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INTRODUCTION  

Seabass (Lates calcarifer), commonly called Barramundi, is a commercially 

important species widely distributed across the Western Indo-Pacific region, extending 
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Seabass (Lates calcarifer) is a fish with high economic value and great 

demand in the community, making it a promising species for continued 

development. The seabass has diurnal habits, meaning it will be active during the 

day or when exposed to light. Environmental manipulation techniques can 

improve fish growth and survival by regulating light intensity.  It is suspected 

that exposure to blue light can positively affect growth and survival and can 

optimize physiological responses compared to other colored light treatments. 

This research was conducted at the Fisheries and Marine Resources Exploitation 

Laboratory, Faculty of Fisheries and Marine Sciences, Brawijaya University, 

from January to February 2024. The method used was a Completely 

Randomized Design (CRD), with three different light color treatments: red, blue, 

and green. The observed parameters are Specific Growth Rate (SGR), Survival 

Rate (SR), and Water Quality. The results show that blue light treatment 

significantly affects the growth and survival of seabass juveniles. The highest 

Specific Growth Rate for weight was recorded at 29±0.09% and for length at 

32±0.04%, with a survival rate of 100%. The administration of blue light 

treatment was found to support the physiological and feeding behavior of the 

fish optimally. Meanwhile, red and green light treatments showed lower 

performance in Specific Growth Rate of weight, with 22 ± 0.05% and 18 ± 

0.15% respectively. For the Specific Growth Rate (SGR)of length, the red color 

treatment was 30 ± 0.07%, the green color was 22 ± 0.05%, and the survival rate 

(SR) for red light treatment was 93% and the green color was 80%. Based on 

these results, blue lighting is recommended as an environmental management 

strategy to improve the productivity of seabass juveniles in the early 

maintenance phase. 
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from Southeast Asia to Papua New Guinea and Northern Australia. This species exhibits 

diurnal and demersal behavior, being predominantly active during daylight hours or 

under illuminated conditions (Wirasakti et al., 2021). As an euryhaline species, Seabass 

can thrive and reproduce in both freshwater and marine environments, making it highly 

adaptable for diverse aquaculture systems (Vij et al., 2020; Santika et al., 2021). In 

Indonesia, production in 2020 reached 492,267 metric tons, while market demand was 

estimated at 522,267 metric tons, indicating a significant production gap and highlighting 

the potential for expansion of Seabass aquaculture. In addition to Indonesia, Seabass is 

also cultured in several other Asian countries, including Thailand, Malaysia, Singapore, 

Hong Kong, and Taiwan, as well as in non-Asian regions such as the United States and 

Australia (Kusumanti et al., 2022). 

The aquaculture of Seabass (Lates calcarifer) comprises three main phases: hatchery, 

nursery, and grow-out (Gilsinan et al., 2023). The success of the entire production cycle 

is strongly influenced by the consistent supply of high-quality and sufficient juvenile 

stock (Pape & Bonhommeau, 2013; Moehammad et al., 2024). The nursery phase 

represents a critical period during which fish are highly susceptible to parasitic infections 

that can lead to tissue damage and organ dysfunction, underscoring the importance of 

early health management. High mortality during this stage can significantly reduce 

overall production yields, as survival rates directly determine output. Juvenile mortality is 

particularly concerning due to the immature immune systems of young fish and their 

vulnerability before reaching reproductive maturity (Daulay et al., 2022; Kurniawan et 

al., 2025). Survival during the nursery phase is influenced by several key factors, 

including the absence of intra-species competition, adequate feed availability, uniform 

stocking densities, and consistent fish size distribution (Eid et al., 2019; Nazlia et al., 

2021). 

One critical component in managing the nursery phase in aquaculture is the 

manipulation of environmental conditions in which fish are reared. Environmental 

manipulation techniques have been shown to enhance growth performance and survival 

rates by regulating light intensity (Boeuf et al., 1999). Fish species exhibit varying 

degrees of phototactic responses, and specific light intensities and wavelengths can 

directly or indirectly influence their behavior. Some species demonstrate adaptive 

responses to low-light environments, while others are better suited to brighter conditions 

(Boeuf et al., 1999; Garcia et al., 2011). Light manipulation technologies are recognized 

as effective tools for inducing physiological responses in fish by modifying the spectral 

quality (wavelength), quantity (intensity), and periodicity (photoperiod) of light exposure 

(Gunawan et al., 2022). 

Therefore, this study was designed to evaluate the effect of different light spectra on 

the growth performance and survival rate of juvenile Seabass (Lates calcarifer). It is 
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hypothesized that exposure to blue light will promote superior growth and survival 

compared to red and green light treatments. This hypothesis is supported by previous 

studies indicating that blue light can positively influence fish growth by stimulating 

feeding behavior and optimizing physiological responses (Kaewpranee et al., 2022; 

Sabrina et al., 2023). 

MATERIALS AND METHODS  

 

Sample 

A total of forty-five (45) Seabass (Lates calcarifer) juveniles, with an average initial 

weight of 7.26 ± 0.40 grams and a length of 7.84 ± 0.02 cm, were obtained from the Balai 

Perikanan Budidaya Air Payau (BPBAP), Situbondo, East Java, Indonesia. Fish were fed 

a commercial diet (Megami GR-2) at a feeding rate of 3% of their body weight per day. 

The research was conducted at the Fisheries and Marine Resources Exploitation 

Laboratory, Faculty of Fisheries and Marine Sciences, Brawijaya University, from 

January to February 2024. 

Experimental design 

This study employed a completely randomized design (CRD) consisting of three 

different light color treatments (red, blue, and green), each replicated three times, 

resulting in nine experimental units. The stocking density was set at five fish per 

container, and a Recirculating Aquaculture System (RAS) was used throughout the 

experiment. Three distinct light colors—red, blue, and green—were applied using 6-watt 

tube light (TL) lamps, each emitting 500 lumens and measuring 30 cm in length. Fish 

were reared in 30-liter capacity containers with dimensions of 45.8 × 33.2 × 26 cm. Each 

container was externally covered with a black shield to minimize ambient light 

interference. 

 

 
Fig. 1. Containers used for the light color treatment experiment on Seabass 

juveniles 

Research procedure 

The juvenile Seabass (Lates calcarifer) were maintained in black-colored containers 

with a capacity of 30 liters (dimensions: 45.8 × 33.2 × 26 cm) under a water salinity of 30 

ppt, which was monitored using a refractometer. The Recirculating Aquaculture System 
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(RAS) was equipped with a filtration system consisting of dacron, bioballs, and zeolite 

stones. Water circulation was ensured using a pump (SUNSUN JTP 10000 PROPAM). 

The fish were cultured for 21 days, with a stocking density of five individuals per 

container. Fish length and weight measurements were taken on days 0, 7, 14, and 21 

using a ruler and an electronic scale with a 0.01 g resolution (brand: Synmore). Manual 

siphoning of waste and uneaten feed was performed daily at 07:00 AM to maintain 

optimal water quality. 

Light distribution measurements were conducted using a Luxmeter (TASI TA8133) at 

designated points along the x, y, and z axes. The x-axis represented the container's width, 

the y-axis denoted the water depth, and the z-axis corresponded to the light intensity 

values recorded at each measurement point. Each point was spaced 10 cm apart. The 

collected data were processed and visualized using Surfer 10 software. 

 

Data analysis 

The parameters analyzed in this study included specific growth rate, survival rate, 

feed conversion ratio, and water quality metrics. Blood glucose and cortisol levels were 

first tested for normality using the Shapiro-Wilk test and for homogeneity using Levene’s 

test. Subsequently, data were analyzed using a one-way analysis of variance (ANOVA) at 

a significance level of P < 0.05. Meanwhile, water quality parameters and light intensity 

distribution were analyzed descriptively. All statistical analyses were conducted using 

SPSS version 23. 

 

Parameters observed 

1. Specific growth rate (SGR) 

Growth performance was evaluated using the Specific Growth Rate (SGR), which 

quantifies the rate of increase in body weight or length over time. The SGR was 

calculated using the formula from (Islama et al., 2023): 

SGR = [(ln Wt − ln W0) / t] × 100% 

Where: 

• SGR = Specific Growth Rate 

• Wt = Total weight or length at the end of the study 

• W0 = Initial weight or length at the beginning of the study 

• t = Duration of the experiment (days) 

2. Survival rate (SR) 

Survival performance was assessed using the Survival Rate (SR), representing the 

percentage of individuals that remained alive throughout the experimental period. The SR 

was calculated using the formula from (Dauda et al., 2018): 

SR (%) = (Nt / N0) × 100% 

Where: 

• SR = Survival Rate (%) 
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• Nt = Number of fish at the end of the study 

• N0 = Number of fish at the beginning of the study 

3. Water quality 

Water quality was monitored daily in the morning for parameters including 

temperature, salinity, pH, and dissolved oxygen (DO). Ammonia levels were measured 

on days 0, 7, 14, and 21 of the rearing period. The assessment was conducted based on 

the Indonesian National Standard (SNI 6145.3:2014) for Seabass (Lates calcarifer) 

aquaculture. The instruments used for each water quality parameter are summarized in 

Table (1). 

 

Table 1. Instruments used for water quality parameter measurements during the 

21-day rearing period of Seabass (Lates calcarifer) juveniles 
Parameter Instrument 

pH Lutron YK-2001 PHA 

Dissolved Oxygen (DO) Lutron YK-2001 PHA 

Temperature (°C) Lutron YK-2001 PHA 

Ammonia (ppm) Ammonia Test Kit (Brand MONITOR) 

RESULTS  

 

1. Light distribution on container 

Light distribution analysis was conducted to determine how much light intensity 

could disperse throughout the rearing container. The results (Fig. 1) showed that the red 

light treatment exhibited a distribution range of 7–185 lux, while the green and blue light 

treatments had narrower distributions of 65–80 lux and 7–88 lux, respectively. 

 
Red Lamp 

 
Green Lamp 

 
Blue Lamp 

Fig. 2. Spatial light intensity distribution in containers exposed to red, green, and blue 

LED lights. The contour maps display variations in light intensity across the rearing 

containers, where the x- and y-axis represent the container's length and width (in cm), 

respectively. Light intensity ranged from 7–185 lux in the red light treatment, 65–80 

lux under green light, and 7–88 lux under blue light. Each color treatment produced 

distinct spatial illumination patterns, potentially influencing fish behavior and growth 

performance through differential light exposure 

 

2. Specific growth rate 

The specific growth rate (SGR) based on body weight over the 21-day rearing period 

(Fig. 3) was highest in the blue light treatment, with a value of 29 ± 0.09%, followed by 
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the red light treatment at 22 ± 0.05%, and the green light treatment at 18 ± 0.15%. 

Similarly, the specific growth rate based on length over the same period (Fig. 2) was also 

highest under blue light at 32 ± 0.04%, followed by red light at 30 ± 0.07%, and green 

light at 22 ± 0.05%. 

 
Fig. 3. Specific growth rate (SGR) (%) by a. weight and; b. length of seabass 

(Lates calcarifer) juveniles under red, green, and blue light treatments 

Table 2. Specific Growth Rate (SGR) weight and length of Seabass (Lates 

calcarifer) juveniles reared under different LED light colors for 21 days 

  

 Treatment Lamp 
F-value 

(statistic) 
F-table Sig. 

Green Blue Red 

Specific 

Growth Rate 

Weight 22±0.05* 32±0.04* 30±0.07 4.56 3.40 0.021 

Height 18±0.15* 29±0.09* 22±0.05 3.53 3.40 0.045 

 Data are presented as mean ± standard error (n = 3). Asterisks (*) indicate statistically 

significant differences among treatments based on the LSD post hoc test at P < 0.05. 

Based on the analysis of variance (ANOVA) results (Table 2), the application of 

different LED light colors had a statistically significant effect on the Specific Growth 

Rate (SGR), both in terms of body weight and length of juvenile Seabass (Lates 

calcarifer) during the 21-day rearing period (P < 0.05). The calculated F-values for body 

weight (4.56) and length (3.53) exceeded the critical F-table value (3.40), indicating 

significant differences among the light treatments. 

Post hoc LSD analysis revealed that the blue light treatment significantly 

outperformed the other treatments in both weight and length parameters. Asterisks (*) on 

the mean SGR values for body weight (32 ± 0.04) and length (29 ± 0.09) under the blue 

light condition denote statistically significant differences compared to the green and red 

light treatments. In contrast, no significant differences were observed between the green 

and red light treatments, as indicated by the absence of asterisks on their respective mean 

values. 



Light Spectrum Manipulation Enhances Growth and Survival in Early Juvenile Seabass (Lates 

calcarifer) 
 

 

1977 

These findings suggest that blue spectrum light more effectively stimulates somatic 

growth and elongation in juvenile Seabass than red and green light. Therefore, blue 

lighting can be recommended as an optimal illumination strategy to enhance growth 

performance during the early rearing phase in intensive aquaculture systems. 

 

3. Survival rate 

The survival rate of Seabass juveniles (Fig. 4) was highest under the blue light 

treatment, reaching 100%, followed by 93% under red light and 80% under green light. 

Mortality occurred in one fish under the red light treatment and in four fish under green 

light. 

One of the primary contributing factors to mortality was elevated ammonia 

concentration. In this study, ammonia levels ranged from 0.25 to 0.5 mg/L, which 

exceeded the maximum threshold of 0.1 mg/L for juvenile Seabass culture, as specified 

by the Indonesian National Standard (SNI 6145.3:2014) for water quality parameters. 

However, the analysis of variance (ANOVA) indicated that the application of 

different light color treatments did not result in a statistically significant effect on the 

survival rate of Seabass juveniles (P > 0.05). 

 

 
Fig. 4. SR (%) by weight and length of Seabass (Lates calcarifer) juveniles 

under red, green, and blue light treatments 

3. Water quality 

To ensure optimal rearing conditions, water quality measurements were conducted to 

assess key parameters, including temperature, pH, dissolved oxygen (DO), and ammonia. 

The results of water quality monitoring over the 21-day rearing period for juvenile 

Seabass exposed to green, blue, and red light treatments are summarized in Table (3). 

According to the Indonesian National Standard for Seabass aquaculture (SNI 

6145.3:2014), the recorded temperatures ranged between 27.6°C and 28.8°C, pH values 

ranged from 7.7 to 8.0, and DO concentrations ranged from 6.2 to 7.3 mg/L across all 
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treatments—indicating that these parameters remained within the optimal range for 

juvenile Seabass rearing. 

However, ammonia levels exceeded the recommended maximum threshold, reaching 

concentrations of up to 0.5 ppm. This is considered critically high and potentially harmful 

to the health and survival of juvenile Seabass, posing a risk of stress, 

immunosuppression, and mortality if not properly managed. 

 

Table 3. Physicochemical water quality parameters in seabass (Lates calcarifer) 

juveniles rearing tanks under different light treatments over 21 days, compared to the 

Indonesian National Standard (SNI 6145.3:2014) 
 

Parameter 
Treatment Lamp 

SNI 

6145.3:2014 Green Blue Red 

Suhu (°C) 27.5-28.6°C 27.5-28.7°C 27.6-28.8°C 26-32°C 

pH 7.7-8 7.7-8 7.7-8 7.0-8.5 

DO (mg/L) 6.2-6.6 6.3-6.9 6.5-7.3 >4 mg/L 

Ammonia 

(NH3)  
0.25-0.5 0.25-0.5 0.25-0.5 <0.1 ppm 

 

DISCUSSION 

 

The Specific Growth Rate (SGR) of Seabass (Lates calcarifer) juveniles over a 21-

day rearing period showed the most optimal results under the blue light treatment, with a 

weight-specific growth rate of 29% and a length-specific growth rate of 32%. This 

reinforces that the blue light spectrum significantly stimulates somatic growth and 

biomass accumulation during the juvenile stage. The absence of mortality in the blue 

light treatment further highlights that environmental conditions under this spectrum 

effectively support the fish's physiological functions and feeding behavior. Blue light 

intensity ranged from 7–88 lux, still within the tolerance range for the growth of various 

marine fish species. Although Boeuf et al. (1999) reported that Sparus auratus larvae 

grow optimally at 50–150 lux, the positive growth observed at lower intensities suggests 

a specific adaptation in Seabass juveniles. According to Barahona-Fernandez (1979), 

Seabass is a diurnal species highly dependent on lighting for feeding activity. Improved 

visual acuity under blue light likely enhanced feed intake and resulted in a superior Feed 

Conversion Ratio (FCR) of 0.70, outperforming the red and green light treatments. 

The strong relationship between light and growth is supported by Boeuf et al. 

(1999), who emphasized that light spectrum and photoperiod affect growth by 

influencing feed metabolism, not just intake. Blue light, due to its shorter wavelength, 

penetrates deeper into the water column and increases the visibility of feed particles. This 

makes it an effective spectrum for stimulating active feeding. Supporting this, Nurdin et 

al. (2015) demonstrated that blue LEDs significantly improved growth rates in Silver 
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Carp (Barbonymus gonionotus), attributed to enhanced feed recognition. Likewise, 

Gunawan et al. (2022) reported that blue LED lighting yielded the best growth in 

Gourami (Osphronemus gouramy) larvae. Similar findings were recorded by Novita et al. 

(2019) in clownfish, where blue light resulted in the highest SGR. These cross-species 

studies suggest consistency in the efficacy of blue light. According to Wirasakti et al. 

(2021), the interaction of media color and light affects a fish's ability to locate feed. 

Under blue lighting, feed particles have higher contrast against the background, 

improving foraging efficiency. Furthermore, Sánchez-Vázquez et al. (2019) found that 

combining blue light with a controlled light-dark cycle improved growth and hatch rates 

in Dicentrarchus labrax and Solea senegalensis, demonstrating that spectrum, intensity, 

and photoperiod are all critical for regulating fish biological rhythms. 

Light color also significantly influences hormonal responses, particularly melatonin 

and cortisol secretion, which impact feeding behavior and stress responses. For instance, 

Bayarri et al. (2002) showed that blue light more effectively modulated plasma 

melatonin levels than red light in Seabass, playing a key role in circadian rhythm 

regulation and stress reduction. Similarly, light wavelength influenced stress responses in 

juvenile red sea bream (Kawamura et al., 2017), highlighting light’s effect on hormonal 

balance. Maintaining optimal light environments supports fish health by regulating 

cortisol levels—a widely recognized indicator of stress (Dopeikar et al., 2024). Elevated 

cortisol is associated with suppressed feeding motivation and growth performance 

(Templonuevo & Cruz, 2016). Additionally, different light spectra can influence the 

hypothalamic–pituitary–interrenal (HPI) axis, which modulates cortisol production and 

physiological responses (Azarin et al., 2014). Prolonged stress elevates cortisol levels, 

impairing growth and digestion (Volpato et al., 2013). 

Environmental light also affects phototactic behavior. For example, Almaas and 

Harlita (2023) found that light color altered growth and foraging behavior in guppies. On 

the other hand, Tsounis and Kehayias (2021) showed that optimal light improved 

feeding, reduced predation risk, and enhanced reproduction. Furthermore, specific light 

spectra influence endocrine responses. Blue light stimulated higher expression of growth 

hormone (GH) in yellowtail clownfish compared to red light (Kim et al., 2016). 

Similarly, increased light intensity (915 lux) was linked to better feeding and growth in 

larval fish via endocrine stimulation (Nwosu & Holzlöhner, 2000). 

In red hybrid tilapia, light and tank color influenced digestive enzyme activity and 

feed utilization efficiency (El-Dakar et al., 2023). Efficient enzymatic performance 

under optimal lighting improves nutrient absorption, leading to better weight gain and 

FCR. Specific light wavelengths may activate enzymes crucial for digestion, emphasizing 

light's broader physiological role. 
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The highest survival rate of juvenile Seabass was recorded under blue light (100%), 

followed by red (93%) and green (80%) treatments. This supports findings by Sánchez-

Vázquez et al. (2019), who reported that blue light-dark cycles produced the highest 

survival and feed intake compared to other wavelengths. One fish died under red light, 

while four died under green. The high mortality in green-treated tanks is attributed to 

elevated ammonia levels (0.25–0.5 mg/L), exceeding the optimal threshold of 0.1 mg/L 

defined by SNI 6145.3:2014. Negesse (2018) also confirmed that poor water quality, 

including high ammonia, significantly impacts fish growth and survival. 

Ammonia negatively affects fish through various mechanisms, such as gill 

impairment and ion regulation disruption (Roumieh et al., 2012; Zou et al., 2023). Toxic 

ammonia levels suppress growth and feeding efficiency in species like juvenile yellow 

catfish and goldfish (Yang et al., 2011; Zhang et al., 2016). In Wuchang bream, 

ammonia exposure disrupted the GH/IGF axis, directly impeding growth (Guo et al., 

2021). Stress-induced appetite loss due to ammonia has also been reported (Uchenna et 

al., 2022). Infected or stressed fish commonly exhibit reduced appetite, body 

discoloration, or ulceration (Kungvankij et al., 1986; Susanti et al., 2022). Deceased 

individuals showed signs such as blackened skin, body ulcers, and severely eroded tail 

fins (Fig. 5), consistent with Vibrio vulnificus infection as noted by Zaenuddin (2019) 

(Fig. 6). 

Beyond light, water quality directly influences fish growth. Temperature 

fluctuations observed weekly across treatments were likely caused by ambient conditions 

and flow from the filtration system. Despite using 25-watt heaters set to 29°C, incoming 

water lowered actual temperatures. As a critical metabolic factor, temperature variation 

must be minimized to ensure consistent growth. DO levels varied significantly, 

particularly in the red light treatment, likely due to that container’s proximity to the filter 

inlet, increasing water flow and destabilizing oxygen levels. This underscores the need to 

properly position containers within the RAS to maintain water quality consistency. 

Other parameters such as pH, salinity, and ammonia remained relatively stable 

across treatments due to the RAS setup, which allowed filtered water to be evenly 

recirculated. RAS systems promote uniformity in water parameters (Khan et al., 2022) 

but are still susceptible to waste accumulation (Piranti et al., 2028). Moreover, low pH 

has been shown to impair growth and survival in Nilem fish (Sa'adah et al., 2023), 

confirming the need for pH regulation. Overall, the combination of appropriate lighting—

particularly blue light—and well-maintained water quality is essential for enhancing the 

intensive aquaculture performance of Seabass juveniles. 
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Fig. 5. During the experiment, seabass 

juveniles (Lates calcarifer) were infected 

with Vibrio vulnificus (Source: Personal 

documentation, 2024) 

Fig. 6. Clinical symptoms of Vibrio 

vulnificus infection in seabass juveniles 

(Lates calcarifer), adapted from Zaenuddin 

(2019) 

 

CONCLUSION 

 

The results of this study demonstrate that blue light spectrum exposure significantly 

influenced the growth performance and survival rate of seabass (Lates calcarifer) 

juveniles. Blue light treatment resulted in the highest specific growth rate in both weight 

and length, and achieved a 100% survival rate, with no mortalities recorded throughout 

the experimental period. This suggests that blue light provides an optimal environment 

for physiological and feeding behavior, supported by light intensity within the species' 

tolerance range. Furthermore, the enhanced feed conversion efficiency observed under 

this treatment reinforces the role of light manipulation as a key environmental 

management factor in aquaculture productivity. These findings may be adopted as a basis 

for developing Standard Operating Procedures (SOP) in seabass hatchery or nursery 

operations, particularly regarding the selection of artificial light spectrum. Using blue 

LED lighting in practice could enhance production efficiency and improve juvenile 

rearing success under closed or semi-intensive systems. However, it is important to 

acknowledge that the present study was conducted with a relatively small sample size (45 

fish), which may limit the statistical power of the findings. The sample size was 

determined based on system capacity and animal welfare considerations, yet the observed 

trends were consistent across treatments. Further long-term studies involving larger 

sample sizes and more comprehensive physiological parameters are recommended to 

validate these findings and assess their implications for sustainable production 

performance. 
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