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INTRODUCTION  

 

Vaname shrimp (Litopenaeus vannamei) is a major aquaculture commodity in the 

world. Most of the vaname shrimp producing countries include Ecuador, China, India and 

Indonesia (FAO, 2022). Increasing market demand encourages production to continue to 

be increased in various countries (Halim & Juanri, 2016; Kilawati et al., 2025). Globally, 
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The global production of vaname shrimp (Litopenaeus vannamei) reaches 

6.8 million tons, making it a major species in the aquaculture industry. 

However, the success of this culture is often threatened by Vibriosis disease 

caused by Vibrio sp. This study aimed to analyze the relationship between 

water quality parameters and Vibrio sp. bacterial abundance in intensive 

vaname shrimp ponds. Water quality measurements were conducted every 

seven days including temperature, dissolved oxygen, salinity, and pH, while 

Vibrio sp. density was calculated using selective culture method and PCR 

confirmation. The results showed that Vibrio sp. abundance had a significant 

correlation with water quality parameters, especially temperature (r = -0.622), 

dissolved oxygen (r = -0.378), pH (r = 0.377), and salinity (r = 0.597). Vibrio 

sp. density increased with rearing time and showed the highest value at 30ppt 

salinity and 30°C temperature. In addition, detection of Vibrio genes related to 

Acute Hepatopancreatic Necrosis Disease (AHPND) showed positive results 

even though Vibrio parahaemolyticus was not detected in pond water samples. 

This study confirms that environmental factors play an important role in Vibrio 

sp. dynamics and need to be properly managed to prevent disease outbreaks in 

vaname shrimp intensive culture systems.  
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vaname shrimp production has reached 6.8 million tons, making it the most widely 

cultivated species in the aquaculture industry (FAO, 2024). This production is expected to 

continue to increase as intensive culture practices become more widespread. The high 

intensification of shrimp culture also has negative impacts including disease outbreaks that 

cause losses to farmers (Anderson et al., 2019; Kilawati et al., 2025). In the shrimp 

industry, it is estimated that 60% of shrimp production losses are caused by viral diseases 

and 20% by most bacterial pathogens, especially Vibriosis (Flegel, 2012). 

Vibriosis is a disease that can cause mortality in L. vannamei culture and this disease 

is caused by infection with bacteria of the genus Vibrio (Elias et al., 2023). Species of 

Vibrio genus bacteria that can cause Vibriosis in vaname shrimp include V. harveyi, V. 

parahaemolyticus, V. alginolyticus, V. anguillarum, V. vulnificus, and V. splendidus 

(Jayasree et al., 2006). Vibrio sp. bacteria are Gram-negative halophilic bacteria that are 

naturally found in aquatic environments (Xie et al., 2005). Species such as V. 

parahaemolyticus can infect vanname shrimp through wounds on the exoskeleton and will 

spread through the hemolymph in the vanname shrimp circulation system (Soto- 

Rodriguez et al., 2015). Vibrio sp. bacteria are also associated as causative agents of Acute 

Hepatopancreatic Necrosis Diseases (AHPND) or Early Mortality Syndrome (EMS), and 

White Feces Disease (WFD) (Kumar et al., 2020). 

AHPND has been widely reported to cause significant losses in vaname shrimp 

culture with high mortality rates (Shin et al., 2018; Kilawati et al., 2024). The main 

symptoms are damage to the hepatopancreas until it turns pale and shrinks, shrimp skin 

becomes soft with the digestive tract appears empty. Shrimp mortality usually occurs 30-

35 days, as early as 10 days after shrimp stocking in ponds (OIE, 2019). The results showed 

that the bacterium V. parahaemolyticus is commonly the causative agent of AHPND with 

the main target organ being the gastrointestinal tract (Tran et al., 2013; Soto-Rodriguez 

et al., 2015). Hepatopancreas damage is caused by toxins released by the bacteria. The 

toxin will enter the hepatopancreas through the stomach and cause sloughing of tubular 

epithelial cells (Tran et al., 2013; Kilawati et al., 2024). Mitigation of significant 

economic losses caused by AHPND is hampered by knowledge gaps in the pathogenic 

mechanisms of bacterial infections in shrimp (Nguyen et al., 2020). 

AHPND caused by Vibrio sp. bacteria in vaname shrimp ponds is strongly influenced 

by environmental factors (Boyd & Phu, 2018). In open containers, the environmental 

conditions of vaname shrimp culture will continue to experience drastic or fluctuating 

changes, which can cause bacteria that were previously harmless to become pathogenic 

(Lafferty et al., 2004). Several studies have reported that V. parahaemolyticus can’t grow 

at low temperatures (10°C), but the bacteria can grow in high NaCl concentrations (9%) 

(Fujikawa et al., 2009). The use of low salinity water (<20 ppt) has been shown to reduce 

AHPND outbreaks in some cases (OIE, 2019). Kuaphiriyakul and Preeprem (2022) 

reported changes in virulence gene expression when the bacteria were cultured at different 

temperatures and salinity levels. The optimal bacterial density was observed at 30°C with 



How Water Quality In Intensive Shrimp Ponds Fuel Vibrio sp. Colonization 
 

 

1201 

6% NaCl concentration. The highest virulence conditions were observed at 35 ppt salinity 

and a temperature of 28°C. 

Physiological stress experienced by shrimp due to environmental changes has been 

widely studied, but the relationship between environmental changes and the presence of 

Vibrio sp. bacteria related to AHPND in vaname shrimp culture containers is rarely 

evaluated. Based on the description above, it is important to analyze the relationship of 

water quality to the abundance of Vibrio sp. bacteria in intensive shrimp culture. 

MATERIALS AND METHODS  

 

Study area 

This study was conducted for 3 months from June to August 2024. Shrimp rearing 

was carried out in the Intensive Vaname Shrimp Pond of Bone Marine and Fisheries 

Polytechnic, East Tanete Riattang District, Bone Regency, South Sulawesi. Bacterial 

culture and identification were carried out at the Laboratory of the Takalar Brackish Water 

Aquaculture Center, South Sulawesi. 

 

Shrimp rearing in ponds 

Shrimp culture in HDPE-lined ponds was carried out intensively with a stocking 

density of 120 shrimp/m³. Pond preparation includes pond cleaning and drying. Water 

sterilization with chlorine (Tjiwi Kaporit 60, Indonesia) at a dose of 30mg/ L and sodium 

thiosulfate (AOJIN, China). Programmed feeding of at least 28% protein (Tables 1 and 2). 

Water exchange was performed daily at a rate of 30%, especially after day 30 (DOC 30). 

The rearing period was 49 days. 

 

Table 1. Blind feeding program 

 Day of 

culture 

Shrimp 

weight 

(grams) 

Shrimp 

length 

(cm) 

Feed code 

Feeding 

frequency(times/d

ay) 

Estimated 

SR (%) 

Initial 

feeding 

(Kg) 

1 - 10 8 - 1,2 0,6- 1,2 681 V 4 100 6 Kg/ 

185.000 

larvae 

 

11- 20 1,2- 2,5 1,2- 2,0 681 V-682 V 4 99 

21- 30 2,5- 3,5 2,0- 3,5 682 V- 683 PV 4 98 

 

Table 2. Feed program based on feeding rate 

Day of 

culture 

Shrimp 

weight 

(grams) 

Shrimp 

length 

(cm) 

Feed 

code 

Feeding 

rate (%) 

Feeding 

frequency 

(times/day) 

Feeding 

trays 

(%) 

Control 

time 

(hours) 

30 – 38 3,5 – 5,0 6,0 – 9,0 
683PV- 

683SP 
5,6 – 4,6 4 0,6 2,5 

39 -60 5,0 – 10,0 9,0 – 12,0 683 SP 4,6 – 3,4 4-5 0,8 2 

60 -78 10,0 – 15,0 12,0 – 14,0 683 SP  3,4 – 2,9 5 1,0 1,5 
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78 -93 15,0 – 20,0 14,0 – 16,0 683 SP 2,9 – 2,5 5 1,2 1,5 

93 -105 20,0 – 25,0 16,0 – 17,0 683 SP 2,5 – 2,2 5 1,4 1,0 

105 115 25,0 – 30,0 17,0 – 18,0 683 SP 2,2 – 2,0 5 1,6 1,0 

>115 >30,0 >18,00 683 SP 2,0 5 1,8 1,0 

 

Water quality measurement 

Water quality measurements were conducted in situ daily during the afternoon 

(15:00–16:00). Parameters measured included temperature and dissolved oxygen using a 

DO meter (YSI Pro20I, USA), salinity using a refractometer (ATAGO CO., LTD, Japan), 

and pH using a pH meter (WANT Balance Instrument Co., Ltd., China). Meanwhile, nitrite, 

TAN (Total Ammonia Nitrogen), and TOM (Total Organic Matter) were analyzed 

following the methods of Menon (1988), Parsons et al. (1989), and APHA (2005). Data 

were compiled collectively and presented every 7 days, specifically on days of culture 

(DOC) 7, 14, 21, 28, 35, 42, and 49. 

Observation of Vibrio sp.  

The density of bacteria observed was derived from water samples of vaname shrimp 

rearing ponds. Water samples were taken from one pond using a 500mL sampling bottle. 

A total of 1mL of water samples were inoculated into Thiosulfate Citrate Bile Salt Sucruose 

Agar (TCBSA) media (HiMedia, India) and incubated for 24 hours at 28-30°C. Bacterial 

abundance was calculated by the method of Madigan et al. (2003): 

Total Bacterial Count (CFU/mL)  =  ΣC ×  
1 

Fp
 ×  

1 

S
 

Where: 

ΣC = Total bacterial on the plate  

Fp = Dilution factor 

S = Inoculation volume (mL) 

Bacterial identification 

Bacterial isolates grown from water samples at DOC 14 and DOC 49 were analyzed 

using the Polymerase Chain Reaction (PCR) method to detect Vibrio parahaemolyticus 

and AHPND-associated Vibrio species. DNA extraction was performed using the Genomic 

DNA Mini Kit for Bacteria (Geneaid, Taiwan), including sample preparation, lysis, DNA 

binding, washing, and elution. Gene detection was carried out using PCR with 2x MyTaq 

HS Readymix (Meridian Bioscience, UK). PCR amplification results were then 

electrophoresed on 1% agarose gel (1st BASE, Singapore) with fluorescence RedSafeTm 

Nucleic Acid Staining Solution (iNtRON, South Korea) (0.3 µL/20 mL agarose). 

Electrophoresis was performed 40 min at 100 V, 400 mA and visualized with a UV 

Transilluminator. The genes targeted and the PCR primer sequences used for bacterial gene 

confirmation are shown in Table (3). 
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  Table 3. Bacterial gene confirmation primers of V. parahaemolyticus and Vibrio sp. related 

to AHPND 

Gen Sekuens Product  size (bp) Reference 

AP41 
F: 

R: 

ATGAGTAACAATATAAAAC

ATGAAAC 

ACGATTTCGACGTTCCCCAA 

1.269 bp Dangtip et al. (2015) 

AP42 
F: 

R: 

TGAGAATACGGGACGTGGG 

GTTAGTCATGTGAGCACCTT

C 

230 bp Dangtip et al. (2015) 

16SVp 
F: 

R: 

GGTGTAGCGGTGAAATGCGT

AG 

CCACAACCTCCAAGTAGACA

TCG 

284 bp Xiao et al. (2021) 

  

Data analysis 

Data were analyzed by normality test using Shapiro-Wilk method. Correlation test 

using Sparman Corelation, P=95% to determine the relationship between temperature, pH, 

salinity and DO with the number of V. parahaemolyticus bacteria. Data analysis using 

SPSS software version 22 (IBM, USA). 

 

RESULTS AND DISCUSSION 

 

Water quality 

The research results showed that there were fluctuations in water quality parameters. 

The measured DO (Dissolved Oxygen) levels remained within the optimal range, thus still 

supporting the life of the cultured Litopenaeus vannamei (vannamei shrimp). The DO range 

obtained was 6–7 ppm. This is in accordance with the results of research from Supriatna 

et al. (2017), which found that the average concentration of DO in vaname shrimp ponds 

is 4.84 ± 0.41 ppm with a range of 3.48 ppm to 6.90 ppm. High DO (above 6 mg/L) supports 

the growth of aerobic microorganisms, including some beneficial bacteria. When DO 

decreases (e.g. below 5 mg/L), environmental conditions become more favorable for the 

growth of facultative anaerobic bacteria such as Vibrio sp. Pathogenic bacteria grow 

rapidly in water conditions that are rich in organic matter but have low oxygen levels 

(Ariadi et al., 2024). 

The pH showed a range between 7.5 to 9.00, with the highest pH being 9 which 

occurred in DOC 42, while the optimal pH is 7 - 8 (Jelinda et al., 2024). pH stability is 

very important in controlling the density of Vibrio sp. bacteria in ponds. pH within the 

optimal range supports the growth of beneficial microorganisms and maintains the balance 

of the pond ecosystem, while extreme pH fluctuations can increase stress in shrimp, and 

trigger high populations of Vibrio sp. Therefore, monitoring and management of pH is 

needed in shrimp culture to prevent health problems and increase pond productivity. 
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The temperatures showed that DOC 14 reached >33°C and the lowest was DOC 49 

with a temperature of 30°C. The highest density of Vibrio sp. bacteria in DOC was 107 

CFU/mL. Fluctuating temperature conditions caused Vibrio sp. to be more pathogenic, 

according to Hatmati (2003) water conditions whose water quality fluctuates can cause 

Vibrio sp. more pathogenic or high pathogenicity for shrimp. According to Arta (2009), 

the optimal temperature for Vibrio sp. development was 35–36°C, but drastically 

decreasing temperatures caused higher virulence (Kharisma & Manan, 2012). 

The highest salinity measurement was 35 ppt in DOC 28 and the lowest was 25 ppt 

in DOC 7. Based on the bacterial density graph, the highest bacterial density was observed 

at 30 ppt salinity on DOC 49, reaching 10⁷ CFU/mL.  Meanwhile, at salinity levels of 34–

35 ppt on DOC 28 and 35, bacterial abundance remained relatively high at 10⁶ CFU/mL. 

The abundance of Vibrio sp. has a strong correlation with alkalinity, pH, salinity, and 

phytoplankton density (Rizaldi et al., 2023). Salinity affects not only Vibrio sp. but also 

other microbial communities in the pond, such as probiotic (non-pathogenic) bacteria, 

which can influence the microbial balance. If salinity is stable within the optimal range, 

probiotic bacteria can compete with Vibrio sp. for nutrients and living space, suppressing 

pathogen density. However, if salinity is too low or high, probiotics may not survive, 

potentially allowing Vibrio sp. to become more dominant and cause infections in shrimp. 

The results of nitrite, TAN and TOM measurements are presented in Figs. (2, 3). 

Nitrite concentrations were relatively low and fluctuated. There was a slight increase at 

DOC 14-21, but after that it remained low until DOC 49. The fluctuation of nitrite indicated 

the presence of a nitrification process, where ammonia is converted to nitrite by nitrifying 

bacteria. However, the low nitrite levels may be due to rapid conversion into nitrate or the 

presence of an effective water quality management system (Ciji & Akhtar, 2020). In this 

study, water quality management included regular water exchange (10-20% daily), 

continuous aeration to maintain dissolved oxygen above 5 mg/L, and the application of 

physical filters before water was released into the ponds. In addition, probiotics containing 

Bacillus spp. are administered twice a week to support microbial balance and suppress 

opportunistic pathogens, including Vibrio species. This strategy is known to reduce 

nitrogenous waste accumulation and maintain microbial stability in intensive shrimp 

farming systems (Chen et al., 2024; Huang & Li, 2024) Meanwhile, TAN concentrations 

tended to increase over time. On DOC 7, the levels were low, but they significantly 

increased from DOC 14 to DOC 49, reaching approximately 1.8 mg/L at the end of the 

observation period. The increase in TAN indicates the accumulation of ammonia 

compounds in the pond, originating from shrimp excretion and the decomposition of 

organic matter (Zhao et al., 2020; Islamy et al., 2024). 
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Fig. 1. Water quality measurement results 

 
Fig. 2. Nitrite and TAN measurement results in ponds 
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Fig. 3. TOM measurement results in ponds 

The concentration of TOM increased from DOC 7 to 28 up to 100 mg/L. This graph shows 

a gradual increase in TOM with increasing shrimp age. TOM is an indicator of the amount 

of organic matter in the water, including feed residues, shrimp feces, and dead 

microorganisms. High TOM values in intensively culture ponds can be caused by factors 

such as overfeeding, shrimp excretion and fecal accumulation, and decomposition of dead 

microorganisms and plankton (Yang et al., 2017). In our study, the increase in TOM was 

primarily associated with overfeeding and the high organic waste load from uneaten feed 

and shrimp feces, which accumulated at the pond bottom. This was particularly evident in 

ponds with limited water exchange and suboptimal bottom management practices. Elevated 

TOM contributes to a reduction in dissolved oxygen levels and promotes anaerobic 

conditions in the sediment-water interface (Ariadi et al., 2019). These conditions create a 

favorable environment for Vibrio spp., including AHPND-causing strains (such as V. 

parahaemolyticus), to proliferate. The organic rich environment not only serves as a 

nutrient source but also reduces microbial competition by suppressing beneficial, aerobic 

bacteria (Wang et al., 2023). As a result, high TOM acts as an indirect driver for the 

colonization and potential virulence expression of AHPND-related Vibrio through 

enhanced survival and dominance in the pond ecosystem. 

Bacteria abundance 

The results of the Total Vibrio Count (TVC) calculation or bacterial density, from 

DOC 7 to DOC 49 ranged from 10⁴ to 10⁷ CFU/mL (Fig. 4). This indicated an increase 

over time during the rearing period, which was caused by the rising input in the culture 

system. Consequently, the waste load also increased periodically (Martinez-Durazo et al., 

2019). 
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Fig. 4. Population abundance of Vibrio sp. bacteria in ponds 

The increasing amount of aquaculture inputs such as feed and shrimp metabolic 

waste in the culture system lead to the accumulation of organic matter in the pond (Ariadi 

et al., 2019). Vibrio spp., which are known pathogens in shrimp ponds, can adapt well to 

aquatic environmental conditions (Pariakan & Rahim, 2021). The population of these 

bacteria fluctuates in response to environmental changes. Some Vibrio sp. species are very 

sensitive and can be opportunistic in their hosts (Nitimulyo et al., 2005). Infection from 

these bacteria can be very harmful to cultured shrimp because Vibrio sp. is able to combine 

infection with other pathogens (Ariadi, 2020). 

Bacterial presence of V. parahemolyticus and Vibrio sp. strain AHPND 

Detection of V. parahemolyticus bacteria in pond water samples showed negative 

results (Table 4). Samples showed positive results for AHPND detection starting from 

DOC 14 and DOC 49 (Fig. 5). This suggested that although V. parahaemolyticus bacteria 

were not present in pond waters, AHPND-related bacterial genes were still detected in other 

Vibrio sp. bacteria types. The density of Vibrio sp. bacteria increased to 107 at DOC 49. 

Acute Hepatopancreatic Necrosis Disease (AHPND) in Litopenaeus vannamei 

(Pacific white shrimp) is commonly caused by Vibrio parahaemolyticus that produces 

toxins. However, AHPND cases are not always directly caused by V. parahaemolyticus. It 

can be caused by several factors, such as the presence of other bacteria that also carry a 

similar AP4 gene. The cause of AHPND is not only caused by V. parahaemolyticus but 

also by V. punensis, V. harveyi, V. owensii, V. campbelli, and Shewanella sp. containing 

the pVA1 plasmid encoding the binary toxins PirAVP and PirBVP (Srikanth et al., 2008; 

Almagro-Moreno et al., 2015; Phiwsaiya et al., 2017; Xiao et al., 2017; Osei-Adjei et 

al., 2018; Perez-Acosta et al., 2018; Quintana-Hayashi et al., 2018; Gomez et al, 2019). 

In addition, V. parahaemolyticus is capable of communicating and transferring AHPND-

associated genes to other Vibrio species, particularly through quorum sensing (QS) (Ming 

Xue et al., 2023; Shuang Liu et al., 2023). 
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Table 4. Detection results of V. parahaemolyticus and Vibrio sp. bacteria associated with 

AHPND 

DOC V. parahaemolyticus Vibrio sp. AHPND Vibrio  Count 

14 Negative Positive 104 CFU/mL 

49 Negative Positive 107 CFU/mL 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Electrophoregram of AHPND detection results in pond water samples DOC 14 and 

49; M: Marker DNA Ladder 100 bp; K+: AHPND Positive Control (230 bp); K-: Negative 

Control; 1: AHPND Positive First Sample DOC 14; 2: AHPND Positive Second Sample 

DOC 14; S: AHPND Positive Sample DOC 49 

 

Corelation between water quality and bacteria abundance 

The results of water quality parameter testing in relation to the abundance of Vibrio 

sp. are presented in Table (5). All tested water quality parameters showed a significant 

correlation with the abundance of Vibrio sp. (P < 0.05). 

 

Table 5. Spearman correlation analysis of water quality parameters on Vibrio bacteria 

abundance 

Spearman 

correlation 

test 

Correlation of parameters to the 

abundance of Vibrio sp. 
Correlation to relationship rate 

Sig. Value Criteria Conclusion 

Correlation 

Coeficient  

(r) 

Relationship rate 

DO with Vibrio 

abundance 
0,007 < 0,05 Correlation -0,378 Strong 

Temperature with 

Vibrio abundance 
0,000 < 0,05 Correlation -0,622 Strong 

pH with Vibrio 

abundance 
0,008 < 0,05 Correlation 0,377 Strong 

Salinity with 

Vibrio abundance 
0,000 < 0,05 Correlation 0,597 Strong 

230bp 

230bp 
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Based on the analysis results (Table 5), the dissolved oxygen (DO) parameter has a 

significance value (sig.) of 0.007 and a correlation coefficient (r) of -0.378. This indicates 

that the DO parameter is correlated with the density of Vibrio sp. bacteria, with a strong 

level of association (Spearman correlation value between 0.334–0.666). The negative 

correlation value suggests that an increase in Vibrio sp. density is associated with a 

decrease in oxygen concentration, and vice versa. Low oxygen conditions (hypoxia) allow 

Vibrio sp. to proliferate more rapidly, as anaerobic environments better support its 

metabolic activity and virulence (Bueno et al., 2020). Vibrio is capable of utilizing organic 

compounds that decompose under low-oxygen conditions, which often occur due to the 

accumulation of organic matter such as feed residues and shrimp feces (Farizky et al., 

2020). Additionally, hypoxic conditions can cause physiological stress in shrimp, reduce 

immune responses, and increase susceptibility to pathogenic bacterial infections. 

Conversely, sufficient dissolved oxygen levels enhance the activity of aerobic 

microorganisms that compete with Vibrio sp. in the pond ecosystem. These 

microorganisms can decompose organic matter more efficiently, thereby reducing the 

nutrient sources available to Vibrio sp. 

The temperature parameter has a significance value (sig.) of 0.000 (<0.05) and a 

correlation coefficient (r) of -0.622. In aquatic ecosystems, temperature not only affects the 

metabolic rate of bacteria but also influences shrimp resistance to infection. Based on the 

correlation analysis, temperature has a negative relationship with Vibrio density, meaning 

that as temperature increases, the density of Vibrio sp. tends to decrease. At higher 

temperatures, bacterial metabolic rates generally increase; however, overly warm 

environmental conditions can inhibit the growth of certain pathogenic bacteria, including 

Vibrio sp. Some species of Vibrio sp., such as V. harveyi and V. parahaemolyticus, have 

an optimal temperature range for growth, typically between 25–30°C (Sheikh et al., 2022). 

If the temperature exceeds this optimal limit, these bacteria can experience physiological 

stress that inhibits metabolic activities, including replication. Furthermore, high 

temperatures can enhance the competitiveness of non-pathogenic microorganisms that are 

antagonistic to Vibrio sp., such as probiotic bacteria or microalgae that produce 

antibacterial compounds. On the other hand, lower temperatures can inhibit shrimp 

metabolism, reduce appetite, and weaken their immune system (Islamy et al., 2025; 

Islamy et al., 2024; Jiang et al., 2019). When the shrimp's immune system is weakened, 

they become more susceptible to Vibrio sp. infection, giving the bacteria a greater 

opportunity to replicate and cause disease. 

The pH parameter has a significance value (sig.) of 0.008 (<0.05) and a correlation 

coefficient (r) of 0.377. Similarly, the salinity parameter has a significance value (sig.) of 

0.000 (<0.05) and a correlation coefficient (r) of 0.597. Vibrio sp. generally grows 

optimally at neutral to slightly alkaline pH levels (7.5–8.5) (Sampaio et al., 2022). When 

the pH drops below the optimal range (becoming acidic), enzymatic activity in Vibrio sp. 
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is disrupted, leading to decreased nutrient utilization efficiency and inhibited growth. 

Acidic conditions can also damage the bacterial cell membrane, inhibit cell division, and 

increase bacterial mortality. In contrast, excessively high pH (alkaline) may induce osmotic 

stress and ionic imbalance within bacterial cells, potentially damaging protein structures 

and impairing cellular respiration (Karagulyan et al., 2022). Furthermore, unstable pH can 

affect shrimp health, weaken their immune systems, and indirectly increase the chances of 

Vibrio sp. colonization and infection. Therefore, maintaining pH stability within the 

optimal range is essential to control Vibrio sp. populations in ponds and mitigate their 

negative impact on aquaculture species. 

The optimal salinity for the growth of Vibrio spp. generally ranges between 10–30 

ppt, depending on the species (Schofield et al., 2020). At appropriate salinity levels, Vibrio 

can grow rapidly due to osmotic conditions that support cellular metabolism and 

proliferation. Conversely, when salinity is too low (< 5 ppt), osmotic pressure within Vibrio 

cells may be disrupted, leading to cell lysis or a drastic reduction in metabolic activity, thus 

decreasing the bacterial population. On the other hand, excessively high salinity (> 35 ppt) 

can cause dehydration of bacterial cells due to excessive osmotic pressure, thereby 

inhibiting growth or even causing bacterial death (Larsen et al., 2004; Gwendolyn et al., 

2021). Moreover, extreme changes in salinity can disrupt microbial community balance in 

aquaculture ponds, potentially giving Vibrio spp. a competitive advantage. This 

underscores the importance of maintaining salinity within the optimal range to prevent 

excessive growth of Vibrio sp., which can negatively affect shrimp health. 

CONCLUSION 

 

This study confirms a strong relationship between water quality parameters and the 

abundance of Vibrio sp. in intensive shrimp ponds. Poor or imbalanced conditions such as 

elevated temperature, low dissolved oxygen, or high organic matter can promote Vibrio 

proliferation, highlighting the need for proper water quality management to control 

bacterial colonization and maintain shrimp health. 
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