(8), 47-56. DOI: https://doi.org/10.12912/27197050/189238.
- Mardiana, T.Y.; Ariadi, H.; Rattanavichai, W.; Soedibyo, P.H.T. and Linayati. (2024). Feasibility Study Area and Dissolved Oxygen *Carrying Capacity* of Silvofishery Pond on the Coastal Area. *ILMU KELAUTAN: Indonesian Journal of Marine Sciences*, 29(2), 1-10. DOI: 10.14710/ik.ijms.29.2.201-210.
- Martínez-Córdova, L. R.; Enríquez-Ocaña, L. F.; López-Rascón, F.; López-Elías, J. A. and Martínez-Porchas, M. (2013). Overwintering the black clam Chione fluctifraga in a tidal shrimp pond and in an estuary, using suspended and bottom systems. *Aquaculture*, 396–399, 102–105. https://doi.org/10.1016/j.aquaculture.2013.02.029
- McLean, E.; Barrows, F. T.; Craig, S. R.; Alfrey, K. and Tran, L. (2020). Complete replacement of fishmeal by soybean and poultry meals in Pacific whiteleg shrimp feeds: Growth and tolerance to EMS/AHPND and WSSV challenge. *Aquaculture*, 527, 1–12. https://doi.org/10.1016/j.aquaculture.2020.735383
- **Musa, M.; Mahmudi, M.; Arsad, S. and Buwono, N. R.** (2020). Feasibility study and potential of pond as silvofishery in coastal area: Local case study in Situbondo Indonesia. *Regional Studies in Marine Science*, *33*, 100971. https://doi.org/10.1016/j.rsma.2019.100971
- Naranjo-Páramo, J.; Martínez-Córdova, L. R.; Vargas-Mendieta, M. and Villarreal, H. (2022). Aeration level in HDPE-lined nursery ponds that optimizes yield and production cost of preadult redclaw crayfish, *Cherax quadricarinatus*. *Aquacultural Engineering*, *96*, 102221. https://doi.org/10.1016/j.aquaeng.2021.102221
- **Newman, S. G.** (2023). Shrimp farming yesterday to tomorrow. In M. Dikeman (Ed.), *Encyclopedia of Meat Sciences* (Third Edit, pp. 12–28). Academic Press. https://doi.org/10.1016/B978-0-323-85125-1.00116-2
- Ni, M.; Yuan, J.; Zhang, L.; Hua, J.; Rong, H. and Gu, Z. (2021). In-situ and ex-situ purification effect of ecological ponds of Euryale ferox Salisb on shrimp

- aquaculture. Aquaculture, 540, 1–9. https://doi.org/10.1016/j.aquaculture.2021.736678
- Parvin, S.; Sakib, M. H.; Islam, M. L.; Brown, C. L.; Islam, M. S. and Mahmud, Y. (2023). Coastal aquaculture in Bangladesh: Sundarbans's role against climate change. *Marine Pollution Bulletin*, 194, 115431. https://doi.org/10.1016/j.marpolbul.2023.115431
- Pereira, H.; Picado, A.; Sousa, M. C.; Brito, A. C.; Biguino, B.; Carvalho, D. and Dias, J. M. (2023). Effects of climate change on aquaculture site selection at a temperate estuarine system. *Science of the Total Environment*, 888, 1–14. https://doi.org/10.1016/j.scitotenv.2023.164250
- **Pimentel, O. A. L. F.; Amado, A. M. and They, N. H.** (2023). Biofloc colors as an assessment tool for water quality in shrimp farming with BFT systems. *Aquacultural Engineering*, *101*, 102321. https://doi.org/10.1016/j.aquaeng.2023.102321
- Prevalie, R.; Patriche, C.; Svulescu, I.; Sirodoev, I.; Bandoc, G. and Sfica, L. (2020). Spatial assessment of land sensitivity to degradation across Romania. A quantitative approach based on the modified MEDALUS methodology. *CATENA*, 187, 104407. https://doi.org/10.1016/j.catena.2019.104407.
- **Protano, G.; Riccobono, F. and Sabatini, G.** (2000). Does salt water intrusion constitute a mercury contamination risk for coastal fresh water aquifers? *Environmental Pollution*, 110(3), 451–458. https://doi.org/10.1016/S0269-7491(99)00317-6
- **Robinson, G.; Hamill, G. A. and Ahmed, A. A.** (2015). Automated image analysis for experimental investigations of salt water intrusion in coastal aquifers. *Journal of Hydrology*, *530*, 350–360. https://doi.org/10.1016/j.jhydrol.2015.09.046
- Rocha, J. L.; Pereira, A. C. D. S.; Correia, A. M.; Giumbelli, L. D.; Brunetto, G.; Loss, A. and Arana, L. A. V. (2022). A new strategy to study pond soil chemistry in intensive and extensive cultures of *Litopenaeus vannamei:* A case study in Brazil. *Aquaculture*, 549, 737785. https://doi.org/10.1016/j.aquaculture.2021.737785
- **Ruwoldt, J.; Helgheim, M. D.; Tanase-Opedal, M. and Syverud, K.** (2023). UV-spectrophotometry dataset of technical lignin in solution after aging and looped measurements. *Data in Brief*, *50*, 1–5. https://doi.org/10.1016/j.dib.2023.109549
- Sabdaningsih, A.; Adyasari, D.; Suryanti, S.; Febrianto, S. and Eshananda, Y. (2023). Environmental legacy of aquaculture and industrial activities in mangrove ecosystems. *Journal of Sea Research*, 196, 1–12. https://doi.org/10.1016/j.seares.2023.102454
- Satanwat, P.; Tapaneeyaworawong, P.; Boonprasertsakul, T.; Maksee, A.; Kotcharoen, W.; Adlin, N.; Watari, T.; Yamaguchi, T.; Pungrasmi, W. and Powtongsook, S. (2023). Sustainable practice for a zero-discharge outdoor earthen shrimp pond based on biological nitrogen waste carrying capacity. *Aquaculture*, 574, 739734. https://doi.org/10.1016/j.aquaculture.2023.739734

- Satanwat, P.; Tran, T. P.; Hirakata, Y.; Watari, T.; Hatamoto, M.; Yamaguchi, T.; Pungrasmi, W. and Powtongsook, S. (2020). Use of an internal fibrous biofilter for intermittent nitrification and denitrification treatments in a zero-discharge shrimp culture tank. *Aquacultural Engineering*, 88, 1–10. https://doi.org/10.1016/j.aquaeng.2019.102041
- **Soeprapto, H.; Ariadi, H. and Badrudin, U.** (2023). The dynamics of *Chlorella* spp. abundance and its relationship with water quality parameters in intensive shrimp ponds. *Biodiversitas*, 24(5), 2919–2926. https://doi.org/10.13057/biodiv/d240547
- **Toledo, I.; Pagán, J. I.; López, I.; Aragonés, L. and Olcina, J.** (2024). Nature-based solutions on the coast in face of climate change: The case of Benidorm (Spain). *Urban Climate*, *53*, 1–17. https://doi.org/10.1016/j.uclim.2024.101816
- **Tong, R.; Chen, W.; Pan, L. and Zhang, K.** (2020). Effects of feeding level and C/N ratio on water quality, growth performance, immune and antioxidant status of *Litopenaeus vannamei* in zero-water exchange bioflocs-based outdoor soil culture ponds. *Fish and Shellfish Immunology*, *101*, 126–134. https://doi.org/10.1016/j.fsi.2020.03.051
- Wafi, A.; Ariadi, H.; Muqsith, A.; Mahmudi, M. and Fadjar, M. (2021). Oxygen consumption of *Litopenaeus vannamei* in intensive ponds based on the dynamic modeling system. *Journal of Aquaculture and Fish Health*, 10(1), 17–24. https://doi.org/10.20473/jafh.v10i1.18102
- Wang, L.; Zhu, M.; Li, Y. and Zhao, Z. (2023). Assessing the effects of aquaculture on tidal flat ecological status using multi-metrics interaction-based index of biotic integrity (Mt-IBI). *Environmental Research*, 228, 115789. https://doi.org/10.1016/j.envres.2023.115789
- **Ya, Y.; Dongdong, L. and Dongli, S.** (2023). Simulating the effects of vegetation restoration and climate change on the long-term soil water balance on the Loess Plateau, 2021-2050. *Journal of Hydrology*, 626, 130260. https://doi.org/10.1016/j.jhydrol.2023.130260