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INTRODUCTION  

Marine protected areas (MPAs) are designated zones of the marine environment 

managed to safeguard ecological functions and sustainability of ecosystems and resources 

(Kriegl et al., 2021). In Indonesia, the establishment of MPAs is considered ecologically 

appropriate because marine environments have suffered degradation affected from 
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The global environmental crisis has led to biodiversity loss and degradation 

of marine ecosystems. In response, conserving biodiversity and marine 

resources through the establishment of marine protected areas (MPAs) is 

recognized as one of the most effective tools to address environmental 

pressures. However, the effectiveness of Indonesia's MPA management 

remains weak, therefore, better coordination, monitoring, and improved 

governance are needed to achieve conservation goals. This study aimed to 

assess how variations in coral reef condition influence reef fishes in terms of 

diversity, structure, distribution, and biomass at Morowali MPA, Central 

Sulawesi, to enhance the effective management. The results reveal that the 

fish assemblages in Morowali MPA are characterized by high species 

richness and strong spatial structuring driven by species turnover. Families 

of Acanthuridae, Chaetodontidae, Labridae, Pomacentridae, Serranidae, and 

Siganidae form the most commonly reef fishes found in Morowali MPA, 

beyond that the small fish were dominant and larger species were 

herbivorous and carnivorous groups. Fish diversity and abundance might be 

driven by variation in benthic substrates. Moreover, the patterns of species 

dominance illustrate interplay between reef geomorphology, seasonal 

oceanographic processes, and life-history traits in shaping community 

structure. 
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overfishing, destructive activities and climate change (Amkieltiela et al., 2022; 

Estradivari et al., 2022). Conservation issues have become a strategic priority, and the 

government emphasizes effective management to secure both ecological and socio-

economic benefits (Estradivari et al., 2022). Indonesia’s national MPA policy led by the 

Ministry of Marine Affairs and Fisheries (MMAF), aligns with the global commitments 

such as Aichi Target 11 and SDG 14, with a target of 32.5 million ha under protection by 

2030 (Meilana et al., 2023). Clear goals for MPAs are necessary to guide management, 

monitoring, and research activities. However, the complexity of marine ecosystems 

means that ecological responses to MPA establishment vary across regions and are 

difficult to predict, influenced by factors such as habitat distribution, connectivity, wave 

exposure, depth, historical resource extraction, regulatory frameworks, and compliance 

levels (Edgar et al., 2007). 

Since the 2000s, MPA criteria have been standardized worldwide, with progress in 

ecosystem-based approaches, climate change mitigation, and expansion beyond national 

waters, yet oceans remain highly affected by human activities (Maestro et al., 2019). The 

sustainability and effectiveness of MPA depend on fishing pressure, anthropogenic 

threats, and climate change (Hilborn, 2018; Moutopoulos et al., 2021). Ecotourism can 

directly and indirectly support sustainability, highlighting the vital role of community 

involvement in achieving long-term conservation (Rahman et al., 2022). By 2020, 

Indonesia’s MPA network had reached 23.9 million hectares, but management 

effectiveness remains limited, requiring stronger oversight and policy actions to align 

with post-2020 biodiversity goals (Meilana et al., 2023). The MPA faces growing 

pressures, requiring stronger management, integration with fisheries and tourism, and 

resilient strategies to ensure long-term sustainability (Tranter et al., 2022). Expansion of 

MPAs should be balanced with improved management, coordination, resources, and 

monitoring, while addressing gaps in representation and governance to meet future 

conservation targets (Amkieltiela et al., 2022). 

Indonesia’s coral reef, part of Coral Triangle, represents a global hotspot of marine 

biodiversity (Moore & Ndobe, 2008). They provide critical ecosystem services, 

including coastal protection, ecological processes, fisheries support, and socio-economic 

benefits (Hoegh-Guldberg et al., 2017). Reef fish diversity and abundance are strongly 

influenced by coral cover and structural complexity, with numerous studies showing a 

positive relationship between coral reefs and reef fish (Komyakova et al., 2013; Arias-

Godínez et al., 2021; Sebastian et al., 2024). Reef fishes play key ecological roles in 

maintaining reef functioning and structuring. However, fish assemblage patterns can shift 

due to natural or human disturbances (Thilakarathne et al., 2024). Increase in the 

number and extension of MPAs is therefore one of the most effective conservation 

instruments, particularly in the coastal and small islands such as Central Sulawesi regions 

(Maestro et al., 2019). Central Sulawesi, consists of terrestrial and marine areas, with its 
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marine territory hosting some of  the most extensive coral reefs in Indonesia (Moore & 

Ndobe, 2008). 

Nevertheless, coral reefs in Central Sulawesi face widespread degradation, 

destructive fishing, sedimentation, mining, tourism, ship groundings, and other human 

activities (Tranter et al., 2022; Tosepu et al., 2025). Although coastal ecosystems show 

some capacity for recovery after stress, community structures are often altered (Touza et 

al., 2021). To address these challenges, regular biophysical monitoring is conducted to 

track ecological trends and assess the impacts of climate change and anthropogenic 

threats (Hadi et al., 2018). In addition to data on fish diversity and abundance, fish 

biomass is a fundamental parameter for evaluating the status of aquatic ecosystems 

(Robinson et al., 2016). Biomass not only reflects ecosystem health but also indicates 

disturbances such as overfishing, pollution, and climate change (Duffy et al., 2016). 

Moreover, biomass data are essential for establishing sustainable fisheries management 

strategies, determining catch quotas, and supporting the economic well-being of 

communities dependent on marine resources (McClanahan et al., 2016; Robinson et al., 

2016). In addition, fish biomass provides insights into trophic interactions and 

community structure, offering a broader understanding of ecosystem dynamics under 

environmental change (Russ et al., 2021). Coral reefs, which are ecologically and 

economically valuable, have mostly been studied in association with reef fish. 

Knowledge of this interaction between benthic substrate percent cover at reef ecosystems 

and fish families remains limited in Central Sulawesi, particularly in Morowali marine 

protected area. To address this gap, the Department of Marine Affairs and Fisheries, 

Central Sulawesi Province provides data to assess trends in coral reefs ecology and 

impact of environmental changes, if any, through reef health monitoring. Therefore, this 

study aimed to assess the relation of coral reef and reef fish, especially on spatial 

distribution of reef fishes and variation on fish diversity, species composition, and also 

trends in fish biomass at selected sites in the Morowali MPA, Central Sulawesi. 

 

 

MATERIALS AND METHODS  

 

1. Study sites 

This study was conducted in October 2024 at Morowali Marine Protected Area 

(MPA) and focused on coral reefs at depths of 5- 7m. A total of 12 study sites were 

selected and distributed in the Regency of Morowali and North Morowali, Central 

Sulawesi, Indonesia (Fig. 1). The majority of study sites were represented by substrate 

sand. Almost all sites were located on inhabited islands, with the exception of two 

uninhabited islands, namely Koikoila Island (St04) and Stagal Island (St12). Most 

locations were characterized by reef slope types, with the exception of St07, St08, and 

St11 which were documented by patch, fringing and reef flat, respectively (Fig. 1). 
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2. Data collections 

The method used for data collection of benthic substrates was underwater photo 

transect method (UPT), and underwater visual census method (UVC) was used to obtain 

the fish data (Hill & Wilkinson, 2004). A 50m of line transect was placed on parallel 

positions to the shoreline, with an additional 5m on each side of line to cover an 

observation area of 500m2 for fish data. All fish encountered were documented and 

identified supported by a coral reef fish identification guidebook of Kuiter and 

Tonozuka (2001). The number of individuals was recorded to determine species 

abundance and fish occurrence across study sites, and the fish biomass was calculated by 

using length estimation of fish (cm). The fish biomass measurement was evaluated using 

formula of the length weight relationship, W= a × Lb , where W is the weight of fish (g), 

L is the total length (cm), while a and b are constants for a particular fish referring to 

FishBase.org (Froese & Pauly, 2024). Moreover, benthic substrate percentage was 

obtained using 44 × 58cm quadrat transect to frame the photo and helped as a border for 

photo data analyzing using CPCe software (Kohler & Gill, 2006). Photos were taken 

along the line transect with quadrat transects placed to the left of the line transect at odd 

meters and to the right at even meters to obtain a representative of benthic substrates. A 

total of 30 random points was selected for each photo data and identified the category of 

these benthic substrates, meanwhile there about 1500 random points from 50 photos for 

each line transect (study site). According to Giyanto (2012), the benthic substrate was 

grouped into category of life coral including acropora (AC) and non-acropora (NAC), 

dead coral (DC), dead coral with algae (DCA), soft coral (SC), sponge (SP), fleshy 

seaweed (FS), other fauna (OT), rubble (R), sand (S), silt (SI), and rock (RK). The data 

collection was conducted along the same line transect for both data of fish and benthic 

substrates. 
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Fig. 1. Location of study sites across Morowali MPA, Central Sulawesi, Indonesia 

 

3. Data analysis 

The adequacy of species documented was examined using species accumulation 

curve. Fish body size estimations were categorized into 4 groups (≤ 10 cm, 11- 20 cm, 

21- 30 cm, and 31- 40 cm), likewise trophic groups were classified into 9 functional 

groups (carnivore, herbivore, omnivore, detrivore, invertivore, planktivore, 

zooplanktivorous, obligate corallivore, and facultative corallivore) based on data from 

FishBase.org. The dataset was used to assess fish biomass, size distribution, beta-

diversity, trophic structure, and relative abundances among 12 study sites. Reef fish 

community structure in Morowali MPA was examined using cluster analysis based on 

Bray-Curtis dissimilarity matrices derived from presence and absence data using 

ggdendro package. Compositional dissimilarity among sites was assessed to evaluate 

spatial variation by combining abundance and incidence-based approaches. Bray-Curtis 

dissimilarity was calculated from log-transformed abundance data to reduce the influence 

of dominant species while preserving sensitivity to both species absence and relative 

abundance (Bray & Curtis, 1957; Clarke et al., 2006). Sørensen dissimilarity was 

partitioned into turnover (species replacement) and nestedness-resultant components 

(species loss or gain without replacement) using the beta.pair function (betapart package), 

allowing identification of beta diversity drivers (Baselga, 2010; Baselga & Orme, 2012). 

Benthic substrates composition was visualized using the ggplot2 package, and following 

the assessment of normality distributions, Pearson's correlation (r) was conducted to 
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analyze the relationships between fish species richness and hard coral cover, as well as 

fish biomass and hard coral cover using vegan package. Non-metric multidimensional 

scaling (nMDS) was employed to visualize distribution patterns of the 10 dominant fish 

taxa and benthic substrates using vegan package, wherein the plot could reflect the 

variation of dominant reef fish in Morowali MPA might driver by benthic substrate 

percent cover. All analyses were performed in R 4.5.1 version, with visualizations using 

ggplot2 package (Wickham, 2016), and dissimilarity matrices were visualized using 

heatmaps through pheatmap package (Kolde, 2025). 

 

RESULTS  

 

1. Community structure and diversity of reef fishes 

This study recorded a total of 206 species which belong to 35 families of reef fish. 

The species accumulation curve presented approaching an asymptote (Fig. 3B), 

indicating that sampling effort (n = 12 study sites) was nearly sufficient to record most 

species. The study site of Padei Laut Island (St05) has the highest number of species (87 

taxa), followed by Samarengga I (St02) island (69 taxa), with the high contribution from 

families Chaetodontidae and Acanthuridae, respectively. However, the study sites of 

Samarengga II Island (St03) and Mbokita Island (St11) reported the lowest number of 

species (36 taxa in each). Furthermore, the family of reef fish with the highest number of 

species was Pomacentridae, while there were 16 families that reported the lowest number 

of species with only 1 species recorded (Table 1). The most widespread reef fish in 

Morowali MPA was for the families Acanthuridae, Chaetodontidae, Labridae, 

Pomacentridae, Serranidae, and Siganidae being present at all study sites. 

The finding across study sites in the Morowali MPA reveal a fascinating tapestry of 

reef fish diversity, pairwise Sørensen dissimilarity βsor was high overall, indicating 

marked among-site heterogeneity in species composition. The lowest dissimilarity 

occurred between St02 and St03 (βsor = 0.358), whereas the highest was between St07 

and St04 (βsor = 0.868), with most other station pairs exceeding 0.65 (e.g., St01-St02 = 

0.782, St08-St10 = 0.824, St06-St08 = 0.833, Fig. 2). Partitioning of beta diversity 

showed that dissimilarity was predominantly driven by species turnover (βsim) rather 

than nestedness (βsne) for most comparisons, this means that differences in reef fish 

species between study sites are largely due to the replacement of one species by another, 

rather than variations in the number of species present. Several pairs were near “pure 

turnover,” with negligible nestedness (e.g., St04-St10 βsor = 0.679, βsne = 0; St07- St08 

βsne = 0; St07-St11 βsne = 0). High-dissimilarity pairs such as St08-St06 (βsor = 0.833, 

βsne = 0.018) and St10-St08 (βsor = 0.824, βsne = 0.035) were likewise dominated by 

species replacement. In contrast, a smaller subset of comparisons exhibited elevated 

nestedness, suggesting richness or occupancy differences. The clearest case was St02-

St03, where βsne = 0.277 for exceeded βsim = 0.081, and additional examples included 
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St03-St05 (βsne = 0.232) and St05-St09 (βsne = 0.218, Fig. 2). Overall, study sites such 

as St07 and St08 were compositionally distinctive from many others due to high turnover, 

while St02 and St03 formed a comparatively similar pair with nestedness-driven 

differences. 

 

Table 1. Distribution of reef fish species across study sites 

Family 
Total 

species 

Number of species each site 

St01 St02 St03 St04 St05 St06 St07 St08 St09 St10 St11 St12 

Acanthuridae 14 3 11 7 3 4 5 3 2 4 7 2 4 

Apogonidae 2 2      1 1    1 

Aulostomidae 1  1 1 1 1   1   1 1 

Balistidae 7 1 3 1 2 3 1 2  1 3   

Blenniidae 1 1 1           

Caesionidae 3  1 1 1 2 2  2 2 1 1  

Carangidae 2  1 2 1         

Centriscidae 1 1      1      

Chaetodontidae 21 1 8 5 4 15 7 3 3 6 9 2 5 

Cirrhitidae 1  1        1   

Dasyatidae 1  1           

Echeneididae 1 1            

Ephippidae 1      1       

Haemulidae 3 2      1   1   

Holocentridae 7 1 2 1  4 1   2 2   

Labridae 27 7 7 3 11 13 5 5 7 12 6 6 9 

Lethrinidae 1 1   1 1 1       

Lutjanidae 9  1 1 2 2 2 2   3   

Monacanthidae 1           1  

Mullidae 5 1 2 1 5 4   2 1 2   

Nemipteridae 7 3 1 1 2 3  1 3 1  1 2 

Ostraciidae 2  1   1        

Pempheridae 1  1           

Plotosidae 1           1  

Pomacanthidae 5  1  1 2 2 1   2   

Pomacentridae 40 9 8 5 5 13 8 9 10 8 7 10 15 

Priacanthidae 1  1           

Scaridae 18 6 6 4 10 9 5 5 1  5 5 5 

Scombridae 1      1 1      

Scorpaenidae 1          1   

Serranidae 11 1 5 2 1 2 3 3 3 1 1 1 3 

Siganidae 4 1 2 1 1 4 2 1 2 1 1 3 2 

Synodontidae 1    1 1      1 1 

Tetraodontidae 3 1 2   2       1 

Zanclidae 1  1  1 1 1 1  1 1 1 1 
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Fig. 2. Total betadiversity (Sorensen), turnover and nestedness components of reef fishes 

at Morowali MPA 

 

These patterns in beta diversity of reef fish at Morowali MPA are also aligned with 

community structure. The reef fish composition at family level showing a high abundance 

was that recorded for Balistidae, Pomacentridae, Caesionidae, Carangidae, Acanthuridae, 

Chaetodontidae, Labridae, Scombridae, Serranidae, Mullidae, Scaridae, Siganidae, and 

Plotosidae (Fig. 3A). In terms of family composition, there are 4 study sites with the 

similar community structure of reef fish with the highest abundance as Family Balistidae, 

St02, St03, St04 and St05 were located in close geographical proximity (Fig. 1). 

Interestingly, the other study sites which also distributed in adjacent areas and shared a 

similar family composition but different from the previous group were Padei Darat Island 

(St06) and Menui Island (St10) (Fig. 3A). However, Tiga Island (St09) showed a unique 

fish composition, which is the only study site with different fish abundance, dominated 

by the family Labridae and followed by Caesionidae, Pomacentridae, and Acanthuridae. 

This result of community structure based on relative abundances of reef fish was also 
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consistent with the clustering analysis of species composition that showed dissimilarity 

between study sites was high, about 75% (Fig. 3C). The group of study sites with the low 

dissimilarity (< 50%) was Samarengga I (St02), Samarengga II (St03), Koikoila (St04), 

and Padei Laut (St05), wherein family Balistidae was the highest abundance at those 

study sites. However, the other study sites revealed the dissimilarity of reef fish species 

composition was high with the most abundance was family Pomacentridae, likewise the 

most dissimilarity between study sites was St01 and St09 (Panimbawang and Tiga 

island), about 75% with high abundance of Pomacentridae and Labridae, respectively. 

 

 
 

Fig. 3. (A) Relative abundance of reef fish families across study sites; (B) Species 

accumulation curve of reef fishes in Morowali MPA; (C) Cluster analysis chart of fish 

species composition across study sites based on present-absence data 

 

2. Spatial variation of fish and size distribution 

Fish biomass was reported high at study sites St02 to St05, despite being dominated 

by small size individuals (Fig. 4A-B), these indicated the dominance of a few taxa of fish. 

Study site St02 documented fish families such as Balistidae, Caesionidae, and Carangidae 

contributed most to biomass, particularly Odonus niger, Pterocaesio tile, and Elagatis 

bipinnulata. The abundance of these fishes reached high, although E. bipinnulata 

(Carangidae) was less abundant, its large body size contributes substantially to the overall 
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fish biomass. The fish domination that contributed to the high biomass at St03 was 

recorded for O. niger, Caranx ignobilis, and P. tile, while at St04 was O. niger and P. 

tile; however, St05 only documented O.niger which was dominant within high biomass. 

Odonus niger prefers steep reef drop-offs areas such as Samarengga (St02 and St03), 

Koikoila (St04), and Padei Islands (St05), wherein the density was 736 to 1791 

individuals per 500m². These dominant fish have characteristics as schooling behavior, 

which aggregate to enhance foraging efficiency and reduce predation risk. 

 

 
Fig. 4. Distribution of reef fishes across 12 study sites in Morowali MPA based on (A) 

Biomass of fish each family and number of individuals; (B) Number of individuals in 

each size class of reef fishes; and (C) Trophic group distribution of reef fish across study 

sites 

 

Among the 12 study sites in Morowali MPA, 5 study sites were reported to exhibit 

relatively higher fish abundances, dominated by small size (< 20cm), possibly indicating 

successful recruitment or past fishing pressure. Based on Morowali MPA zones, these 
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sites (St02, St03, St04, St05, and St06) are not take zones (Fig. 1), and the fish 

communities were dominated by zooplanktivorous trophic group (Fig. 4C), suggesting 

abundance of zooplankton which might be driven by the southeast monsoon event in this 

region. The high number of small fish sizes within zooplanktivorous trophic groups may 

reflect ecological processes such as plankton fluctuations, high turnover rates of diversity, 

and trophic specialization. Moreover, the high abundance of O. niger is likely linked to 

decline in seawater temperatures during the southeast monsoon (June – August) in Banda 

Sea. This season encourages upwelling processes, which can enrich nutrients and provide 

food resources, coupled with environmental conditions could be suitable to stimulate fish 

spawning activities. During sampling, O. niger was mostly documented in juvenile stages 

with relatively uniform size under 15cm. At 3 study sites (St02, St05, and St06), over 

65% of the fish ranged ≤ 10cm, with some individuals reaching up to 40cm at St02. 

Additionally, most fish at St03 and St04 ranged between 11 - 20cm (≥ 80%) (Fig. 4B). 

Small fish (≤ 10cm) were generally from Balistidae, Pomacentridae, and Labridae 

families, while the larger sized (21-40 cm) was composed by target fish groups such as 

trevallies (Carangidae), snapper (Lutjanidae), fusilier (Caesionidae), and parrotfish 

(Scaridae). 

 

3. Relationship between benthic substrate and reef fish 

The benthic compositions showed a variation percent cover, while the most benthic 

substrates (> 20%) among study sites were non-acropora (NAC) and followed by dead 

coral (DC). The benthic substrates of NAC and DC were reported with the high percent 

coverages at 7 and 3 study sites, respectively (Fig. 5A). Moreover, a benthic substrate 

with high percent cover documented only at one study site was soft coral (27.1%) at St04, 

fleshy seaweed (22.1%) at St11, sand (21.1%) at St01, and rubble (25.8%) at St07. The 

study site of St05, St06, St08, and St12 which was dominated by NAC, likewise, St04 by 

DC (22.1%), and St09 by DCA (26.9%). Furthermore, Pearson correlation analysis 

showed that there was no correlation between hard coral percent cover including AC and 

NAC with species richness of reef fish (r = 0.16, P = 0.62), nor between hard coral 

percent cover and fish biomass (r = 0.049, P =0.88) (Fig. 5B-C). The Non-metric 

Multidimensional Scaling (nMDS) ordination plot presented the variation of 10 highest 

abundance reef fish at Morowali MPA, wherein suggesting ecological associations with 

the benthic percent cover, stress = 0.079 (Fig. 6). Fish families such as Chaetodontidae, 

Labridae, Siganidae, and Serranidae are strongly associated with AC, NAC, FS and DC, 

respectively. The vector orientation of sand (S) and rubble(R) are linked to Scaridae and 

Acanthuridae, and also Pomacentridae. 

The patterns observed indicate fish assemblages, particularly Chaetodontidae and 

Siganidae. The distribution of Chaetodontidae revealed a positive association with AC 

indicating that fish tends to occur as attributed by acropora percent cover (Fig. 6). 

Chaetodontidae are known as bio-indicator for coral health where the fish majority have a 



Faricha et al., 2025 2228 

feeding habit corallivore by consuming coral polyps. The high species richness of 

Chaetodontidae is documented at St05, and the lowest was at St01 (Table 1). The only 

species that found at St01 was Chaetodon lunulatus with obligate corallivore feeding 

habits, while benthic substrate in this study sites was dominated by percent cover of 

NAC, S, and R (22.2%, 21.1%, and 18.6%, respectively), however, domination of benthic 

substrates at St05 was NAC, DCA, and DC (28.3%, 16.1%, and 14.9%, respectively). 

Meanwhile, the highest number of individuals was recorded at St03 and St02 although 

their species richness was low (133 Ind, 5 species; and 104 Ind, 8 species, respectively), 

suggesting that structural complexity of Chaetodontidae may favor abundance of 

particular taxa, such as Hemitaurichthys polylepis, which is documented in schooling 

formation at reef slopes and has attributes as planktivore. This align with those study sites 

which is reef slope types, wherein the benthic substrate was dominated by DC, AC, and 

DCA (22.1%, 21.3%, and 19.9%) and (22.1%, 18.2%, and 17.0%) at St03 and St02, 

respectively. Furthermore, Siganidae revealed 4 species documented across study sites 

and has relations to fleshy seaweed (Fig. 6). Siganus canaliculatus recorded exclusively 

at St04 and St05, and reported a high number of individuals in which the fish exhibits 

schooling behavior, however FS percent cover was 4.5% and 0% for St04 and St05, 

respectively. The species of Siganidae with widespread distribution was Siganus vulpinus 

(except at St04 and St10), moreover, Siganus doliatus and Siganus puellus were recorded 

at 4 and 5 study sites, respectively. These findings highlight that fish diversity and 

abundance are not determined by a single benthic substrate, but rather by the 

complementary roles by variation of benthic substrate compositions. 
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Fig. 5. Benthic substrate composition among study sites (A), and Pearson correlations 

among benthic substrate of hard coral, including acropora (AC) and non-acropora (NAC), 

and reef fish species richness (B) and fish biomass (C) 
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Fig. 6. Non-metric multidimensional scaling based on Bray Curtis, distance among 

benthic substrate and 10 reef fishes most abundant in study areas 

 

 

DISCUSSION 

 

High species turnover (βsor) among study sites indicate strong spatial structuring of 

reef fish assemblages, with site differences driven by species presence of rather than 

abundance variations. This pattern aligns with habitat mosaic and environmental 

gradients (depth, current exposure, and benthic complexity) that promote species 

replacement rather than gains or losses of species (Edgar et al., 2014; Medina et al., 

2021). Near-zero βsne in many pairs (e.g., St04 – St10, St07 – St08, St07 – St11) suggest 

sites harbor distinct species groups, highlighting the importance of diverse habitat 

representation in conservation planning. Elevated nestedness in pairs such as St02 – St03 

and  St03-St05) likely reflect richness gradients or partial faunal subsets, potentially 

influenced from environmental factors (turbidity, marginal reef condition, or depth-

limited assemblages). Localized disturbance or fishing pressure might selectively impact 

on sensitive taxa, while variations in sampling effort or environmental conditions could 

influence species detectability. Distinguishing between these factors requires 

comprehensive site metadata and standardized sampling protocols. 

Reef fish assemblage structuring at Morowali MPA is likely influenced by habitat 

heterogeneity and topography, with secondary effects from human pressure and spatial 

proximity. This aligns with previous studies showing habitat and topography as key 

predictors of fish abundance, biomass, and species richness (García-Charton et al., 
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2004; Darling et al., 2017; Fukunaga et al., 2023; Bellwood & Tebbett, 2024). The 

dominance of Odonus niger at sites St02 – St05 referring steep slopes, reflect 

environmental sorting mechanisms driven by topography and current/exposure regimes. 

This case of fish–habitat coupling around Samarengga, Koikoila, and Padei supports 

previous findings of strong fish–habitat coupling and schooling behavior (Wong et al., 

2018; Pimentel et al., 2022). Topographic features like steep slopes, crevices, and 

variable substrate create microhabitats that support higher diversity and specialized 

behaviors in reef fishes. Complex topography increases available shelter, food resources, 

and refugia, which are critical for both resident and transient species. 

The high abundance of O. niger is likely influenced by seasonal oceanographic 

processes, particularly the southeast monsoon (June-August) in the Banda Sea. This 

period induces  seawater cooling and increased vertical mixing, enhancing upwelling and 

nutrient enrichment (Wyrtki, 1961; Gordon & Fine, 1996; Pusparini et al., 2017), 

which boost planktonic productivity and food availability, those could promote fish 

aggregations and spawning (Thiaw et al., 2017; Kesaulya et al., 2023). The prevalence 

of juvenile O. niger (<15cm) suggests that the area may serve as a recruitment ground, 

with over 65% of individuals under 10cm at  St02, St05 and St06. in contrast, St03 and 

St04 had predominantly medium-sized individuals (11– 20cm; ≥80%), indicating 

possible ontogenetic habitat partitioning. Small-bodied size classes (≤ 10cm) were mainly 

composed of Balistidae, Pomacentridae, and Labridae, groups typically associated with 

high site fidelity and habitat dependency. Larger-bodied fishes (21- 40cm) included 

ecologically and economically important target taxa such as Carangidae, Lutjanidae, 

Caesionidae and Scaridae. This ontogenetic and taxonomic partitioning highlights the 

role of reef structural heterogeneity in supporting both juvenile nursery grounds and adult 

foraging habitats (Darling et al., 2017). Seasonal oceanographic variability, particularly 

monsoon-driven upwelling, interacts with reef geomorphology to shape fish community 

dynamics, productivity, and recruitment (Wong-Ala et al., 2018; Eisele et al., 2021). 

A second cluster of adjacent sites (e.g., Padei Darat, St06; Menui, St10) displayed 

similar family-level composition, while Tiga Island (St09) was unique, dominated by 

Labridae, followed by Caesionidae, Pomacentridae, and Acanthuridae. High  dissimilarity 

(~75%) and a small subset of low-dissimilarity sites (Samarengga I, II, Koikoila, Padei 

Laut; <50%), with Balistidae dominance suggest differences stem from species 

replacement across environmental gradient rather than species richness (Figure 3C). High 

beta diversity often results from species replacement along gradients, particularly in 

system woth strong environmental factor such as reef structure and water quality (López-

Delgado et al., 2020; Camara et al., 2023). Reef structure patterns in Morowali MPA 

revealed non-acroporid hard corals (NAC) and dead corals (DC) as dominant substrates, 

but no significan relationshop was found between coral cover and fish richness or 

biomass, suggesting more nuanced influences such as habitat complexity, functional 
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groups and life history traits (Chong-Seng et al., 2012; Fukunaga et al., 2020; Pombo-

Ayora et al., 2020). 

The nMDS ordination revealed ecological linkages, with Chaetodontidae richness 

tracked closely with Acropora percent cover, highlighting their role as bioindicators of 

reef health (Pratchett et al., 2008; Graham & Nash, 2013; Fukunaga et al., 2020). At 

St05, where Acropora dominated, species richness was highest, while St01 with NAC, 

sand, and rubble hosted only Chaetodon lunulatus, a generalist species. The absence of 

specialized corallivores at St01 show how coral loss erodes butterflyfish assemblages 

(Berumen & Pratchett, 2006; Richardson et al., 2018). At St02 and St03, despite lower 

Chaetodontidae richness due to extensive DC, AC, and DCA, planktivorous 

Hemitaurichthys Polylepis aggregated in current-exposed slope habitats (Cole et al., 

2008; Agudo-Adriani et al., 2019). Siganidae, notably Siganus canaliculatus exhibited 

clear associations with fleshy seaweeds (FS), showing that localized food resources can 

drive fish abundances, regardless of broad-scale benthic cover. Other siganid species (S. 

vulpinus, S. doliatus, and S. puellus) displayed dietary flexibility and habitat generality, 

highlighting their role in reef resilience by controlling macoralga (Hoey et al., 2013). 

 These findings suggest that fish assemblage structure is shaped by both coral cover and 

substrate composition, with reef geomorphology contributing to community dynamics 

(Wilson et al., 2006; Graham & Nash, 2013). 

Evidence from other Indo-Pacific MPAs supports this interpretation. In Wakatobi, 

Southeast Sulawesi, reef fish diversity was influenced by live coral cover, reef slopes 

complexity and exposure gradients, with rubble and dead coral providing shelter for 

juveniles and crypto benthic fish (Ahmadia et al., 2012). In Raja Ampat, West Papua, 

fish assemblages were strongly associated with habitat mosaics including macroalgae, 

rubble, sponges and hard corals (Fidler et al., 2021). On the Great Barrier Reef, fish 

community composition remained stable even with coral cover declined, as non-coral 

substrates like turf algae and rubble supported herbivores and planktivores (Wilson et al., 

2006). These studies suggest that benthic diversity, rather than coral cover alone, support 

reef fish resilience across the Indo-Pacific. Therefore management strategies focused 

solely on maximizing live coral cover may overlook the ecological roles of non-coral 

substrates such as soft coral, fleshy seaweed and macroalgae. While Acropora remain 

vitals for obligate corallivores such as Chaetodontidae, other fish families thrive in varied 

benthic environments, particularly where structural complexity and food availability are 

maintained. For Morowali MPA, this highlights the need to conserve both live coral and 

diverse benthic habitat substrates that sustain reef fish assemblage, ensuring ecosystem 

functions like herbivory, planktivory, and predation to support reef resilience amid 

environmental change. 
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CONCLUSION 

 

The reef fish assemblages in Morowali MPA are marked by high species richness 

(206 species, 35 families) and strong spatial structuring, primarily driven by species 

turnover rather than nestedness. Sites like Padei Laut (St05) and Samarengga I (St02) 

exhibited the highest species richness, while Tiga Island (St09) had a unique composition 

dominated by Labridae, Caesionidae, Pomacentridae, and Acanthuridae. The 

Pomacentridae family was the most species-rich, and widespread families included 

Acanthuridae, Chaetodontidae, Labridae, Pomacentridae, and Siganidae. Fish biomass 

was at its highest at St02, St03, St04, and St05, with species like Odonus niger and 

Pterocaesio tile dominating, exhibiting schooling behavior and preferring steep reef 

slopes. The abundance of juvenile O. niger might affected by oceanographic links, 

particularly upwelling during the southeast monsoon. Size distributions showed 

dominance of smaller fish (≤ 10cm) at several sites, with larger species (21- 40cm) found 

in herbivorous and carnivorous groups. Benthic substrate composition, with non-

acroporid corals (NAC) and dead corals (DC) being dominant, showed no significant 

relationship with fish species richness or biomass, indicating that benthic complexity, 

rather than coral cover alone, supports diverse fish communities. The nMDS ordination 

revealed associations between fish families and specific benthic substrates such as 

Acropora and macroalgae, underscoring the importance of habitat heterogeneity for 

sustaining reef fish diversity. These findings highlight the need for conservation 

strategies that preserve a range of benthic habitats to ensure reef resilience. 
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