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INTRODUCTION  

 

Coral reefs are among the most successful and diverse ecosystems on Earth; 

nevertheless, they are also among the most endangered. The structure and function of 

coral reef ecosystems worldwide are significantly affected by overfishing, pollution, 

sedimentation, eutrophication, habitat modification, and disease—all of which are further 

exacerbated by climate change (Jackson et al., 2001; Pandolfi et al., 2003; Bellwood et 

al., 2004). 

The morphology and feeding strategies of labrids, which are among the most 

prevalent and functionally important inhabitants of coral reef ecosystems, exhibit 

remarkable variation (Wainwright et al., 2004; Bellwood et al., 2006; Price et al., 

2011). The Labridae family, commonly referred to as wrasses, is one of the most 

widespread and visible fish groups on tropical reefs. Even within a single species, 

wrasses show an impressive range of colors, shapes, and sizes, often displaying notable 

variation (Parenti & Randall, 2011). 

Members of the Labridae family engage in a wide range of trophic behaviors and 

occupy key ecological roles on reefs as planktivores, herbivores, durophages, piscivores, 
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The current study aimed to amplify and analyze the sequences of the 

tRNA-Thr (trnT) gene, tRNA-Pro (trnP) gene, and the control region in five 

species of the family Labridae: Cheilinus lunulatus, Cheilinus abudjubbe, 

Hemigymnus fasciatus, Hemigymnus melapterus, and Thalassoma rueppellii. The 

resulting sequences from these five labrid species were submitted to 

GenBank/NCBI under accession numbers PP723722–PP723726. The average 

nucleotide frequencies of adenine (A), thymine (T), cytosine (C), and guanine 

(G) in the partial sequence of the trnT gene were 16.35%, 30.77%, 33.65%, and 

19.23%, respectively. In the complete sequence of the trnP gene, the nucleotide 

frequencies were 33.33%, 27.35%, 25.64%, and 13.68%, respectively. For the 

complete sequence of the control region, the frequencies were 32.27%, 28.72%, 

23.81%, and 15.2%, respectively. 
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ectoparasite feeders, and consumers of other reef-associated invertebrates (Randall, 

1983; Lieske & Myers, 1994; Floeter et al., 2007; Khalaf-Allah, 2013; AL-Zahaby, 

2015; Sampaio et al., 2016; Pradhan & Mahapatra, 2017). 

Nearly all eukaryotic cells contain mitochondria—essential and energy-producing 

organelles with their own genetic material (Margulis, 1970; Sato & Sato, 2013). The 

mitochondrial (mt) genome of Metazoa serves as an excellent model system for 

evolutionary genomic studies (Gissi et al., 2008). Its small size allows for the systematic 

investigation of genomic features such as gene order, gene structure, genome size, and 

gene count (Wu et al., 2014). In vertebrates, the mitochondrial genome is a circular, 

compact, double-stranded molecule (16–17 kb), usually containing 13 protein-coding 

genes, 22 transfer RNA genes, two ribosomal RNA genes, and two non-coding regions—

the control region (CR) and the origin of L-strand replication (OL) (Satoh et al., 2016). 

The mitogenome contains abundant genetic information and offers advantages 

such as rapid evolution due to haploid and matrilineal inheritance, a relatively low 

recombination rate, and efficient amplification. These features make it especially useful 

in resolving previously unresolvable phylogenetic relationships, particularly in cases of 

rapid radiation (Moore, 1995; Breton et al., 2007; Dong et al., 2018; Liu et al., 2023). 

The control region (CR), a non-coding portion of the mitochondrial genome, 

evolves two to five times faster than coding regions (Meyer, 1993). Due to its high 

mutation rate, the CR has proven valuable in addressing intraspecific evolutionary 

questions (Brown et al., 1986; Palumbi, 1996). The D-loop, the most variable part of 

mtDNA, exhibits substantial genetic diversity even among individuals of the same 

species. Haplotype analysis of the D-loop region is a useful method for identifying 

genetic diversity, which is critical for species conservation (Najjar Lashgari et al., 

2017). 

Several studies on fish mitochondrial genomes have found 22 tRNAs, of which 

eight (Gln, Ala, Asn, Cys, Tyr, Ser, Glu, and Pro) are encoded on the light strand, while 

the remaining 14 are encoded on the heavy strand. These tRNAs typically exhibit a 

cloverleaf secondary structure, except for tRNA-Ser, which lacks the entire 

dihydrouridine (D) stem (Qi et al., 2013; Zhang et al., 2021; Patil et al., 2023; Zhou et 

al., 2024). 

The present study aimed to amplify and evaluate the sequences of the tRNA-Thr 

(trnT) gene, tRNA-Pro (trnP) gene, and the control region in selected species of the 

Labridae family. These sequence data will serve as a valuable genomic resource for 

future studies on molecular genetic variation in Labridae. 

MATERIALS AND METHODS  

 

Samples collection 

Following their collection from the Red Sea, five species of the family Labridae 

(Cheilinus lunulatus, Cheilinus abudjubbe, Hemigymnus fasciatus, Hemigymnus 

melapterus, and Thalassoma rueppellii) were morphologically identified (Randall, 1982; 
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Akel & Karachle, 2017). Prior to genomic DNA extraction, individual muscle tissues 

were isolated and stored at −20 °C. 

DNA isolation and PCR amplification 

Genomic DNA was extracted from the stored muscle tissues using a Biospin 

extraction kit, following the manufacturer’s instructions. PCR amplification of the target 

regions was performed using the primers: 

• Forward (F): AGCACCGGTCTTGTAAACCG 

• Reverse (R): GGGCTCATCTTAACATCTTC, as described by Cheng et al. 

(2012). 

Each PCR reaction was carried out in a 50μL volume consisting of 1.0μL of 

genomic DNA, 1.0μL of each primer (forward and reverse), and 25μL of PCR master 

mix. The thermal cycling protocol included: 

• Initial denaturation at 94°C for 5 minutes 

• 30 cycles of: 

o Denaturation at 94°C for 1 minute 

o Annealing at 54°C for 1 minute 

o Extension at 72°C for 1 minute 

• Final extension at 72°C for 5 minutes. 

PCR products were visualized using 1.5% agarose gel electrophoresis stained with 

ethidium bromide. 

 

PCR product sequencing and sequence alignment 

Each species produced a single distinct band on the agarose gel following PCR 

amplification. DNA sequencing was conducted by Macrogen (Seoul, South Korea). The 

sequences of the tRNA-Thr (trnT) gene, tRNA-Pro (trnP) gene, and control region were 

subsequently submitted to GenBank/NCBI to obtain accession numbers. 

Multiple sequence alignment was performed using MUSCLE (Edgar, 2004) 

under default parameters, implemented in MEGA version 11.0.11 (Tamura et al., 2021). 

RESULTS  

 

The tRNA-Thr (trnT) gene, tRNA-Pro (trnP) gene and control region sequences in 

five species of labrid fishes were all inserted into the GenBank/NCBI with accession 

numbers (PP723722 - PP723726). 

Sequence variability utilizing the tRNA-Thr (trnT) gene's partial sequence 

The lengths of partial sequence of tRNA-Thr (trnT) gene in the five labrid species 

(Cheilinus lunulatus, Cheilinus abudjubbe, Hemigymnus fasciatus, Hemigymnus 

melapterus and Thalassoma rueppellii) ranged from 12 and 30bp. The average 

frequencies of the nucleotides were 16.35, 30.77, 33.65, and 19.23% for adenine (A), 

thymine (T), cytosine (C), and guanine (G), respectively (Table 1). Among the 30bp that 
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comprised the final alignments, there were 3, 7, and 21 conserved, parsimony informative 

and variable sites, respectively (Fig. 1). 

Table 1. Nucleotide frequencies of the tRNA-Thr partial sequence (trnT) in five labrid 

fish species 

  
Base pair length 

A T C G A + T 

Cheilinus lunulatus  24 20.83 33.33 25 20.84 54.16 

Cheilinus abudjubbe  12 0 33.33 58.33 8.34 33.33 

Hemigymnus fasciatus  30 20 26.67 26.67 26.66 46.67 

Hemigymnus melapterus  24 20.83 29.17 29.17 20.83 50 

Thalassoma rueppellii  14 7.14 35.71 50 7.15 42.85 

Avg. - 16.35 30.77 33.65 19.23 47.12 

 

 
 

Fig. 1. The partial sequence alignment of tRNA-Thr (trnT) gene in in five labrid fish 

species 

 

Sequence variability utilizing the tRNA-Pro (trnP) gene's complete sequence 

The lengths of complete sequence of tRNA-Pro (trnP) gene in the five labrid 

species (Cheilinus lunulatus, Cheilinus abudjubbe, Hemigymnus fasciatus, Hemigymnus 

melapterus, and Thalassoma rueppellii) ranged from 69, and 71bp. The average 

frequencies of the nucleotides were 33.33, 27.35, 25.64, and 13.68% for adenine (A), 

thymine (T), cytosine (C), and guanine (G), respectively. In all samples the A+T ratio is 

greater than the C+G ratio (Table 2). Among the 71bp that comprised the final 

alignments, there were 13, 17, and 54 parsimony informative, variable, and conserved 

sites, respectively (Fig. 2). 

Table 2. Nucleotide frequencies of the tRNA-Pro complete sequence (trnP) in five labrid 

fish species 

 

Base pair length A T C G A + T 

Cheilinus lunulatus  71 32.39 22.54 28.17 16.9 54.93 

Cheilinus abudjubbe  71 30.99 22.54 29.57 16.9 53.53 

Hemigymnus fasciatus  70 35.71 31.43 22.86 10 67.14 

Hemigymnus melapterus  70 35.71 31.43 22.86 10 67.14 

Thalassoma rueppellii  69 31.88 28.99 24.64 14.49 60.87 

Avg. - 33.33 27.35 25.64 13.68 60.68 
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Fig. 2. The complete sequence alignment of tRNA-Pro (trnP) gene in in five labrid fish 

species 
 

 

Sequence variability utilizing the control region gene's complete sequence 

The lengths of complete sequence of control region in the five labrid species 

(Cheilinus lunulatus, Cheilinus abudjubbe, Hemigymnus fasciatus, Hemigymnus 

melapterus, and Thalassoma rueppellii) ranged from 837, and 957 bp. The average 

frequencies of the nucleotides were 32.27, 28.72, 23.81, and 15.2% for adenine (A), 

thymine (T), cytosine (C), and guanine (G), respectively. In All samples the A+T 

attribution is great than the C+G attribution (Table 3). Among the 989bp. that comprised 

the final alignments, there were 261, 471, and 512 parsimony informative, variable, and 

conserved sites, respectively (Fig. 3). 

 

Table 3. Nucleotide frequencies of the control region sequence in five labrid fish species 

  Base pair length A T C G A + T 

Cheilinus lunulatus 957 33.02 28.42 22.57 15.99 61.44 

Cheilinus abudjubbe  957 33.34 27.69 22.15 16.82 61.03 

Hemigymnus fasciatus  848 31.96 28.42 25.47 14.15 60.38 

Hemigymnus melapterus  848 31.96 28.42 25.47 14.15 60.38 

Thalassoma rueppellii  837 30.82 30.82 23.78 14.58 61.64 

Avg. - 32.27 28.72 23.81 15.2 60.99 

 

DISCUSSION 

 

Mitochondrial genomes have been widely used in evolutionary and population 

genetics studies due to their high copy number within cells, ease of extraction compared 

to nuclear DNA, small genome size, and rapid rate of mutation accumulation (Moritz et 

al., 1987; Sotelo et al., 1993; Unseld et al., 1995). Several distinctive features of 

mitochondrial DNA—such as the absence of introns, limited recombination, uniparental 

inheritance (primarily maternal in animals), and accelerated evolutionary rate—further 

enhance its utility (Galtier et al., 2009; Tiwary et al., 2016). The analysis of nucleotide 

variation forms the basis for employing genetic markers in studies of fish biodiversity 

(Noikotr et al., 2013; Saad & Abd El-Sadek, 2017; Saad, 2019).  
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Fig. 3. The complete sequence alignment of control region gene in in five labrid fish 

species 

 

The trnT gene was located on the heavy strand, while the trnP gene was located on 

the light strand (Qi et al., 2013; Singh et al., 2023; Wang et al., 2023; Zhang et al., 

2023). The lengths of the complete trnP gene sequence in the five labrid species 
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(Cheilinus lunulatus, Cheilinus abudjubbe, Hemigymnus fasciatus, Hemigymnus 

melapterus, and Thalassoma rueppellii) ranged from 69 to 71bp. This agrees with the 

findings of Qi et al. (2013), who reported that the 22 tRNA genes of Cheilinus undulatus 

range in length from 68 to 77bp. In all samples, the A+T content of the trnP gene was 

higher than the C+G content, consistent with the findings of Zhang et al. (2023), who 

reported that the A+T proportion in the 22 tRNA genes was 55.6%. 

In vertebrates, the heavy and light strands of mitochondrial DNA each contain 

regulatory regions that form stable stem-loop structures (Pereira, 2000). The D-loop 

region is the primary non-coding segment of mitochondrial DNA responsible for 

transcription and replication of the heavy strand (Sbisà et al., 1997; Shadel & Clayton, 

1997). According to Bourlat et al. (2009), the D-loop region in vertebrates is typically 

situated between the trnP and trnF genes. In their study of Cheilinus undulatus, Qi et al. 

(2013) found that the arrangement and gene order of the mitochondrial genome matched 

that of other teleost fish. They reported a 903bp control region (D-loop) located between 

tRNA-Pro and tRNA-Phe, accounting for 5.44% of the total mitochondrial genome. 

The control region (CR) shows notable variation in fragment size between species 

and individuals, marked divergence in primary nucleotide sequences, and a high rate of 

nucleotide substitution (Zhang & Hewitt, 1997). This is consistent with our results, 

which show that the control region lengths of the five Labridae species ranged from 837 

to 957bp. 

The control region—often referred to as the A+T-rich region—plays a critical role 

in the initiation of mitochondrial genome transcription and replication (Wolstenholme, 

1992; Zhang & Hewitt, 1997). In all samples examined in this study, A+T content 

exceeded C+G, consistent with findings from multiple other studies. Singh et al. (2023) 

reported that the D-loop region had an A+T content of 62.96%, while Zhang et al. (2023) 

observed up to 66.99% A+T content in the control region, making it the most A+T-rich 

part of the mitochondrial genome—characteristic of animal mitochondrial DNA (Zhang 

& Hewitt, 1997; Satoh et al., 2016). Similarly, Aziz et al. (2025) found that certain 

catfish species from the Nile River in Egypt also exhibited higher A+T than C+G content 

in their mitochondrial D-loop. 

Numerous studies have examined the mitochondrial genomes of Labridae species to 

understand their evolutionary relationships. Westneat and Alfaro (2005) conducted a 

phylogenetic analysis of various labrid fishes using nuclear markers (RAG2 and 

Tmo4C4) and mitochondrial genes (12S rRNA and 16S rRNA). Arnal et al. (2006) 

constructed a phylogeny using partial 12S rRNA sequences from wrasse species collected 

from the Atlantic, Mediterranean, and Indo-Pacific regions. Additional studies have 

employed complete mitochondrial genomes in various labrid species, including Cheilinus 

undulatus (Qi et al., 2013), Halichoeres nigrescens (Shi et al., 2018), Thalassoma lunare 

(Yukai et al., 2019), Pseudocheilinus hexataenia (Nam et al., 2022), and Cheilinus 

trilobatus (Wang et al., 2023).  
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CONCLUSION 

 

In this study, primers were used to successfully amplify the trnT gene, trnP gene, 

and control region in five Labridae species. The gene arrangement followed a conserved 

order: trnT, trnP, and then the control region. The resulting sequence data provide a 

valuable genomic resource for future research on molecular genetic variation, 

phylogenetic relationships, and evolutionary patterns within the Labridae family. 
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