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INTRODUCT 

Parasitic diseases, particularly those caused by Lernaea cyprinacea, continue 

to pose a significant challenge to freshwater aquaculture, especially in developing 

countries, leading to substantial economic losses and impacting fish health and 

productivity. The present study aimed to develop and evaluate a novel therapeutic 

approach using zinc–aluminum layered double hydroxide nanocarriers loaded 

with curcumin (Zn Al LDH-nanocurcumin; ZALDH-NC) to combat L. cyprinacea 

infestations in Cyprinus carpio fingerlings. A total of 120 infected fish were 

divided into four groups and treated with commercial curcumin, Zn Al LDH, Zn 

Al LDH-nanocurcumin, or left untreated as a control. The nanocurcumin 

formulation (ZALDH-NC) was synthesized and characterized using FTIR, XRD, 

SEM, and zeta potential analysis to confirm structural integrity and stability. The 

treated group receiving ZALDH-NC showed a significant reduction in parasite 

burden compared to other treatments, indicating potent anti-copepod activity. 

Antioxidant and stress biomarkers, including superoxide dismutase (SOD), 

catalase (CAT), glutathione (GSH), and total antioxidant capacity (TAC), were 

significantly improved in the ZALDH-NC group, reflecting a strong oxidative 

stress response. Additionally, gene expression analyses of proinflammatory 

cytokines (IL-1β and TNF-α) showed marked upregulation in the ZALDH-NC- 

treated group, suggesting enhanced immunostimulatory effects. Histopathological 

evaluation further supported these findings by showing minimal tissue damage 

and inflammatory infiltration in treated fish compared to the untreated control. 

These findings demonstrate that Zn Al LDH-nanocurcumin offers improved 

bioavailability, targeted delivery, and enhanced therapeutic efficacy compared to 

conventional treatments. Nanocurcumin presents a promising strategy for 

managing parasitic infections in aquaculture and could contribute significantly to 

improving fish welfare, production efficiency, and sustainable disease control in 

aquaculture. 

ION 

Aquaculture diseases are a major constraint on fish production, causing up to 50% 

of productivity losses, especially in developing countries (Assefa & Abunna, 2018). 
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High stocking densities and poor water quality create favorable conditions for the 

transmission of various pathogens, including parasites (Lieke et al., 2020). Parasitic 

infections not only lead to direct fish mortality but also compromise the host's immune 

defenses, making them more vulnerable to secondary infections (Okon et al., 2023). 

One of the most economically significant parasitic diseases in cyprinid fish is 

lernaeosis, caused by Lernaea cyprinacea (El-Mansy, 2009). The common carp 

(Cyprinus carpio), a globally important aquaculture species, is particularly susceptible. It 

is widely farmed in Asia and Europe due to its commercial and nutritional value 

(Winfield & Nelson, 2012; Rahman, 2015). However, its production is frequently 

threatened by various infectious diseases. These include bacterial pathogens such as 

Aeromonas hydrophila, atypical A. salmonicida, and Flavobacterium columnare; fungal 

pathogens like Saprolegnia spp.; viral infections such as spring viremia of carp 

(Rhabdovirus carpio); and parasites like Lernaea cyprinacea (Bootsma et al., 1976; 

Faisal et al., 1988; Abdelgalil et al., 2012). 

The geographic spread of L. cyprinacea has expanded to temperate regions, a trend 

likely driven by climate change and the movement of host species (Ahnelt et al., 2018; 

Waicheim et al., 2019). Conventional treatment strategies include chemical, biological, 

and mechanical methods. However, chemical treatments such as potassium permanganate 

and organophosphates may not effectively eliminate all life stages of the parasite and 

could be toxic to fish (Islam et al., 2024). Moreover, manual removal is often impractical 

in large-scale aquaculture operations. 

To enhance disease resistance and reduce reliance on chemicals, modern approaches 

include the use of probiotics, prebiotics, and synbiotics (Harikrishnan & 

Balasundaram, 2005; Yilmaz et al., 2022), along with phytogenic additives. Plant- 

derived compounds such as grape seed and Cornus mas extracts have shown positive 

effects on carp growth and immune function (Mehrinakhi et al., 2021; Sadeghi et al., 

2021; Bakr et al., 2024), and combinations like Bacillus licheniformis with Citrus 

aurantifolia peel have demonstrated antioxidant and immunostimulatory benefits. 

Curcumin, the bioactive component of turmeric (Curcuma longa), has been 

investigated for its antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory 

activities (Al-Aameli et al., 2020; Pamukçu et al., 2022; Şahin et al., 2024). To improve 

its bioavailability, researchers have explored nanotechnology-based delivery systems. 

Dietary nanocomposite of vitamin C and vitamin E enhanced the performance of the Nile 

tilapia since it helped the fish body scavenge the generated reactive oxidative species 

(Sherif et al., 2024). Moreover, a blend of chitosan-vitamin C and vitamin E 

nanoparticles robust the immunosuppressed-status in the Nile tilapia treated with salt 

(Elnagar et al., 2024). Further studies illustrated the protective effect of Selenium 

nanoparticles against Aflatoxicosis in the Nile Tilapia (Sherif et al., 2023). 

Layered double hydroxides (LDHs), such as zinc–aluminum LDH (Zn/Al LDH), 

are promising nanocarriers due to their two-dimensional metal hydroxide layers 
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MATERIALS AND METHODS 

intercalated with anions, forming a stable three-dimensional structure with high 

biocompatibility and drug-loading capacity (Gu et al., 2015; Radwan et al., 2022). 

The aim of this study was to evaluate the antiparasitic efficacy of Zn Al LDH 

loaded with nanocurcumin (ZALDH-NC), commercial Curcuma longa (turmeric) and Zn 

Al LDH (ZA-LDH) against L. cyprinacea. Additionally, the study assessed the 

immunological response of infected fish by analyzing the expression of key cytokines, 

including interleukins and tumor necrosis factor. 

 

1. Ethical procedure 

This research followed ethical procedures approved by the Institutional Animal Care 

and Use Committee Faculty of Veterinary Medicine, Beni-Suef University, Egypt. 

(Approval number 024-041). 

2. C. carpio fries 

In April 2023, (water temperature 27±2°C), one of the local common carp hatchery 

fishes’ (Abu-Saleh) retailers at Beni-Suef Governorate, Egypt suffered from swollen 

hyperemic nodules scattered on different parts of the body and open wounds. About 600 

common carp fingerlings (5±2g) were captured and transferred alive to the wet lab of 

Fish Department, Faculty of Veterinary Medicine, Beni-Suef University, Egypt according 

to EMEISH (2019). Ten glass aquaria of 70 x 25 x 40 cm were supplied with chlorine- 

free tap water and air supply were used in this work. 

3. Clinical examination 

C. carpio fries were individually inspected by the naked eye (Noga, 2010) for 

detection of any external gross lesions and/or presence of any parasite. 

4. Water quality determination 

During the collection of fish samples for examination, water samples were obtained 

for evaluation of temperature, dissolved oxygen, pH, ammonia, nitrite, sulfate, chloride, 

and total hardness. The samples were tested in Beni-Suef Drinking Water Central 

Laboratory by using NIST traceable reference equipment and materials in accordance 

with ISO/IEC 17025:2005 requirements and the testing methods EBLOW meets ISO/IEC 

17025:2005 and accreditation bodies requirements. 

5. Parasitological examination and identification 

External parasites were examined in all of the fish samples. Samples were measured 

in triplicate, and the results are presented as the mean ± standard deviation, with 40 

specimens per isolate. The identification was based on prior studies (Ghobashy et al., 

2018; Santos et al., 2020). 

6. Molecular identification 

Forty specimens of isolates were washed and cleaned with sterile saline and then 

preserved at -20°C in an Eppendorf tube. Genomic DNA from cysts was extracted 
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using the QIAamp DNA Mini kit (Qiagen, Germany) according to the tissue protocol 

provided by the manufacturer (Khalifa et al., 2025a). The concentration and quality of 

extracted DNA were determined using the Nanodrop2000 spectrophotometer (NP80, 

Nanophotometer, Implen, Germany) (Mahdy et al., 2024a). PCR was performed to 

amplify the cytochrome oxidase subunit I (COXI) gene using the specific degenerate 

primer pairs; (forward: 5′-TAGTTGGAATTTGGGCTGGC-3′ and reverse: 5′- 

ATTAGGGGCCTTGTTGGGAAG-3′), that developed by Hua et al. (2019) and 

Behera et al. (2022). PCR amplifications were performed using Emerald Amp Max 

PCR Master Mix (Takara, Japan) in a 25µl reaction volume. The thermal cycler was 

adjusted according to Ramadan et al. (2025a) with a few alterations. The PCR 

process started at 94°C/ 2min (initial denaturation) and succeeded by 35 cycles of 

denaturation at 94°C for 30s, annealing at 50°C for 30s, and extension at 72°C for 1 

min, and then ended at 72°C for 10min (final extension). Purification of amplicons 

was carried out with a QIA quick PCR purification kit (Qiagen, USA) (Kandil et al., 

2020). For bidirectional sequencing, PCR products of the COXI gene were submitted 

with the same primer pairs to Macrogen Inc. (Macrogen, Seol, South Korea) (Salem et 

al., 2024a). The sequencing process was carried out using the Big Dye terminator 

cycle sequencing kit, and electrophoresis was accomplished with the 3730XL 

sequencer model (Applied Biosystems™, USA). The raw data of sequences were 

edited and assembled using the BioEdit software (Salem et al., 2023). The final 

sequences were submitted to GenBank to issue the corresponding accession numbers. 

The assembled sequences were then compared against other sequences using the 

BLAST program of NCBI (Ramadan et al., 2025b). 

 

7. Scanning electron microscope 

The obtained isolates from the studied fishes were carefully rinsed with 0.9% NaCl 

and preserved with 2.5% glutaraldehyde. They were dehydrated with ethanol ranging 

from 50 to 100%. The isolates were thoroughly dried with an Autosamdri-815 (Germany) 

CO2 critical point dryer. Finally, the isolates were cut at their anterior and posterior ends 

and bonded to the stub, which was coated with 20nm gold. The copepods were 

photographed with a scanning electron microscope (JSM 5200, electron probe) and 

subjected to a micro analyzer (Jeol, Japan) at Cairo University's Faculty of Agriculture. 

 

8. Evaluation of immune response of C. carpio to the suspected disease by gene 

expression 

8.1. Assessment of tumor necrosis-α and Interleukin-1β 

The skin was collected from the heavily infested fish; all samples were aseptically 

stored at -20°C for subsequent research work (Salem et al., 2024b). 
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8.1.1. Extraction of RNA 

A total mRNA kit (Ambion, Applied Biosystems) was used to extract mRNA 

from 100mg of infested skin according to the manufacturer's instructions. By using the 

FastPrep-24 homogenizer (MP Biomedicals, 2 cycles of 30 s at 6 m/s), the skin and 

gills of fish were homogenized and placed in Lysing Matrix D tubes (MP; 

Biomedicals). The quantity and purity of mRNA were determined using Nanodrop 

(Thermo Scientific). According to the manufacturer's recommendations, 500ng of 

mRNA were obtained using DNaseI amplification grade (Invitrogen). Reverse 

transcription of the treated RNA was performed using the method described by 

(Mahdy et al., 2024b), employing the High-Capacity cDNA Archive Kit (Applied 

Biosystems). Table (1) lists the qRT-PCR primers used for IL-1β and MHC-II, 

specifically designed for Cyprinus carpio based on sequences deposited in GenBank. 

Tissue samples were obtained from 1 cm sections of skin and gills infested with 

Lernaea cyprinacea. The procedures for mRNA extraction and cDNA synthesis 

followed the protocol outlined by Ramadan et al. (2024a). 

8.1.2. Real-time PCR 

The primers for amplifying IL-1β, TNF-α, and β-actin were selected based on 

published sequences available in GenBank. These primers, validated for Cyprinus 

carpio, target conserved regions to ensure high specificity and efficiency. Each primer 

set was evaluated via BLAST analysis to confirm target specificity and avoid off- 

target binding. PCR reactions were optimized using gradient PCR, and an annealing 

temperature of 60°C was selected based on the primers' melting temperatures (Tm) 

and GC content. 

For quality assurance, all PCR and qPCR assays included appropriate controls. 

Negative controls (no-template) containing nuclease-free water were included to 

monitor contamination, and positive controls with DNA templates from healthy C. 

carpio tissue confirmed primer performance. β-actin was used as the housekeeping 

gene for normalization, and relative expression levels were calculated using the 2^– 

ΔΔCt method. 

The tests were performed on a Step One™ Real-Time PCR System (Applied 

Biosystems, USA). The reaction mix contained 10μL of SYBR® Premix Ex Taq™ 

(TliRNase H Plus), ROX Plus (TaKaRa, Japan), 1μL of mDNA, and 0.5μL of the 

primer (100nM), made up to 20μL with ultra-pure water. Cycling conditions followed 

those of Mahdy et al. (2024b), and ∆CT was calculated by subtracting the β-actin 

result from the examined gene’s result, with ∆CT acting as an internal control. 

8.1.3. Conditions for PCR cycling 

A 40-cycle amplification protocol was used, consisting of denaturation at 94°C for 

30 seconds, annealing at 60°C for 30 seconds, and extension at 72°C for 45 seconds. 

The real-time PCR technique was developed by Ramadan et al. (2024b, c). Samples 

were collected in triplicate. 
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Table 1. Primers of the gene expression analysis of the diseased C. carpio 

Genes Sequence (5′-3′) Accession 

No. 

References 

Interleukin-1 

beta 

(IL-1β) 

F:GATGCGCTGCTCAGCTTCT 

R:AGTGGGTGCTACATTAACCATACG 

AJ249137 Taha et al. 

(2025) 

Tumor Necrosis 

Factor alpha 

(TNF-α) 

F:CATTCCTACGGATGGCATTTACTT 

R:CCTCAGGAATGTCAGTCTTGCAT 

EU069817 Mahdy et al. 

(2024b) 

Beta-Actin 

(β-Actin) 

(Housekeeping 

Gene) 

F:GATGCGGAAACTGGAAAGGG 

R:ATGAGGGCAGAGTGGTAGACG 

AB039726 Salem et al. 

(2024b) 

9. Histopathological examination 

Tissue specimens from grossly visible lesions in cutaneous and skeletal muscles were 

removed and fixed in 10% buffered neutral formalin (Mahdy & Shaheed, 2001; 

Suvarna et al., 2018). The fixed samples were cleaned, dehydrated, clarified, and 

paraffin embedded. The paraffin blocks were sectioned at a 5-micron thickness. 

Hematoxylin and eosin were used to stain the sections according to Bancroft and 

Layton (2012). Tissue sections were examined in an Olympus BX43 light microscope 

and captured using an Olympus DP27 camera linked to cellSens dimensions software 

(Olympus). 

10. Treatment trial 

10.1. Materials 

Zinc chloride hexahydrate (ZnCl₂·6H₂O) and aluminum chloride hexahydrate 

(AlCl₃·6H₂O) were purchased from Chem-Lab (Belgium). Sodium hydroxide (NaOH) and 

hydrochloric acid (HCl) were obtained from Merck KGaA (Germany). All chemicals 

used were of analytical grade and high purity. Curcumin (Tur) was sourced from a local 

supplier in Egypt. 

 

10.2. Synthesis of ZA-LDH and ZA-LDH–NC 

According to the method described by Pavel et al. (2020), ZnCl₂·6H₂O and 

AlCl₃·6H₂O were dissolved in 100mL of distilled water at a Zn:Al molar ratio of 4:1. A 

2M NaOH solution was gradually added to the mixture until complete precipitation 

occurred at pH 8.0. The resulting suspension was stirred at room temperature for 24 



1547 
Edrees et al., 2025 

 

 

hours, then filtered, washed several times with distilled water, and dried at 40 °C for 24 

hours. 

The LDH nanocomposite (LDH–NC) was synthesized using the same procedure with 

the addition of curcumin. Specifically, 1.5 grams of Tur were dissolved in 50mL of 

ethanol and added to the precursor solution before pH adjustment. The Zn:Al:Tur molar 

ratio was 4:1:0.5. The mixture was stirred for 24 hours at room temperature, followed by 

filtration, thorough washing, and drying at 40°C. 

 

10.3. Characterization 

10.3.1. X-ray diffraction (XRD) 

XRD patterns were recorded using a PANalytical Empyrean X-ray diffractometer 

operating at 40kV and 35mA, utilizing monochromatized Cu Kα radiation (λ = 1.5406 Å). 

The scan was performed from 5 to 80° (2θ) at a speed of 2°/ min, with a step size of 

0.050° and a step time of 1.5 seconds. 

10.3.2. Infrared spectroscopy (IR) 

Fourier-transform infrared (FTIR) spectra were recorded in the range of 4000– 

400 cm⁻¹ using a Vertex 70 spectrometer (Bruker, Germany). Samples were prepared as 

KBr pellets. Scans were performed with a resolution of 1 cm⁻¹ and averaged over three 

replicates to identify functional groups present in the samples. 

 

10.4. Hydrodynamic size, polydispersity index (PDI), and ζ–potential analysis 

Dynamic light scattering (DLS) was used to determine the hydrodynamic diameter, 

particle size distribution, and PDI using a ZS90 Zetasizer (Malvern Instruments, UK). ζ– 

Potential measurements, indicating colloidal stability, were conducted via electrophoretic 

laser Doppler velocimetry using the same instrument. 

 

10.5. Transmission electron microscopy (TEM) 

High-resolution transmission electron microscopy (HRTEM) was employed to 

observe the surface morphology and particle size of the prepared samples using a JEOL 

JEM-2100 microscope operating at 200 kV. 

 

10.6. Determination of entrapment efficiency (EE) and loading capacity (LC) 

Following curcumin (Tur) loading into Zn–Al LDH, the suspensions were centrifuged 

at 6000×g for 20 minutes using a Thermo Scientific centrifuge (Waltham, MA, USA) to 

separate unbound curcumin in the supernatant. The concentration of free curcumin was 

determined spectrophotometrically using a Thermo Scientific Evolution 600 UV-Vis 

spectrophotometer (USA) at λmax = 425 nm. Entrapment efficiency (EE) and loading 

capacity (LC) were calculated based on absorbance measurements, as summarized in 

Table (2) (Pavel et al., 2020). 
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Equation (1): 
 

Equation (2): 

 

Table 2. Parameters used in determining the EE and LC 

Procedure Equipment Settings Purpose 

1. Centrifugation of 

suspensions to separate 

supernatant containing 

unbound curcumin (Tur) after 

loading into Zn Al LDH 

Thermo Scientific 

centrifuge (Waltham, 

MA, USA) 

6,000×g, 

20 

minutes 

To separate 

unbound Tur from 

the loaded 

complex 

2. Measurement of free Tur in 

the supernatant 

Thermo Scientific 

Evolution 600 UV/Vis 

spectrophotometer 

(USA) 

λmax = 

425 nm 

To quantify the 

amount of 

unbound Tur in 

the supernatant 

 

10.7. Determination of bioactive compound of Curcumin ((Tur) release) 

To study the release pattern of Tur from synthesized Zn Al LDH, 3mg of LDH was 

incubated in 30mL of 0.1 M phosphate-buffered saline (PBS) at pH 7. The mixture was 

placed in a dialysis bag with a molecular weight cut-off (MWCO) of 12,000–14,000 Da 

from Himedia, India, under sink conditions at room temperature and under sunset. These 

conditions were designed to mimic the environment of water. Samples were taken at 

predetermined intervals (0, 0.5, 1, 2, 3, 4, 5, 6, 8, 12, 24, and 48hr) (Pavel et al., 2020), 

with 1mL of dialysate replaced by 1mL of fresh PBS each time. The release of the 

samples was determined based on their concentration at specific times and the actual Tur 

content in LDH. The release experiments were conducted three times, and the average 

results were reported. 

10.8. Determination of LC50 and LC100 of Tur, ZA-LDH and ZALDH-NC on the 

isolates 

The collected isolates were divided into four groups, each group consists of 50 

isolate, where group A is subjected to Tur and group B is subjected to ZA-LDH, while 

group C is subjected to ZALDH-NC at varying concentrations (Table 3). Group D is 

considered as the control group by immersion of isolates in normal saline. Each 

concentration was applied in triplicates to tissue culture plates containing the isolates 

for 10, 20, 30min, and 1 hour. Following removal and preservation in buffered 

phosphate saline (pH 7.2), all isolates (treated and negative control) were checked at 

37oC to see if they were alive or dead (Mahdy et al., 2023). 100% (LC100) and 50% 

(LC50) lethal quantities were subsequently calculated, according to Mahdy et al. 
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RESULTS 

(2022). The viability of the exposed isolates was ascertained by observing their form 

and motility under a microscope where dead isolates are immobile. 

Table 3. Different concentrations of Tur, ZA-LDH and ZALDH-NC used for the 

isolates 

Substances Doses 

1. Group (A) Tur 150, 300, 450, 600 mg/l 

2. Group (B) ZA-LDH 450, 600 mg/l 

3. Group (C) ZALDH-NC 50, 75, 100, 200 mg/l 

 

 

11. Statistical analysis 

All data were presented as means ± standard error. Taha et al. (2024a, b) 

performed statistical analyses using one-way ANOVA followed by Tukey’s post hoc 

test to assess differences among treatment groups (Khalifa et al., 2025b). All values 

were expressed as means ± standard error, and statistical significance was set at P≤ 

0.05 using SPSS (version 27.0 for Windows) (El Akkad et al., 2022; El-Bahy et al., 

2023). 
 

 

Clinical abnormalities of Lernaeosis infested C. carpio 

As illustrated in Fig. (1), C. carpio fingerlings infested with Lernaea spp. exhibited 

prominent clinical signs, including hemorrhagic lesions (hemorrhagic nodules) on the 

skin and ulcer formation surrounding the attachment sites of the copepods, 

accompanied by noticeable scale loss. One or more worm-like copepods—gray to 

greenish in color, with or without paired appendages—were observed firmly attached 

to the surface of the infected fish. The parasites were distributed across various 

anatomical regions, including the belly, vent, tail fin, pectoral and dorsal fin bases, and 

along the body sides. 
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Fig. 1. Clinical abnormalities of lernaeosis naturally affected cyprinids fingerlings. 

(A, D) L. cyprinacea penetrated the body sides of C. carpio fingerlings showing their 

egg sacs with hyperemic nodules and open wounds. L. cyprinacea attachment point 

around the tail of C. carpio fingerlings (c). C. carpio fingerlings showed the 

attachment of more than one L. cyprinacea at the caudal peduncle (b) 

 

Water quality 

The water temperature, DO, pH, ammonia, nitrite of pond water during lernaeosis 

examination were 23.3ºC, 6 mg/l, 7.94, 0.02 mg/l, 0.009 mg/l respectively. 

 

Morphological features of L. cyprinacea 

The female Lernaea is characterized by an elongated shape, ranging from 8 to 

16mm in length (with an average of 12 ± 1.8 mm). Its front end has an anchor-like 

structure that penetrates the skin to reach the muscle. This parasite possesses four 

horns: two dorsal ones that are Y-shaped and two simpler ventral ones. The mouth is 

situated between the dorsal horns. The body is cylindrical and elongated, leading to a 

short abdomen that contains two elongated egg sacs, measuring between 2.8 and 4.7 

mm (average length of 3.6 ± 0.48mm) (Fig. 2D-E-G-H). 
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Fig. 2. (D-F) Detail of cephalic structures: apr= anterior protuberance; ppr= posterior 

protuberance. Scale bare (E)= 3mm.; (E-F) = 1mm. G) SEM micrograph of Anterior part 

of Lernaea infested common carp showing anchor= An. H) SEM micrograph of posterior 

part of Lernaea infested common carp showing es= egg sac and pp= pregenital 

prominence 

 

Molecular identification 

 

The PCR products were purified and then bidirectionally sequenced to confirm the 

identity of the copepod species. The copepod spp. isolates were identified as L. 

cyprinacea (PP421062) depending on alignment-based sequence analysis. In this study, 

the BLAST analysis of the current L. cyprinacea sequence revealed the highest similarity 

of 100 to 99.28% with other L. cyprinacea (OR800156, in India; MH982217 and 

MK770176 in China; OR431748 in Iraq) sequences available in the GenBank database. 

 

Gene expression of TNF- α and IL-1β in C. carpio-infested skin 

C. carpio skin infested by L. cyprinacea, TNF-α was 20-fold more upregulated than 

in the control non-infested fish (2.56 ± 0.00) (P= 0.0001) (Fig. 3). Concerning the 

expression of mRNA of IL-1β, it was elevated to 25 folds than control non-infested fish 

(4.23± 0.00) (P = 0.0001) (Fig. 3). 



1552 
Nanoparticles as a Novel Strategy for Controlling Lernaeosis in the Common Carp 

 

 

  

Fig. 3. Immunological expression of (a) TNF-α and (b) IL-Iβ in the skin of infested C. 

carpio with L. cyprinacea 

Histopathological alterations 

 

Microscopic examination of C. carpio tissues infected with Lernaea cyprinacea 

revealed a range of inflammatory reactions affecting both cutaneous and skeletal tissues, 

varying in severity. Cutaneous lesions involved both the epidermis and dermis. The 

epidermis exhibited spongiosis and mucous cell hyperplasia, while the dermal layer 

showed fibrovascular tissue proliferation with angiogenesis and intense infiltration of 

eosinophilic granular cells (EGCs), indicating areas of healing cutaneous ulceration. 

A severe granulomatous reaction was observed in the dermis, with inflammation 

extending deeply into the underlying skeletal muscle and bony structures. Multiple L. 

cyprinacea parasites were surrounded by intense, multifocal granulomatous inflammation 

involving skeletal myocytes and osseous tissue. Affected myocytes displayed signs of 

atrophy, hyaline degeneration, and necrosis, with dense infiltration of EGCs admixed 

with lymphocytes and melano-macrophages. Bone tissue showed necrosis of osteoid 

structures accompanied by EGC infiltration. Extensive hemorrhaging was evident in both 

cutaneous and skeletal tissues (Fig. 4A–I). 
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Fig. 4. Photomicrograph of cutaneous and skeletal tissues of crustacean Lernaea 

infected fish showing granulomatous inflammatory reaction involving skin, muscles, and 

skeletal tissues (A), granulomatous dermatitis with the presence of large granuloma 

involving the dermal area (B), epidermis showing mucous cell hyperplasia with 

spongiosis (C), fibrogenesis and angiogenesis of dermis (D), presence of multiple 

parasites of crustacean Lernaea (arrows) deeply embedded in muscle tissue with early 

granulomatous myositis surrounding them (E), the crustacean Lernaea enclosed by 

delicate capsule and surrounded by EGCs and melano-macrophages aggregation (F), 

severe granulomatous myositis (G), atrophy, hyaline degeneration and necrosis of 

muscles with intense EGCs admixed with mononuclear cells infiltrating the muscles (H), 

necrotic and inflammatory reaction involving the bony tissue (I) 

 

 

XRD analysis 

The X-ray diffraction (XRD) patterns of Zn Al LDH, curcumin (Tur), and ZALDH- 

NC are presented in Fig. (5). The Zn Al LDH exhibits characteristic sharp and symmetric 

peaks at 2θ values of approximately 10, 20, and 34°, indicating a well-crystallized 

layered structure typical of LDHs. Tur displays multiple intense peaks between 10 and 

30°, reflecting its crystalline nature. The ZALDH-NC pattern retains the main reflections 
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of the Zn Al LDH, particularly the basal (003) peak at around 10°, suggesting the 

preservation of the layered structure after Tur loading. However, the intensity and 

sharpness of the LDH peaks in ZALDH-NC are reduced compared to pure Zn Al LDH, 

which may indicate a decrease in crystallinity due to the intercalation process. Notably, 

the absence of characteristic Tur peaks in the ZALDH-NC pattern suggests that Tur has 

been successfully intercalated into the LDH interlayers, losing its original crystal 

structure. The slight shifts and broadening of peaks in the ZALDH-NC pattern, 

particularly for the (003) reflection, could be attributed to an expansion of the interlayer 

spacing to accommodate the Tur molecules. These XRD results collectively demonstrate 

the successful loading of Tur into the Zn Al LDH structure, resulting in a nanocomposite 

with modified crystalline properties. 

 

FTIR 

As shown in Fig. (5), the FTIR spectra of Zn-Al LDH, curcumin (Tur), and ZALDH- 

NC reveal significant insights into their structural interactions. The Zn Al LDH spectrum 

shows a broad O-H stretching band at 3455cm⁻¹, indicative of hydroxyl groups and 

interlayer water, with additional peaks at 1621 and 1363cm⁻¹ corresponding to water 

bending and carbonate anions, respectively. Tur exhibits characteristic peaks at 3485cm⁻¹ 

for O-H stretching, 1614 cm⁻¹ and 1500 cm⁻¹ for C=C and C=O stretching, and 1274cm⁻¹ 

for C-O stretching. In ZALDH-NC, shifts in curcumin's peaks to 3435, 1619, and 

1514cm⁻¹ suggest successful incorporation and interaction with the LDH structure, 

supported by the presence of both curcumin and LDH bands, confirming the formation of 

a hybrid material with potential enhanced properties. 
 

 

Fig. 5. (A) X-ray diffraction patterns. Inset from 2 scale within 5-80. (B) FTIR 

spectra of Zn Al LDH, Tur and ZALDH-NC 
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DLS and surface charge analysis 

As shown in Fig. (6), the zeta size distribution profiles of Zn–Al LDH and ZALDH– 

NC reveal distinct differences. The Zn–Al LDH sample exhibits a sharp peak centered 

around 166nm, indicating a narrow and uniform particle size distribution, with a 

polydispersity index (PDI) of 0.323 ± 0.01. In contrast, the ZALDH–NC sample shows a 

broader peak centered at approximately 282 nm and a lower PDI of 0.211 ± 0.021, 

suggesting a larger average particle size and a more heterogeneous distribution. The 

increased peak intensity for ZALDH–NC may reflect a higher particle concentration or 

an enhanced scattering effect, likely due to the incorporation of curcumin (Tur), which 

contributes to particle growth and morphological alteration. This size shift confirms the 

successful formation of the nanocomposite and may influence its performance in 

applications requiring tailored material properties. 

In terms of surface charge, Zn–Al LDH exhibited a positive zeta potential of 

25 ± 1.5 mV, indicating good colloidal stability and a positively charged surface— 

favorable for interactions with negatively charged biomolecules. In contrast, Tur alone 

displayed a strongly negative zeta potential of −36 ± 3.4 mV, suggesting excellent 

dispersion stability due to interparticle repulsion. The ZALDH–NC composite showed a 

reduced zeta potential of 10 ± 2.3 mV, which points to successful surface interaction 

between LDH and Tur. The reduction in surface charge likely results from Tur adsorption 

onto the LDH surface, partially neutralizing the positive charge. While this reduction 

implies a slight compromise in colloidal stability, it confirms the formation of the 

composite material. 

This interaction between LDH and Tur may enhance the nanocomposite's potential 

for drug delivery and controlled release, leveraging the structural stability of LDH and 

the therapeutic bioactivity of Tur. Future investigations could further explore the 

applicability of ZALDH–NC in pharmaceutical or biomedical domains. 

 

 

Fig. 6. DLS distribution of Zn Al LDH, Tur and ZALDH-NC 
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Morphology study 

 

The TEM image of ZALDH–NC (Fig. 7) reveals aggregated nanoparticles exhibiting 

the characteristic layered morphology typical of layered double hydroxides (LDHs). The 

observed particles are nanoscale, with an average size of approximately 100 nm, 

supporting their suitability for applications in nanomedicine. The presence of dense 

regions within the particles suggests successful loading of curcumin (Tur), which is 

essential for achieving controlled release and enhanced bioactivity. 

This composite structure holds promise for drug delivery systems, as the layered 

arrangement of LDH can facilitate the sustained release of Tur, potentially improving its 

therapeutic efficacy. Moreover, the incorporation of zinc may provide synergistic 

antioxidant effects with Tur, offering additional biomedical advantages. Further 

investigations into the release kinetics and bioavailability of Tur from the ZALDH–NC 

composite are warranted to fully elucidate its potential in pharmaceutical and therapeutic 

applications. 

 

Fig. 7. TEM image of ZALDH-NC 

Encapsulation efficiency, Loading capacity and in vitro release study 

The ZALDH-NC demonstrated a drug loading capacity (LC) of 19.89±2.63% by 

weight. This formulation achieved a high encapsulation efficiency (EE), successfully 

incorporating 91.78 ±1.83% of the initial Tur dose into the layered structure. The graph 

illustrates the cumulative release of curcumin (Tur) under various conditions over time 

(Fig. 8). 
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Fig. 8. In-vitro curcumin (Tur) release curve from Zn Al LDH 

 

Effects of commercial Curcuma longa, ZA-LDH and ZALDH-NC on L. cyprinacea 

Active, motile Lernaea cyprinacea individuals were exposed to commercial Curcuma 

longa, ZA–LDH, and ZALDH–NC at varying concentrations for 10, 20, and 30 minutes, 

as well as 1 hour. A clear correlation was observed between increasing mortality rates 

and both concentration and exposure duration for each treatment (Table 4). In all cases, 

the predicted LC₅₀ and LC₁₀₀ values were inversely related to concentration and exposure 

time—indicating that lower concentrations required longer durations to exert lethal 

effects. 

For Curcuma longa, the LC₅₀ values were recorded at 300mg/ L (38min) and 450mg/ 

L (10min), while LC₁₀₀ values were achieved at 450mg/ L (1h) and 600mg/ L (30min and 

1h) (Fig. 9). In contrast, ZALDH–NC demonstrated significantly higher potency. The 

calculated LC₅₀ values were 50ppm (28min) and 75ppm (12min), whereas LC₁₀₀ values 

were achieved at 100ppm (30min and 1h) and 200ppm (20, 30min, and 1h) (Fig. 10). 

As shown in Table (3) and Figs. (9, 10), treatment with ZALDH–NC at increasing 

concentrations resulted in a significantly higher mortality rate of L. cyprinacea compared 

to both Curcuma longa and ZA–LDH (P < 0.05). Notably, 100% mortality was achieved 

at lower concentrations and shorter exposure times with ZALDH–NC, confirming its 

superior antiparasitic efficacy. 



1558 
Nanoparticles as a Novel Strategy for Controlling Lernaeosis in the Common Carp 

 

Table 4. Number and percentage of mortalities in L. cyprinacea subjected to varying 

doses of commercial Curcuma longa, ZA-LDH and ZALDH-NC in vitro (n = 50) 
 

Tested concentrations Number and mortality rate % of L. cyprinacea after 

exposure to 

10min. 20min. 30min. 1hr. 

Group (A) 

commercial 

Curcuma 

longa 

150mg/l 3/6%d 6/12%d 12/ 24%c 21/42%ab 

300mg/l 9/18%c 16/32%b 23/46%a 33/66%a 

450mg/l 25/50%bc 36/72%ab 42/84%a 50/100%a 

600mg/l 33/66%ab 42/84%a 50/100%a 50/100%a 

Group (B) 

ZA-LDH 

450mg/l 0.0 0.0 4/8%d 8/16%d 

600mg/l 0.0 5/10%d 9/18%d 14/28%d 

Group (C) 

ZALDH- 

NC 

50 ppm 6/12%d 13/26%d 27/54%c 39/78%ab 

75 ppm 23/46%c 31/62%b 40/80%a 49/98%a 

100 ppm 33/66%bc 46/92%ab 50/100%a 50/100%a 

200 ppm 44/88%ab 50/100%a 50/100%a 50/100%a 

Group (D) Control in 

saline 

0.0 0.0 0.0 4/8%d 

Data represented as the mean of triplicates, a column with different letters are statistically significant at P ≤ 

0.05 (One-way ANOVA). 



1559 
Edrees et al., 2025 

 

 

 

 

 

Fig. 9. Percentage of mortalities in L. cyprinacea subjected to varying doses of 

commercial Curcuma longa 

 

 

 

 

Fig. 10. Percentage of mortalities in L. cyprinacea subjected to varying doses of 

ZALDH-NC 
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Despite recent advancements, controlling major parasitic diseases in aquaculture 

remains a persistent challenge, requiring increased oversight and innovation. The 

growing importance of aquaculture has amplified concerns about parasitic infections and 

their detrimental effects on fish health and reproductive capacity (Novakov et al., 2015). 

Among these, lernaeosis—caused by Lernaea cyprinacea—poses a significant threat to 

global aquaculture, particularly under suboptimal water conditions, where it compromises 

fish immunity (Ageng’o et al., 2024). This parasite attaches to the skin of Cyprinus 

carpio, causing blood and mucus loss, tissue damage, and elevated mortality rates, 

especially in juvenile fish. In the present study, clinical signs included the presence of 

gray-green copepods attached to hemorrhagic nodules, consistent with previous reports 

(Abdelgalil et al., 2012; El-Deen et al., 2013; Fatma, 2014). 

Environmental conditions such as water temperature and dissolved oxygen (DO) 

levels play a critical role in the severity of parasitic outbreaks. Lernaeosis is known to 

proliferate in cooler water (13–23 °C) (Bilal et al., 2021). Our results corroborate these 

findings, revealing a correlation between temperature fluctuations, increased DO, and 

parasite intensity, aligning with earlier observations (Barson et al., 2008). 

Morphological identification of L. cyprinacea traditionally relies on variations in 

the anchor structure, which may differ based on host species and attachment site. To 

resolve taxonomic ambiguity, COXI gene sequencing was employed and confirmed the 

parasite's identity in this study (Hua et al., 2019). 

Fish are known to mount immune responses against parasitic infections (Zhou et 

al., 2018). In our study, infected gill, skin, and mucus samples from C. carpio exhibited 

significant upregulation of pro-inflammatory cytokines TNF-α and IL-1β, indicating 

activation of innate immune pathways. These results support the key role of IL-1β in host 

defense (Dinarello, 2011). 

Histopathological analyses revealed granulomatous inflammation and necrosis in 

parasitized muscle tissues, further highlighting the invasive nature of L. cyprinacea and 

its harmful effects—consistent with earlier reports (Bednarska et al., 2009). 

The use of dietary nanomaterials such as zinc oxide and titanium dioxide to 

enhance immune response and disease resistance in Nile tilapia has been extensively 

documented (Sherif et al., 2022; 2023; Sherif & Zommara, 2024). Curcumin, the 

principal polyphenol in turmeric, has also gained attention as a functional feed additive in 

aquaculture (Al-Aameli et al., 2020; Krishnaveni et al., 2023; Altun et al., 2024). A 

comparative study by Eissa et al. (2024) demonstrated the superior performance of 

nanocurcumin (NCur) over free curcumin and Cur/NCur blends in the red tilapia. 

Similarly, our findings confirmed that Zn–Al LDH–nanocurcumin (ZALDH–NC) 

exhibited significantly greater antiparasitic efficacy (P< 0.05) than both commercial 

Curcuma longa and ZA–LDH at all tested concentrations. 

DISCUSSION 
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CONCLUSION 
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