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INTRODUCTION  

The largest significant commercially fished fishery in the Red Sea is the Suez 

Gulf. Since it connects the Red Sea and the Mediterranean Sea, it is the best place to 

spawn (Saber et al., 2022). Comparing fish to other animal flesh, it forms a significant 

part of the human diet. It is a vital source of protein, vitamins, minerals, and omega-3 

unsaturated fatty acids, additionally it is also easily digested by the human digestive 

system (Mohanty et al., 2015; Miao et al., 2020). More people are becoming aware of 

the health benefits of eating fish in recent years. However, fish ingestions at least twice a 

week is recommended since it is known to reduce the risk of a number of diseases, 

including triglyceride levels, asthma, arrhythmia, heart attacks, thrombosis, stroke, and 

preterm birth (Zhong et al., 2018; Tanamal et al., 2021). 
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              This study aimed to check the levels of 12 elements (As, B, Ni, Cu, Zn, 

Fe, Mn, Pb, Ba, Cd, Cr, and Al) in water, sediments, and 3 species of marine fish 

from the Suez Gulf during the summer of 2024, focussing on the environmental 

and health problems linked to each element. The findings showed that the amounts 

of trace elements in the water and sediment samples varied. Boron (B) had the 

maximum levels in water (3.57 ± 0.09µg/ mL), while zinc (Zn) recorded the 

minimum (0.011 ± 0.002µg/ mL). The sediment revealed iron (Fe) to be the most 

abundant element (1539 ± 325µg/kg-dw), followed by aluminium (Al) and 

manganese (Mn). However, muscles showed that sigan fish (Siganus rivulatus, 

Forsskål & Niebuhr, 1775) had the maximum level of Al (81.40±3.88 µg/g-ww) 

and the minimum for cadmium (Cd) (0.41 ± 0.01 µg/g-ww). Arsenic (As) levels 

exceeded the allowed limits in all examined species, while Zn and copper (Cu) 

levels remained within safe limits according to international standards. The 

pollution index and contamination degree revealed moderate to high contamination 

of arsenic in fish species, especially in bongus fish (Lethrinus borbonicus, 

Forsskål, 1775) and harid fish (Chlorurus sordidus Forsskål, 1775). There is no 

immediate health risk associated with consuming these species, according to the 

estimated daily intake and hazard quotient values, non-essential elements like 

arsenic may pose health hazards, particularly for children. In order to mitigate 

element pollution in marine environments, the study emphasizes the necessity of 

additional environmental monitoring and management. 
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Fish have a significant role in delivering toxins to consumers (Verbeke et al., 

2005) and are at the top of marine environments and at the highest trophic stage in the 

food chain (Kwaansa-Ansah et al., 2019). Aquatic organisms ingest small amounts of 

trace elements through their water intake, whereas consumers consume larger amounts 

through the food chain, potentially having both short-term and long-term health impacts 

(Afifi et al., 2024). Trace elements are consumed by people through their dietary habits 

and are passed up the food chain (Schenone et al., 2014). Aquatic organisms face 

significant threats from the contamination of their habitats by both inorganic and organic 

pollutants, as documented by Shahjahan et al. (2022). 

Two categories of inorganic pollutants in the environment: the first, essential 

elements (iron, copper, selenium, and zinc), while the second, non-essential elements 

(cadmium, arsenic, mercury, cobalt, and lead) based on physiological requirements 

(McEneff et al., 2017). According to Yipel et al. (2021), trace element residues can enter 

aquatic habitats through a number of routes, such as the release of untreated or 

insufficiently treated household, industrial, and agricultural waste. Consumers, including 

people, can be exposed to trace elements through the consumption of contaminated 

organisms, which can lead to acute and long-term health implications (Abbas et al., 

2022a). The levels of trace elements in fishes are subject to various influencing factors. It 

is crucial to identify fish species with elevated metal levels to ensure consumer awareness 

and safety. The extent of contamination can vary based on factors such as contamination 

sources, fish tissues, fish species, trophic levels, collection sites, and feeding habits 

(Weber et al., 2013). 

Pervious studies investigatED the trace element levels in the muscular tissue of 

fish in both freshwater and marine water environments for a number of decades in 

various countries around the world, such as Tunisia (Ayed et al., 2011), Bosnia and 

Herzegovina (Djedjibegovic et al., 2012), China (Zhao et al., 2012), Italy (Copat et 

al., 2013), Malaysia (Jamil  et al., 2014), Egypt (Ghanem, 2014; Abdel-Wahab et al., 

2017; Khader et al., 2022; Abbas et al., 2022 a&b; Afifi et al., 2024; El-Shorbagy et 

al., 2024; Abbas 2024), India (Kumar et al., 2018), Türkiye (Töre et al., 2021), 

Bangladesh (Alam et al., 2023; Pinkey et al., 2024), Pakistan (Haseeb-ur-Rehman et 

al., 2023), and Nigeria (Adebiyi et al., 2024. Monitoring trace elements in fish muscle 

tissue has become crucial due to the health hazards associated with the accumulation of 

trace elements through fish eating. In order to determine the possible health concerns 

associated with consuming marine fish, it is crucial to measure the levels of trace 

elements in their muscle. 

Possible health hazards connected to consuming trace elements of concern have 

been recognized for several decades. It is known that accumulations of trace elements can 

endanger human health in both non-carcinogenic and carcinogenic ways (Irshad et al., 

2024). It poses significant health risks to humans, including renal failure, bone 

deformities, and liver dysfunction. These risks arise from their persistent and non-



Trace Elements Pollution in Water, Sediments, and Marine Fish Muscles  . 

 

3175 

degradable nature within the body's internal organs (Kim et al., 2015). The current 

investigation aimed to (1) monitor the concentrations of 12 trace elements in sediment, 

water, and three fish spp.; (2) identify factors influencing metal bioaccumulation in fish; 

(3) evaluate the environmental impact of these elements on aquatic environments; and (4) 

assess health risks, including non-cancer and cancer risks, from consuming these fish. 

MATERIALS AND METHODS  

Samples collection 

Water samples were collected using a Ruttner sampler from three different areas 

in the Gulf of Suez, with three replicates per area. Simultaneously, sediment samples 

were gathered during the summer of 2024 (Fig. 1). Additionally, three fish species (five 

specimens per species) were obtained from fishermen in Suez City. 

The first species, bongus fish (Lethrinus borbonicus), is a carnivorous member of 

the Lethrinidae family. It had an average total weight of 199.31 ± 11.04 g, a standard 

length of 19.11 ± 1.12 cm, and a total length of 22.64 ± 1.03 cm. 

The second species, harid fish (Chlorurus sordidus), also carnivorous but belonging to 

the Scaridae family, had an average total weight of 362.33 ± 22.27 g, a standard length of 

25.65 ± 2.04 cm, and a total length of 32.11 ± 3.54 cm. 

The third species, sigan fish (Siganus rivulatus), is a herbivorous fish from the Siganidae 

family, with an average total weight of 167.40 ± 6.05 g, a standard length of 

18.09 ± 1.02 cm, and a total length of 21.69 ± 1.11 cm. 

All fish specimens were immediately transported to the laboratory in ice-filled 

containers. A minimum of 10 grams of edible dorsal muscle tissue was extracted from 

each specimen. The muscle samples were then frozen and stored in plastic bags for later 

analysis. 

 Fig. 1. A map displaying the locations of the water and sediment samples collection 

stations in Egypt's Suez Gulf 
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Trace element measurements 

The boron (B), copper (Cu), lead (Pb), zinc (Zn), chromium (Cr), barium (Ba), 

aluminium (Al), nickel (Ni), arsenic (As), manganese (Mn), iron (Fe), and cadmium (Cd) 

levels were measured in sediment, water, and three fish samples (n=5). In accordance 

with APHA recommendations, 500 mL of water samples were acidified with HCl (37%) 

and HNO₃ (65%) after being filtered through a 0.45µm filter (APHA, 2023). Samples of 

sediment were mixed, dried at 105°C, and then sieved using a 63µm screen. Then, in 

accordance with EPA protocol (USEPA, 2023), 1.0g of the sieved sediment was digested 

in a covered Teflon vessel (Anton-Paar microwave digestion machine) using HNO₃ (9 

mL) and HCl (3mL). 5mL of HNO₃ (65%) and 1mL of H₂O₂ (30%) were added to 

digestion tubes with about 0.5g of each fresh muscle sample. On a hot plate, the mixture 

had been heated until it was completely digested. The digested specimens were then 

transferred to volumetric bottles and diluted with 1 percent HNO₃ until they reached a 

final volume of 25mL (AOAC, 2012). Inductively coupled plasma optical emission 

spectrometry (ICP-OES, USA) was used to measure the amounts of trace elements in 

diluted sediment, water, and fish samples. A quality control sample, an external reference, 

and standard reference materials are used to guarantee the precision and accuracy of the 

findings. The recovery rates for standard reference metals ranged between 90% and 

110%. The amount of water was expressed in µg/L, while the amounts of fish muscle and 

sediment were expressed in µg/g on a wet weight basis (ww-b) and dry weight basis (dw-

b), respectively. Details of the quantification ranges (LOQ) and detection ranges (LOD) 

for the studied elements are given in Table (1S). 

Ecological risk assessments 

The contamination degree (CD) and the metal pollution index (MPI) are two of 

the measures used to assess the level of metal pollution in aquatic species (Tahity et al., 

2022).  

CD measurements 

The CD was calculated using the trace element levels found in marine fish from 

the Suez Gulf. The CD was determined by the equation:  

CD = C-fish / C-background  

Where, C-fish represents the level of trace elements in fish (μg/g-ww) and C-

background denotes the background levels of Pb, Cu, Zn, Cd, Fe, and Ni cited in Abbas 

(2023). The CD values offer a clear indication of contamination levels. A CD value of 1 

or less indicates minimal contamination, reflecting negligible pollution. Values between 1 

and 2 signify low contamination, suggesting a minor presence of pollutants. A CD range 

of 2 to 3 represents moderate contamination, indicating a noticeable environmental 

impact. CD values exceeding 3 are categorized as high contamination, reflecting 

significant environmental pollution. 
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MPI measurements 

The MPI provides an integrated assessment of trace element contamination. The 

MPI was computed using the formula:  

MPI = (C1 × C2 × C3×· · · · · · × Cx) 1/n 

Where, C1, C2, C3, ..., Cx displayed the element levels in studied muscles (µg/g-

ww), and n is the number of measured elements (Tahity et al., 2022). MPI values are 

classified into four pollution levels: a value of 1 or less is deemed safe, indicating 

minimal pollution. Values between 2 and 3 denote slight pollution, reflecting a minor 

presence of contaminants. An MPI extending from 3 to 5 indicates moderate pollution, 

suggesting a more substantial environmental impact. Values greater than 10 are classified 

as heavily polluted, signifying severe contamination and significant environmental 

concern. 

Health risk assessment 

The estimated daily intake (EDI) and non-carcinogenic and carcinogenic risk 

indices based on the amounts of the studied element in the muscle tissues were used to 

assess the possible health risks associated with eating fish muscle tissue (USEPA, 2018).  

EDI measurements 

The EDI was calculated to evaluate exposure levels since it represents the average 

daily intake of a specific trace element throughout the lifespan as a result of eating fish 

muscle tissue (Mwakalapa et al., 2019): 

EDI = ((EP×IR×C×ER) / (BW × AT)) × 10-3 

Where, the EP represents the lifespan of the exposure period (70 years), and the IR 

represents the rate of fish consumption by adults (41 g/day) and children (27 g/day) 

(USEPA, 2018); BW is the body weight of the adult and child (70 kg and 30 kg, 

respectively); AT is the mean lifetime (365 days x 70 years); C is the element content in 

the studied muscles (μg/g ww-b); and ER (365 days year-1) is the exposure rate (USEPA, 

2018). 

Target hazard quotient (THQ) measurements 

The THQ was used to determine non-carcinogenic health issues associated with 

the ingestion of heavy metal pollution found in the studied muscles  It was calculated by 

comparing the EDI of a trace element to its oral reference dose. 

THQ = EDI / RfD 

Where, RfD is for the oral reference dose (µg/g/day), and the RfD values for the exmined 

elements are as follows: arsenic 0.003, copper 0.04, nickel 0.02, barium 0.2, lead 

0.00357, iron 0.7, manganese 0.14, and zinc 0.3 (USEPA, 2018). 

Hazard index (HI) measurements 

The HI is an additional computational formula that adds up the THQ values for 

the studied elements in order to show the influence of non-carcinogenic risks (Cui et al., 

2015): 

HI = THQ (Mn) + THQ (B) + THQ (As) + THQ (Zn) + THQ (Fe) + THQ (Ni) + 

THQ (Cr) + THQ (Al) + THQ (Cu) + THQ (Ba) + THQ (Cd) + THQ (Pb) 
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Carcinogenic risk (CR) measurements 

The CR values were calculated to ascertain the increasing risk of cancer 

associated with ingesting of studied elements in fish spp: 

CR = EDI x CSF 

Where, CSF stands for the carcinogenic slope factor; 1.5µg/g/day for As, 0.0038µg/g/day 

for Cd, 0.0085µg/g/day for Pb (USEPA, 2016). 

Statistical measurements 

Excel was utilized to do statistical analysis using SPSS (version 22). Levene's test 

was used to evaluate the results' normal distribution and confirm homogeneity of 

variance. One-way analysis of variance (ANOVA) was employed to identify statistically 

significant differences (P < 0.05) in the concentrations of the studied elements in water, 

sediments, and fish spp. (Dytham, 2011). Finally, the data were displayed as means ± 

standard deviation in tables. 

RESULTS AND DISCUSSION 

Trace elements levels in water samples 

Element levels in the Gulf of Suez water fluctuated, as shown in Table (1), with 

the highest recorded level for B being 35.7±0.96µg/ L and the lowest for Cr being 

2.1±0.2µg/ L. However, the extending of these metals was as follows: aluminium > boron 

> iron > barium > zinc > arsenic > copper > lead > chromium. In contrast, Cd, Mn, and 

Ni were not detectable in studied water samples. Comparing the element levels in water 

samples to the established recommendations, it showed that they were within acceptable 

ranges (WHO 2011). The arsenic concentration in the studied water was found to be 

4.5±0.27µg/ L, which is higher than the range reported by Hou et al. (2024) (0.82-0.86 

µg/L). In contrast, the Pb concentration in the water from the Suez Gulf, Red Sea 

(3.3±0.10 µg/L), was notably within the values mentioned by El-Metwally et al. (2019) 

(1.24 - 4.51 µg/L), while Hou et al. (2024) documented even higher levels (1.76-2.57 

µg/L). Similarly, Mahmoud et al. (2023) and Magdy et al. (2024) reported 0.44-0.75 

and 0.0113 µg/L, respectively. The Cr concentration in the studied water was found to be 

2.1±0.2 µg/L, which is within the values mentioned by Hou et al. (2024) (1.48-12.2 

µg/L). The study also recorded an average Cu concentration in the water of the Suez 

Gulf, Red Sea (3.7±0.3 µg/L). This value is lower than those reported by El-Metwally et 

al. (2019), Mahmoud et al. (2023), and Hou et al. (2024) (0.85-2.61, 0.0124, and 3.36-

3.60 µg/L, respectively). Fe concentration in the Suez Gulf water, Red Sea, was found to 

be 17.7±0.72 µg/L, which is notably within the values mentioned by El-Metwally et al. 

(2019) and Magdy et al. (2024) (8.44 - 33.71 µg/L and 19.10-26.96 µg/L). On the other 

hand, it was lower than those mentioned by Mahmoud et al. (2023) (0.147 µg/L). Zn 

concentration in the Suez Gulf water, Red Sea, was found to be 11.45±0.62 µg/L, which 

was notably within the values revealed by El-Metwally et al. (2019) (2.13 - 14.42 µg/L), 

8.96-17.26 µg/L (Hou et al., 2024), while it was higher than those mentioned by 
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Mahmoud et al. (2023) and Magdy et al. (2024) (0.012 and 2.54-6.30 µg/L, 

respectively) 

 

Trace elements levels in sediment samples 

Table (2) shows the concentrations of the trace elements in the sediment samples 

varied, with Cu exhibiting the lowest level at 1.17 ± 0.23 µg/g-dw and Fe displaying the 

highest level at 1539 ± 325 µg/g-dw. In descending order, the elements are ranked as 

follows: iron > aluminium > manganese > zinc > barium > boron > chromium > arsenic > 

nickel > lead > copper. Notably, Cd was below detection limits (ND) in the sediment.  

The arsenic concentration in the studied sediment was found to be 2.57 ± 0.23 

µg/g-dw, which is within the range mentioned by Hou et al. (2024) (1.68–3.12 µg/g-dw). 

In contrast, the lead (Pb) concentration in the current study (2.23 ± 0.83 µg/g-dw) from 

the Suez Gulf, Red Sea, was notably lower than those reported from other coastal regions. 

For example, El-Sorogy et al. (2024) mentioned a concentration of 41.98 µg/g-dw in the 

Hurghada coastal area of the Red Sea. However, Kodat and Tepe (2023) documented 

even higher levels (60.64 µg/g-dw) in the Black Sea. Similarly, Kahal et al. (2020) 

reported 33 µg/g-dw in the Red Sea, Saudi Arabia. These values are in contrast with 

historical baseline levels such as those from Turekian and Wedepohl (1961) for 

background shale (90 µg/g-dw) and Taylor (1964) for background continental crust (100 

µg/g-dw), suggesting that natural geological levels typically surpass those observed in 

this study. Furthermore, the lead values found in this study are still significantly below 

critical contamination limits, as the FAO/WHO (2001) maximum allowed limit (100 

µg/g-dw). 

The chromium concentration in the studied sediment (6.27 ± 0.67 µg/g-dw) from 

the Suez Gulf, Red Sea, was significantly lower compared to values reported in other 

marine environments. For instance, in Jiaozhou Bay, China, Hou et al. (2024) found that 

the amounts of Cr ranged from 41.39 to 72.29 µg/g-dw. However, the copper 

concentration of 1.17 ± 0.23 µg/g-dw in the studied sediments. This value is similar to the 

concentration of 1.23 µg/g-dw found in Hurghada coastal sediments, as documented by 

El-Sorogy et al. (2024). However, Kahal et al. (2020) and Kodat and Tepe (2023) have 

detected much higher Cu concentrations in different marine habitats (31.6 and 45.66 

µg/g-dw, respectively). Similarly, El-Sorogy et al. (2016) and Hou et al. (2024) reported 

values ranging from 24.51 to 30.69 µg/g-dw in the Mediterranean Sea, Egypt, and 

Jiaozhou Bay, China, respectively. When compared with global geochemical background 

levels, Cu concentrations in shale sediments are reported to be 45 µg/g-dw (Turekian & 

Wedepohl, 1961), while continental crust levels reach 55 µg/g-dw (Taylor, 1964), 

indicating that the Cu levels found in the Suez Gulf sediments are lower. The MPL (100 

µg/g-dw) for Cu in marine sediments, as set by FAO/WHO (2001). 

The iron concentration in the studied sediments, was recorded at an average of 

1539 ± 325 µg/g-dw. This value is lower than those reported for Red Sea sediments, 
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Saudi Arabia (2432 µg/g-dw, Kahal et al., 2020) and the Hurghada coastal area (346 

µg/g-dw, El-Sorogy et al., 2024). Comparisons with other marine environments reveal 

even higher concentrations, with El-Sorogy et al. (2016) documenting 109,560 µg/g-dw 

in the Mediterranean Sea, Egypt and Kodat and Tepe (2023) reporting 27,646 µg/g-dw 

in the Black Sea. When compared to geochemical background levels, Fe concentrations 

in shale sediments are estimated at 47,200 µg/g-dw (Turekian & Wedepohl, 1961), and 

continental crust levels reach 56,300 µg/g-dw (Taylor, 1964), indicating that Fe levels in 

the Suez Gulf sediments are significantly lower than natural background concentrations. 

The MPL for Fe in marine sediments, as set by FAO/WHO (2001), is 5000 µg/g-dw, 

with the Fe concentrations recorded in the Suez Gulf being well below this threshold, 

suggesting no Fe-related pollution in the region. 

The zinc concentration in the Suez Gulf sediments was found to be 15.47 ± 1.22 

µg/g-dw, which is relatively low compared to other marine environments. For instance, 

El-Sorogy et al. (2024) reported 7.47 µg/g-dw in the Hurghada coastal area, Red Sea. On 

the other hand, El-Sorogy et al. (2016) mentioned a significantly higher concentration in 

the Mediterranean Sea, Egypt (183.23 µg/g-dw). Other studies from the Black Sea (94.16 

µg/g-dw) and Jiaozhou Bay, China (76.07-96.19 µg/g-dw), also reported higher 

concentrations. By comparing these findings with the FAO/WHO-established MPL for 

zinc (300 µg/g-dw), it can be concluded that the levels of zinc pollution in these aquatic 

habitats fall within the allowed limits. 

The manganese concentration in the current study was found to be 56.27 ± 5.78 

µg/g-dw. A study by El-Sorogy et al. (2024) mentioned a lower value of 49.36 µg/g-dw 

in the Hurghada coastal area, Red Sea. Kodat and Tepe (2023) recorded a much higher 

concentration of 571.87 µg/g-dw in the Black Sea sediment. However, El-Sorogy et al. 

(2016) documented 553 µg/g-dw in the Mediterranean Sea sediment, Egypt. Other 

investigations have found manganese concentrations in background shale (850 µg/g-dw, 

Turekian and Wedepohl, 1961) and continental crust (950 µg/g-dw, Taylor, 1964). The 

MPL for manganese set by FAO/WHO (2001) is 2000 µg/g-dw, and compared to this 

threshold, the manganese concentrations in the studied sites are significantly lower. 

Finally, the nickel concentration in the current study was found to be 2.57 ± 0.54 

µg/g-dw. El-Sorogy et al. (2024) recorded a lower value of 1.73 µg/g-dw in the 

Hurghada coastal sediment, Red Sea. Kodat and Tepe (2023) mentioned a higher value 

of 27.29 µg/g-dw in the Black Sea. Additionally, Kahal et al. (2020) documented 20 

µg/g-dw in the Red Sea sediment, Saudi Arabia. El-Sorogy et al. (2016) reported a 

significantly higher concentration of 480.86 µg/g-dw in the Mediterranean Sea, Egypt. 

The nickel levels in the Suez Gulf sediments are lower than the background values in 

shale (68 µg/g-dw, Turekian & Wedepohl, 1961) and the continental crust (75 µg/g-dw, 

Taylor, 1964). The MPL for nickel set by FAO/WHO (2001) is 50 µg/g-dw. Based on 

these results, it is evident that nickel concentrations in many of the studied sites exceed 

the MPL, indicating elevated pollution levels in certain aquatic environments. 
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Table 1. Comparison of trace element levels (µg/L; Cu, Pb, Zn, Cr, Al, Ni, As, Mn, Fe, and Cd) in the studied water samples (n=5) 

across different investigations 

 

Table 2. Comparison of the levels of the studied elements (µg/g-dw-b, n=5) in the sediment samples across different investigations 

 

 
Non-essential elements    Essential elements 

 
As Al Ba Pb Cr   Cu Fe B Zn 

Current study 4.5±0.27 63.45±1.01 16.2±0.53 3.3±0.1 2.1±0.2 
 

3.7±0.3 17.7±0.72 35.7±0.96 11.45±0.62 

El-Metwally et al. (2019) 
   

1.24 - 4.51 
 

0.85 to 

2.61 

8.44 - 

33.71  
2.13 - 14.42 

Mahmoud et al. (2023) 
   

0.0113 
  

0.0124 0.147 
 

0.012 

Hou et al. (2024) 0.82-0.86 -- -- 1.76-2.57 1.48-12.2 
 

3.36-3.60 -- -- 8.96-17.26 

   
Magdy et al. (2024)        0.44-0.75       

19.10-

26.96  
  2.54-6.30 

  

  

Non-essential elements   Essential elements Location  

As Al Ba Pb Cr Cd  Cu Fe B Zn Mn Ni 

Current study (µg/g-dw, n=5) 2.57±0.23 1021±123 8.60±0.43 2.23±0.83 6.27±0.67 ND  1.17±0.23 1539±325 8.47±0.67 15.47±1.22 56.27±5.78 2.57±0.54  

El-Sorogy et al. (2024)    41.98  0.14 

 

1.23 346  7.47 49.36 1.73 

Hurghada 

coastal, Red 

Sea, 

Kodat and Tepe (2023)    60.64  0.20  45.66 27,646  94.16 571.87 27.29 Black Sea 

Kahal et al. (2020)    33  0.51 

 

31.6 2432  28.5 -- 20 

Jazan coastal 

area, Red Sea, 

Saudi Arabia 

 El-Sorogy et al. (2016)    0.18  28.88 
 

24.57 109,560  183.23 553 480.86 
Mediterranean 

Sea, Egypt 

Hou et al. (2024) 1.68-3.12 
  

26.83-33.57 
41.39-72.29 0.074-0.092 

 
24.51-30.69 

  
76.07-96.19   

Jiaozhou Bay, 

China 

Turekian and Wedepohl, (1961)    90  0.30 
 

45 47,200  95 850 68 
Background 

shale 

 Taylor (1964)    100  0.20 

 

55 56,300  70 950 75 

Background 

continental 

crust 

FAO/WHO (2001)    100  3  100 5000  300 2000 50 MPL 

https://www.sciencedirect.com/science/article/pii/S0025326X23013590#bb0125
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Trace elements levels in fish species 

A comparison of trace element levels in the sigan fish, bongus fish, and harid fish 

across various studies is represented in Table (4). However, Table (3) represents the 

maximum allowable limit (MPL) for trace elements (μg/g wet weight) in the fish muscles 

in accordance with international regulations. The studied fish exhibit As levels ranging 

from 1.44 to 3.53 µg/g-ww. These outcomes were below the range described by Mziray 

and Kimirei (2016), which varied between 3.43 and 18.52 µg/g-ww. Nonetheless, they 

concurred with the results of Abbas et al. (2024), who recorded levels extending from 

0.50 to 3.59 µg/g-ww. Compared to Al-Amri et al. (2021), who observed significantly 

decreased levels extending from 0.002 to 0.02 µg/g-ww, the present outcomes indicate 

relatively higher levels. In addition, the present study's results fell within the broader 

range described by El-Shorbagy et al. (2024) (0.48–5.10 µg/g-ww). In contrast, As 

levels documented by Hussein et al. (2023) in three marine spp. (1.03–1.13 µg/g-ww) 

were slightly below those found in the current study. 

The Al concentrations in the muscles of the studied species varied from 63.95 to 

81.40 µg/g-ww. These levels were significantly higher than those described by El-

Shorbagy et al. (2024), who recorded a range of 1.93 to 4.36 µg/g-ww, and Abbas et al. 

(2024), who observed concentrations between 0.80 and 4.21 µg/g-ww. Similarly, the 

present study's values exceeded those documented by Hussein et al. (2023), which varied 

from 1.38 to 2.11 µg/g-ww for three marine spp. However, the Al levels in this study 

partially overlapped with the range described by Mziray and Kimirei (2016), which 

varied from 19.44 to 87 µg/g-ww.  

The Pb concentrations in the muscles of the studied species varied from 1.38 to 

2.18 µg/g-ww. These outcomes were greater than those described by El-Moselhy et al. 

(2014), who recorded amounts between 0.25 and 0.50 µg/g-ww, and Zaghloul et al. 

(2022), who documented levels between 0.26 and 1.04 µg/g-ww. Likewise, the current 

results were higher than those published by Mziray and Kimirei (2016), Younis et al. 

(2021) and Hussein et al. (2023) (0.05–0.14, 0.15–0.17, and 0.06–0.17 µg/g-ww, 

respectively). Furthermore, the Pb in this investigation exhibits lower concentrations than 

those described by El-Shorbagy et al. (2024), who recorded a range of 2.12 to 6.83 µg/g-

ww, and slightly below the upper range observed by Abbas et al. (2024) (0.59–4.81 µg/g-

ww). The results also aligned closely with those from Al-Amri et al. (2021) and 

Yakamercan et al. (2021) (0.00–2.75 and 0.72–4.2 µg/g-ww, respectively). 

The Cr concentrations in the muscles of the studied species varied from 0.60 to 

1.90 µg/g-ww. These outcomes were lower than those described by Younis et al. (2021), 

Abbas et al. (2024) and El-Shorbagy et al. (2024) (7.63 to 23.6, 2.29-5.43, and 1.97-

5.25 µg/g-ww, respectively). In contrast, the Cr levels in the present study were higher 

than those recorded by Hilal and Ismail (2008), Mziray and Kimirei (2016), and Al-

Amri et al. (2021) (0.21–2.08, 0.10–0.29 and 0.01–0.02 µg/g-ww, respectively). 

However, the Cd concentrations in the muscles of the studied species varied from 1.44 to 
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3.53 µg/g-ww. These outcomes are notably higher compared to the findings of El-

Moselhy et al. (2014), Zaghloul et al. (2022) and Hussein et al. (2023), (0.04 to 0.38, 

0.54 to 1.09 and 0.03 to 0.11 µg/g-ww, respectively). 

The Cu concentrations in the muscles of the studied species fluctuated between 

10.96 and 21.84 µg/g-ww. These levels were significantly higher than those described by 

El-Moselhy et al. (2014), Al-Amri et al. (2021), Yakamercan et al. (2021), and 

Zaghloul et al. (2022) (0.17-0.74, 0.09-1.31, 0.07-0.77, and 0.381-0.970 µg/g-ww, 

respectively). Compared to El-Shorbagy et al. (2024), who observed a Cu range of 2.11 

to 10.29 µg/g-ww, the Cu concentrations in this current investigation were higher, yet 

aligned with those described by Abbas et al. (2024) (10.33 to 25.85 µg/g-ww). In 

addition, Mziray and Kimirei (2016) noted Cu levels of 1.65 to 4.71 µg/g-ww, which 

were also lower than the outcomes of the current investigations. 

The Fe concentrations in the muscles of the studied species fluctuated between 

31.26 and 63.96 µg/g-ww. These levels were comparable to those described by El-

Shorbagy et al. (2024), who observed Fe levels extending from 31.80 to 81.35 µg/g-ww. 

Similarly, Abbas et al. (2024) recorded Fe levels between 36.86 and 135.96 µg/g-ww, 

which overlap with the higher end of the present study's findings. In contrast, the Fe 

levels in the current investigations were significantly higher than those described by El-

Moselhy et al. (2014) and Al-Amri et al. (2021) (1.15-10.9 and 6.84-20.81 µg/g-ww, 

respectively). Zaghloul et al. (2022) also noted lower Fe levels, extending from 13.6 to 

29.1 µg/g-w. In contrast, the findings of Mziray and Kimirei (2016), who recorded Fe 

levels of 34.02 to 103.29 µg/g-ww, were in agreement with the outcomes of the current 

investigations, especially at the upper end. 

The Zn levels in the present study varied from 22.98 to 49.69 µg/g-ww across 

three marine spp. These levels were notably higher than those described by El-Shorbagy 

et al. (2024), who observed that the Zn levels varied from 7.02 to 19.75 µg/g-ww, and El-

Moselhy et al. (2014), whose findings varied from 2.70 to 8.23 µg/g-ww in 14 species. 

Similarly, Zaghloul et al. (2022) documented Zn levels of 5.90 to 11.9 µg/g-ww, which 

are significantly below the concentration recorded in the current study. In contrast, the Zn 

levels from Mziray and Kimirei (2016), which varied from 67.8 to 214.6 µg/g-ww, were 

higher than those recorded in the present study. Abbas et al. (2024) reported Zn levels 

between 11.95 and 35.18 µg/g-ww, partially overlapping with the lower end of the 

present study’s findings. 

The Mn concentrations in the muscles of the studied species fluctuated between 

0.99 and 2.16 µg/g-ww. These outcomes are higher than those described by El-Moselhy 

et al. (2014), Zaghloul et al. (2022), and El-Shorbagy et al. (2024) (0.10-0.93, 0.264-

0.897, and 0.50-1.31 µg/g-ww, respectively). In contrast, Mziray and Kimirei (2016) 

observed much higher Mn levels, extending from 5.55 to 10.18 µg/g-ww, which stands in 

stark contrast to the current investigation. Abbas et al. (2024) mentioned that the Mn 
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levels ranged between 1.27 and 2.50 µg/g-ww, overlapping partially with the present 

study’s range. 

The Ni concentrations in the muscles of the studied spp. fluctuated between 0.77 

and 1.87 µg/g-ww. These outcomes are within the range described by El-Shorbagy et al. 

(2024), where Ni levels varied from 1.20 to 1.76 µg/g-ww. However, they are slightly 

below than those found by Younis et al. (2021), where Ni levels varied from 3.60 to 

19.19 µg/g-ww. These levels were notably higher than those observed by Mziray and 

Kimirei (2016) and Zaghloul et al. (2022) (0.12-0.15 and 0.332-0.585 µg/g-ww, 

respectively). In contrast, Abbas et al. (2024) found Ni levels between 1.46 and 4.86 

µg/g-ww, which overlaps somewhat with the range observed in the current investigation. 

In general, Al has the highest amount at 81.40±3.88 µg/g-ww, while Cd has the 

lowest at 0.41±0.01 µg/g-ww, according to the analysis of the elements investigated in 

sigan fish. In descending order, the elements are ranked as follows: aluminium > iron > 

zinc > boron > copper > lead > manganese > chromium > nickel > arsenic > barium > 

cadmium. However, Al in bongus fish exhibited the maximum level at 76.51±6.28 µg/g-

ww, while Cd exhibited the minimum at 0.50±0.01 µg/g-ww (aluminium > iron > zinc > 

boron > copper > arsenic > lead > chromium > manganese > barium > nickel > 

cadmium). Moreover, the maximum level of trace elements in the harid fish (63.95±3.23 

µg/g-ww) was recorded for Al, while Cr exhibits the minimum (0.60±0.03 µg/g-ww) as 

the descending order of aluminium > boron > iron > copper > zinc > arsenic > lead > 

manganese > nickel > barium > cadmium > chromium. Statistically, the significant 

differences between species based on the studied elements were shown (P<0.05, one-way 

ANOVA).  

Overall, it emerged that the amounts of copper, iron, nickel, and manganese in all 

studied marine fish were lower than the FAO's (1983) allowable threshold. In contrast, Pb 

and Zn were below the allowable threshold for all species except sigan fish. All the 

studied species have levels that surpass the permissible limit. Lastly, all studied species 

had cadmium levels above the allowable threshold, with the exception of sigan fish 

(Table 3). 

 

Table 3. Fish muscles' maximum allowable limit (MPL) for trace elements (μg/g wet 

weight) in accordance with international regulations 

  Non-essential elements  Essential elements 

  As Pb Cr Cd  Cu Fe Zn Mn Ni 

FAO (1983) 1 0.5 2 0.05  30 
 

30 
  

FAO/WHO 

(1989)  
0.5 

 
0.5 

 
3 

 
40 

  

WHO (1989) 
 

2 
 

1  30 100 100 1 
 

USEPA (2000) 
    

 
    

2 

EU (2015) 
 

0.3 
 

0.25  20 
 

50 
 

80 
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Table 4. The levels of trace elements (µg/g-ww-b) in the fish species under study from various studies 

 Non-essential elements   Essential elements 

  As Al Ba Pb Cr Cd  Cu Fe B Zn Mn Ni 

Current 

study 

Sigan fish  
1.44

±0.3

4 c 

81.40±3.8

8 a 

1.44±0.3

3 a 

2.18±0.76 

a 

1.90±0.87 

a 
0.41±0.01 c 

 
21.84±1.4

3a 

63.96±9.22 

a 

28.90±1.5

2 

49.69±2.1

1 a 

2.16±0.91 

a 

1.87±0.06 

a 

Bongus fish 

3.53

±0.9

3a 

76.51±6.2

8 b 

0.99±0.0

3 c 

1.38±0.81 

c 

1.18±0.45 

b 
0.50±0.01 b 

 
10.96±1.2

3c 

40.64±4.36 

b 

33.20±1.7

8 b 

35.96±1.2

3 b 

0.99±0.08 

c 

0.77±0.04 

c 

Harid fish 

2.77

±0.3

0 b 

63.95±3.2

3 c 

1.00±0.0

9b 

1.72±0.94
b 

0.60±0.03 

c 
1.00±0.01 a 

 
17.74±1.0

7b 
31.26±2.32 

45.95±2.4

8a 

22.98±1.6

5 c 

1.26±0.04 

b 

1.24±0.06 

b 

El-Shorbagy et al. (2024) 
0.48-

5.10 
1.93-4.36   2.12-6.83 1.97-5.25 ND 

 
2.11-10.29 

31.80-

81.35 

7.02-

19.75 
  0.50-1.31 1.20-1.76 

El-Moselhy et al. (2014) -- --   0.25-0.50 -- 0.04-0.380 
 0.170- 

0.740 
1.15- 10.9 2.70- 8.23   0.10-0.93 -- 

Yakamercan et al. (2021) -- --   0.72-4.26 -- --  0.07-0.77 -- 0.01-0.66   -- 0.55-1.96 

Younis et al. (2021)* -- --   0.15-0.17 7.63-23.6 -- 
 

1.60-3.94 17.0-39.29 --   0.65-1.13 
3.60-

19.19 

Hilal and Ismail (2008)* -- --   0.31-1.73 0.21-2.08 --  0.10-0.42 0.52-4.27 0.52-7.29   0.10-0.69 0.21-1.04 

Hossain et al. (2022)* -- --   0.74-1.49 -- -- 
 

0.61-3.10 -- 5.78-9.56   -- 
0.004-

0.17 

Al-Amri et al. (2021)* 
0.002

-0.02 
--   0.00-2.75 0.01-0.02 -- 

 
0.09-1.31 6.84-20.81 0.94-1.34   -- 0.00-1.29 

Mziray et al. (2016) 
3.43-

18.52 
19.44-87   0.05-0.14 0.10-0.29 -- 

 
1.65-4.71 

34.02-

103.29 

67.8-

214.6 
  

5.55-

10.18 
0.12-0.15 

Zaghloul et al. (2022) -- --   0.26-1.04 -- 0.54-1.09 
 0.381-

0.970 
13.6- 29.1 5.90- 11.9   

0.264-

0.897 

0.332-

0.585 

Hussein et al. (2023) 
1.03–

1.13 
1.38-2.11   0.06 -0.17 -- 0.03-0.11 

 
-- -- --   -- -- 

El‑Kady et al. (2025) 0.15- 

3.38 

1.13-3.44 0.180-

0.35 

0.009-

0.022 

0.067-

0.181 

0.002-

0.0094 

 0.17 -0.37 4.11- 11.8 -- 2.61-7.58 0.10-

0.270 

32.0- 52.3 

Abbas et al. (2024) 
0.50-

3.59 
0.80-4.21   0.59-4.81 2.29-5.43 ND 

 10.33-

25.85 

36.86-

135.96 

11.95-

35.18 
 -- 1.27-2.50 1.46-4.86 
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Pearson correlation coefficients 

Pearson correlation coefficients based on levels of studied elements in the water 

and sediment are represented in Fig. (2). In contrast, Pearson coefficients based on levels 

of studied elements in the sigan fish, bongus fish, and harid fish collected from the Suez 

Gulf are shown in Fig. (3). It was established to determine if some of the elements under 

study were correlated with one another based on their levels in the sediment, water, and 

studied fish from the Suez Gulf. The positive relationships between the studied elements 

suggest a similar input source to the aquatic ecosystem, whereas the negative 

relationships suggest a different source. It was believed that heavy metals with high 

positive relationships came from similar sources, while those with strong negative 

relationships were thought to come from different sources (Al-Alimi & Alhudify 2016). 

 

 

 

 

 

 

 

 



Abbas et al., 2025 

 
3188 

 

Water As Al Ba Pb Cr Cd Cu Fe B Zn Mn Ni 

As 
            

Al 
        

 1 
  

Ba 
        

 0.5  
 

Pb 
        

 0 
  

Cr 
        

 -0.5 
  

Cd 
        

 -1 
  

Cu 
            

Fe 
            

B 
          

 
 

Zn 
            

Mn 
           

A 

Ni 
            

 

Sediment As Al Ba Pb Cr Cd Cu Fe B Zn Mn Ni 

As 
            

Al 
            

Ba 
            

Pb 
            

Cr 
            

Cd 
            

Cu 
            

Fe 
            

B 
            

Zn 
            

Mn 
           

B 

Ni 
            

Fig. 2. Pearson correlation coefficients (heatmap) based on the studied elements in the water (A) and sediment (B) collected from the 

Suez Gulf 
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Fig. 3. Pearson correlation coefficients (heatmap) based on the 

studied elements in three fish (sigan fish (A), bongus fish (B), 

and harid fish (C) collected from the Suez Gulf 
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Environmental risk assessment  

Contamination degree (CD) values 

 The degree of trace element contamination in various organs of fish was assessed 

using the contamination degree and metal pollution index (Tahity et al., 2022). The 

contamination degree (CD) values were calculated based on the levels of Fe, Cr, As, Cu, 

Pb, Ni, and Mn in the studied species (Fig. 4). With CD values < 1, the levels of 

contamination for Fe, Cr, Cu, Pb, Ni, and Mn were found to be low, suggesting that all 

studied species had very little contamination. The contamination degree for As varied 

across species, with sigan fish showing a low contamination level (CD-As = 1.44), harid 

fish exhibiting a moderate contamination level (CD-As = 2.77), and bongus fish having 

detected a high contamination level (CD-As > 3). The contamination degree for Pb and 

Zn was also generally low, with CD values of less than 1, except for sigan fish, which 

showed a low contamination degree (1.09 and 1.24, respectively). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The contamination factor (CD) values of 9 metals in three marine fish (sigan fish, 

bongus fish, and harid fish) collected from Suez Gulf 

Metal pollution index (MPI) values 

The MPI values, which incorporate 12 elements in the studied muscles (Fig. 5). 

The studied species arranged according to their MPI values as follows: sigan fish (6.03) > 

harid fish (4.84) > bongus fish (4.59). Low metabolic activity and low amounts of metal-

binding proteins in muscles may be related to low MPI values (Abdel-Khalek et al., 

2020; Tashi et al., 2022). The MPI value of Argyrosomus regius is 0.1 (Elaarabi et al., 

2022); sardines and anchovies are 0.46 to 0.76 and 0.65 to 0.89, respectively (Sofoulaki 

et al., 2019); and demersal and pelagic fish are 3.65 and 4.70, respectively (Ahmed et al., 

2019). Haseeb-ur-Rehman et al. (2023) revealed that the lowest value of MPI from 

samples collected from Pakistan was 0.62 in Sepia recurvirostra and Cynoglossus 

bilineatus while the highest value was 2.78 in Penaeus monodon. In fish samples from 

Bangladesh, however, the MPI value reported in Systomus sarana was lower than 1 

(Pinkey et al., 2024). However, all studied fish were benthic fish. Compared to pelagic 

fish, benthic fish species generally exhibit higher concentrations of heavy metals because 
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they are exposed to sediments more frequently and consume more metals through their 

diet (Zhao et al., 2012). Moreover, a greater MPI value in the studied muscles suggests a 

clear tendency to accumulate notable quantities of various elements (Jamil et al., 2014).  

 
Fig. 5. The element pollution index (MPI) values of the studied metals in three marine 

fish (sigan fish, bongus fish, and harid fish) collected from Suez Gulf 

Health risk Assessment 

Estimated daily intake (EDI) values 

The oral reference dose for a particular chemical, which describes daily exposure 

to hazardous compounds to prevent any negative effects on the health of humans over a 

lifetime (USEPA 2014, Baki et al., 2018), was used to determine the EDI values (Table 

5). The analysis of Ba, As, Cr, Al, Pb, and Cd (non-essential elements) in fish 

consumption reveals that the values of EDI are significantly lower than the Permissible 

Tolerable Daily Intake (PTDI) values recommended by the FAO/WHO guidelines. For 

EDI-As, the values range from 1.3E-03 to 3.2E-03 µg/g/day for children and from 8.5E-

04 to 2.1E-03 µg/g/day for adults, compared to a PTDI of 2E+00 µg/g/day. EDI-Al has 

an EDI range of 5.8E-02 to 7.3E-02 µg/g/day for children and 3.7E-02 to 4.8E-02 

µg/g/day for adults. Similarly, EDI-Ba shows values of 8.9E-04 to 1.3E-03 µg/g/day for 

children and 5.8E-04 to 8.5E-04 µg/g/day for adults.  

EDI-Pb ranges from 1.2E-03 to 2.0E-03 µg/g/day for children and 8.1E-04 to 

1.3E-03 µg/g/day for adults, while EDI-Cr has a range of 5.4E-04 to 1.7E-03 µg/g/day 

for children and 3.5E-04 to 1.1E-03 µg/g/day for adults. Lastly, EDI-Cd exhibits values 

between 3.7E-04 and 9.0E-04 µg/g/day for children and 2.4E-04 to 5.9E-04 µg/g/day for 

adults. For Fe, B, Cu, Mn, Zn, and Ni (essential elements), a similar trend is observed, 

with EDI values consistently below the PTDI limits. EDI-Cu has a value range of 9.9E-

03 to 2.0E-02 µg/g/day for children and 6.4E-03 to 1.3E-02 µg/g/day for adults, 

compared to a PTDI of 5E+01 µg/g/day. EDI-Fe ranges from 2.8E-02 to 5.8E-02 

µg/g/day for children and 1.8E-02 to 3.7E-02 µg/g/day for adults, while EDI-B shows 

values of 2.6E-02 to 4.1E-02 µg/g/day for children and 1.7E-02 to 2.7E-02 µg/g/day for 

adults. EDI-Zn ranges from 2.1E-02 to 4.5E-02 µg/g/day for children and 1.3E-02 to 

2.9E-02 µg/g/day for adults, and EDI-Mn ranges from 8.9E-04 to 1.9E-03 µg/g/day for 

children and 5.8E-04 to 1.3E-03 µg/g/day for adults. Finally, EDI-Ni shows values of 



Abbas et al., 2025 

 
3192 

6.9E-04 to 1.7E-03 µg/g/day for children and 4.5E-04 to 1.1E-03 µg/g/day for adults. 

Generally, children's consumers often had higher EDI values for all studied elements than 

adult consumers. Similar findings were conducted by previous studies (Chai et al., 2015; 

Saha et al., 2016; Tytła & Widziewicz-Rzońca 2023; El-Shorbagy et al., 2024). 

Furthermore, the EDI values for all essential and non-essential elements are significantly 

lower than their respective PTDI values, confirming the safety of fish consumption for 

studied consumers. 

Target hazard quotient (THQ) values 

The values of THQ in Table (5) for non-essential elements (As, Al, Ba, Pb, Cr, 

and Cd) across different fish species (sigan fish, bongus fish, and harid fish) demonstrate 

potential health risks when compared to the permissible threshold level of one, according 

to USEPA (2018). For THQ-As, values range from 2.8E-01 to 1.1E+00, exceeding the 

threshold in bongus fish for both children (1.1E+00). THQ-Al shows lower values, 

extending from 3.7E-02 to 7.3E-02 for children and 2.9E-03 to 4.8E-02 for adults. For 

THQ-Ba, the values ranged between 4.5E-03 and 6.5E-03 for children and 2.9E-03 to 

4.2E-03 for adults. However, THQ-Pb poses a concern, with values reaching 5.5E-01 in 

sigan fish for children and 3.6E-01 for adults. THQ-Cd shows a significant variation, 

with values reaching 9.0E-01 for children and 5.9E-01 for adults in harid fish. For 

essential elements (Cu, Fe, B, Zn, Mn, and Ni), the THQ values generally fall below the 

allowable threshold, indicating minimal health risks.  

THQ-Cu exhibits values extending from 2.5E-01 to 4.9E-01 for children and 

1.6E-01 to 3.2E-01 for adults. THQ-Fe and THQ-B show low THQ values, with THQ-Fe 

extending from 4.0E-02 to 8.2E-02 for children and 2.6E-02 to 5.4E-02 for adults, while 

THQ-B values range from 1.5E-01 to 2.4E-01 for children and 1.0E-01 to 1.6E-01 for 

adults. THQ-Zn ranges from 6.9E-02 to 1.5E-01 for children and 4.5E-02 to 9.7E-02 for 

adults. Ni values range from 3.5E-02 to 8.4E-02 for children and 2.3E-02 to 5.5E-02 for 

adults. Generally, the THQ values for all essential and non-essential elements are all 

within safe limits except for As, which exceeds the threshold in bongus fish for both 

children (1.1E+00). Nevertheless, the higher values of THQ for children compared to 

adults underscore the need for continuous monitoring of trace element accumulation in 

the studied fish. These results are similar to those found in other studies (Kumari et al., 

2018; Hossain et al., 2022; Abbas et al., 2024; Yin et al., 2024). 

Hazard index (HI) values  

The values of the HI for studied elements in the muscles of three marine spp. are 

illustrated in Fig. (6). The HI values for adults and children who consumed the studied 

marine fish were assessed based on the THQ values; the impacts on individuals would be 

adverse (HI ≤ 1.0E+00); HI > 1.0E+00 most probably had a detrimental effect; and HI > 

10.0E+00 was severe or chronic with acute consequences, as advised by Lei et al. (2015).  

The values of HI for children and adults consuming sigan fish, bongus fish, and 

harid fish highlight potential health risks due to cumulative exposure to trace elements. 
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For children, the HI values exceeded the permissible limit (1.0E+00), with values 

extending from 2.90E+00 in bongus fish to 3.20E+00 in harid fish and 3.00E+00 in sigan 

fish. These elevated values indicate probable negative health impacts, highlighting the 

increased susceptibility of children to the combined adverse effects of trace elements in 

studied fish. Similarly, for adults, the HI values also surpassed the acceptable threshold, 

extending from 1.90E+00 in sigan fish and bongus fish to 2.10E+00 in harid fish. While 

these outcomes were lower than those observed in children, they still represent a 

significant risk of adverse health effects for adult consumers. These results highlight how 

crucial stringent monitoring and regulatory measures are to control metal levels in fish, 

thereby reducing potential health hazards for studied consumers. 

 

 

 

 

 

 

 

 

Fig. 6. HI values in three marine fish (sigan fish, bongus fish, and harid fish) collected 

from Suez Gulf 

Carcinogenic risk values 

The cancer risk (CR) results for non-essential trace elements in five species under 

study are shown in Fig. (7). Significant exposure to metals is indicated by CR values; 

acceptable exposure values (CR values < 1E-06), tolerable exposure values (1E-06-1E-

04), and severe exposure values > 1E-04 (Baki et al., 2018; USEPA, 2018). The CR 

values for Cr, Pb, Ni, Cd, and As in the marine fish were recorded for both eaters 

(children and adults). The carcinogenic risk (CR) values for various metals (lead, arsenic, 

and cadmium) in the sigan fish, bongus fish, and harid fish show varying risks for 

children and adults. For cadmium, the CR values for children range from 1.41E-06 in 

sigan fish to 3.42E-06 in harid fish, and for adults, they range from 9.12E-07 in sigan fish 

to 2.24E-06 in harid fish, all of which fall within the acceptable range (1E-06-1E-04), 

indicating minimal carcinogenic risk. However, the CR-lead values range from 1.02E-05 

in bongus fish to 1.70E-05 in sigan fish for children and from 6.89E-06 in bongus fish to 

1.11E-05 in sigan fish for adults, all of which fall below the unacceptable threshold of 

1E-04, suggesting minimal carcinogenic risk. Moreover, for arsenic, the CR values for 

children range from 1.95E-03 in sigan fish to 4.80E-03 in bongus fish, and for adults, 

they range from 1.28E-03 in sigan fish to 3.15E-03 in bongus fish, all of which fall well 

above the permissible level of 1E-04, suggesting a significant carcinogenic risk for the 

studied consumers. 
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Table 5. The values of EDI and THQ in three marine fish (sigan fish, bongus fish, and harid fish) collected from Suez Gulf 

     As Al Ba Pb Cr Cd 

 Non-essential elements     Children Adults Children Adults Children Adults Children Adults Children Adults Children Adults 

EDI 

Sigan fish    1.30E-03 8.50E-04 7.30E-02 4.80E-02 1.30E-03 8.50E-04 2.00E-03 1.30E-03 1.70E-03 1.10E-03 3.70E-04 2.40E-04 

Bongus fish   3.20E-03 2.10E-03 6.90E-02 4.50E-02 8.90E-04 5.80E-04 1.20E-03 8.10E-04 1.10E-03 6.90E-04 4.50E-04 2.90E-04 

Harid fish   2.50E-03 1.60E-03 5.80E-02 3.70E-02 9.00E-04 5.90E-04 1.50E-03 1.00E-03 5.40E-04 3.50E-04 9.00E-04 5.90E-04 

THQ 

Sigan fish    4.30E-01 2.80E-01 7.30E-02 4.80E-02 6.50E-03 4.20E-03 5.50E-01 3.60E-01 5.70E-01 3.70E-01 3.70E-01 2.40E-01 

Bongus fish   1.10E+00 6.90E-01 6.90E-02 4.50E-02 4.50E-03 2.90E-03 3.50E-01 2.30E-01 3.50E-01 2.30E-01 4.50E-01 2.90E-01 

Harid fish   8.30E-01 5.40E-01 5.80E-02 3.70E-02 4.50E-03 2.90E-03 4.30E-01 2.80E-01 1.80E-01 1.20E-01 9.00E-01 5.90E-01 

              PTDI values   2E+00      3.00E-02 2.00E-01 3.00E-03 

        

Essential elements     Cu Fe B Zn Mn Ni 

      Children Adults Children Adults Children Adults Children Adults Children Adults Children Adults 

EDI 

Sigan fish    2.00E-02 1.30E-02 5.80E-02 3.70E-02 2.60E-02 1.70E-02 4.50E-02 2.90E-02 1.90E-03 1.30E-03 1.70E-03 1.10E-03 

Bongus fish   9.90E-03 6.40E-03 3.70E-02 2.40E-02 3.00E-02 1.90E-02 3.20E-02 2.10E-02 8.90E-04 5.80E-04 6.90E-04 4.50E-04 

Harid fish   1.60E-02 1.00E-02 2.80E-02 1.80E-02 4.10E-02 2.70E-02 2.10E-02 1.30E-02 1.10E-03 7.40E-04 1.10E-03 7.30E-04 

THQ 

Sigan fish    4.90E-01 3.20E-01 8.20E-02 5.40E-02 1.50E-01 1.00E-01 1.50E-01 9.70E-02 1.40E-02 9.00E-03 8.40E-02 5.50E-02 

Bongus fish   2.50E-01 1.60E-01 5.20E-02 3.40E-02 1.80E-01 1.10E-01 1.10E-01 7.00E-02 6.40E-03 4.10E-03 3.50E-02 2.30E-02 

Harid fish   4.00E-01 2.60E-01 4.00E-02 2.60E-02 2.40E-01 1.60E-01 6.90E-02 4.50E-02 8.10E-03 5.30E-03 5.60E-02 3.60E-02 

             PTDI values   5.00E+01 7.00E+01   5.00E+01 1.40E+02 4.00E-02 



Trace Elements Pollution in Water, Sediments, and Marine Fish Muscles  . 

 

3195 

   

  

 

Fig. 7. CR values in three marine fish (sigan fish, bongus fish, and harid fish) collected from Suez Gulf 
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CONCLUSION 

 

The current study highlights the ecological and health hazards associated with these 

contaminants and offers important insights into the accumulation and distribution of trace 

elements in sediments, water, and fish species from the Gulf of Suez. The highest element 

of water samples was reported for iron, while the lowest element was recorded for 

copper. However, the maximum values of the studied element in the sediment samples 

were reported for boron, and the minimum values were detected for zinc. Moreover, the 

levels of essential elements (Zn, Fe, and Cu) in the examined fish muscles were found to 

be within permissible limits; non-essential elements, particularly As and Cd, exceeded 

safe levels, thereby raising concerns regarding potential health risks. The 

bioaccumulation patterns of elements in fish tissues suggest that certain species, 

especially sigan fish, exhibit lower levels of metal accumulation, making them safer for 

consumption compared to others like bongus fish and harid fish. The EDI values for both 

consumers remain below the tolerable limits, indicating that the fish from the Gulf of 

Suez can be considered safe for consumption in terms of essential elements. However, the 

THQ analysis further underscores the potential risks of eating fish with high amounts of 

As, particularly for vulnerable populations. To mitigate these risks, further monitoring 

and management strategies are necessary to reduce trace element pollution in aquatic 

environments and guarantee that marine spp. are safe for human intake.  
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