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INTRODUCTION  

 

Mangrove crabs (Scylla spp.) are members of the Portunidae family and hold major 

importance in aquaculture due to their widespread distribution (Macintosh et al., 2002; 

Rahman et al., 2020). The Philippines boasts a rich heritage in mangrove crab farming, 

ranking as the world's second-largest producer (Quinitio, 2017). Mangrove crabs display 
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     Mangrove crabs (Scylla spp.) are ecologically and economically important in 

coastal regions, particularly in Philippine aquaculture. A novel loose shell 

syndrome threatens these crab populations, yet its etiology remains unclear. 

With chitin as essential exoskeletal component in crustaceans, the study aimed 

to screen, isolate and characterize chitinase-producing bacteria in mangrove 

crabs affected with loose shell syndrome (LSS). Five mangrove crab samples 

were procured from the province of Capiz in central Philippines and 

immediately transported to the laboratory. Homogenized and serially diluted 

guts, gills, and carapace scrapings were spread-plated onto nutrient agar (NA) 

media supplemented with 1% NaCl. Subsequently, the isolates were 

subcultured onto NA plates containing 1% powdered chitin and 1% NaCl to 

screen for chitinase-producing bacteria. Five isolates showing the highest 

chitinolytic index values were subjected to further characterization via 

morphological and biochemical assays, whereas molecular identification was 

conducted by sequencing the 16S rRNA gene. Molecular analysis identified the 

chitinolytic bacteria as belonging to the putative genera Vibrio, Shewanella, and 

Brevundimonas. The findings of the study suggest a potential link between 

chitinase-producing bacteria and loose shell syndrome, opening avenues for 

deeper exploration into its underlying causes and the development of targeted 

interventions that ensure sustainable aquaculture practices for this commercially 

important species. 
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a remarkable ability to endure extended periods out of water at lower temperatures, which 

renders them the preferred species for live export to international markets 

(Lalramchhani et al., 2019). Among the commercially vital species commonly found in 

the Philippines, Scylla serrata is the favored mangrove crab species for cultivation 

(Quinitio, 2017). 

Decapod crustaceans, including mangrove crabs, possess an external integument 

formed by acellular layers that are primarily composed of chitin and chito-protein 

matrices strengthened with calcite and an underlying epithelium (Watling & Thiel, 

2013; Zhao et al., 2019). Chitin is a homo-polymeric carbohydrate made up of repeating 

units of N-acetyl-β-D-glucosamine (GIcNAc), functioning as an essential structural 

framework for the exoskeleton of decapods (Rowley & Coates, 2023). 

Certain types of bacteria (e.g., Vibrios and Aeromonads) have been found to detect 

and identify chitin. These abilities aid in their attachment to the chitinous exoskeleton and 

the degradation of chitin into saccharides (Hunt et al., 2008; Aunkham et al., 2018). 

Under normal circumstances and even with the existence of an epibiotic microbial 

community, significant degradation of crustacean shells is unheard of until they are 

molted or post-mortem.  Nevertheless, there were occurrences of exoskeletal degradation 

in living crustaceans leading to a disease known as shell disease syndrome—the gradual 

breakdown of the chitinous exoskeleton via the release of chitinases and various enzymes 

by microorganisms (King et al., 2014; Rowley & Coates, 2023). 

Shell disease in crustaceans, impacting numerous economically relevant species 

(Sindermann, 1989), is associated with diverse environmental factors (Noga, 1991). Its 

etiology is multifactorial, primarily involving physical damage to the epicuticle and 

subsequent chitinolysis mediated by colonizing bacteria (Cook & Lofton, 1973; Baross 

et al., 1978; Malloy, 1978), and fungi (Alderman, 1981). Contributing environmental 

elements include elevated nutrient concentrations, water and sediment pollutants, and 

reduced oxygen levels (Sindermann, 1989; Noga et al., 2000). While typically a 

superficial condition, severe shell disease can lead to mortality via bacterial infiltration of 

the hemolymph due to compromised cuticular integrity. 

In Capiz, a leading region for mangrove crab aquaculture in the Philippines 

(Decembrana, 2017), a decline in production has been observed following the 

emergence of a novel shell disease variant, termed "loose shell syndrome" (Villarias et 

al., 2024). Local mangrove crab pond operators report atypical symptoms, including the 

presence of a soft and loose carapace, atrophy of the muscles, and reduced body mass.  

Despite the potential harm of loose shell syndrome on the local mangrove 

aquaculture industry, its etiology is yet to be elucidated in the scientific literature. 

Therefore, the study aimed to examine the potential role of chitinase-producing bacteria 

in the disease through screening for chitinolytic activity, isolation, and characterization 

using morphological, biochemical and 16S rRNA gene identification. This provided an 
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improved understanding of the prospective cause of loose shell syndrome in mangrove 

crabs.  

 

MATERIALS AND METHODS  

 

 

Sample collection 

 

A total of five (5) diseased mangrove crab samples were collected from a pond in 

the province of Capiz, the Philippines. The samples were immediately transported live to 

the University of the Philippines Visayas Microbiology Laboratory. Upon arrival, the 

crab samples were identified to the species level and dissected, followed by bacterial 

isolation. 

 

Bacterial isolation and quantification  

 

Bacterial isolates were derived from the carapace scrapings, gills, and gut of the 

crab samples. Prior to dissection, the carapace was sanitized with 70% alcohol. Then, 

500μl of the organ sample was extracted using sterile scissors and forceps, placed in a 

sterile 1.5ml microcentrifuge tube containing 500μl of 0.9% normal saline solution 

(NSS). The organ samples were subsequently homogenized.  

The homogenized samples were serially diluted from 10-1 to 10-5, transferring 

100l to each succeeding tube with 900l NSS. The tubes were mixed vigorously, 

ensuring uniform distribution of microbial cells in the organ sample. A 100μl aliquot 

from every test tube was then sub-cultured aseptically onto nutrient agar (NA) containing 

1% NaCl. The organ samples were spread-plated and incubated at 28°C for 24 hours. 

Standard plate count was performed on each petri dish containing 30-300 colonies. From 

these isolates, 300 distinct colonies were re-streaked onto fresh NA-1% NaCl plates and 

incubated at 28°C for 24 hours. All agar plates were stored at 5°C for future analysis. 

 

Screening for chitinolytic activity 

 

To screen for chitin-degrading bacteria, a spot-on-lawn assay was conducted 

following the methodology of Whitaker et al. (2004) for the chitin overlay assay with 

modifications. The initial screening involved inoculating individual colonies on nutrient 

agar supplemented with 1% colloidal chitin and 1% NaCl (referred to as "chitin agar" 

hereafter) in triplicates. The plates were then incubated at 28°C for 96 hours. To facilitate 

the detection and quantification of chitinolytic activity zones around bacterial colonies, 

the plates were stained with a 0.1% Congo Red solution for 20-30 minutes at room 



1820 
Gabuat et al., 2025 

 

temperature. Afterward, the plates were destained using a 1% NaCl solution for 5 

minutes.  

 

Upon establishing the total number of isolates exhibiting chitinolytic activity, ten 

(10) isolates with the most extensive chitinolytic activity were chosen to undergo 

secondary screening of chitinolytic activity at 28°C for 96 hours—each having three 

replicates. The diameter of the clear zones was then measured in five (5) dimensions due 

to the irregular nature of the hydrolysis halos using a digital caliper. Mean values of all 

zone diameter measurements were determined. The chitinolytic index (CI) was computed 

following the formula of Korany et al. (2019). 

 

Isolates with an index of relative enzyme activity value of 1.0 or above are 

deemed to have considerable enzyme activity (Duncan et al., 2006), and they were 

identified as chitinase-positive isolates. The top five isolates having the highest 

chitinolytic indices were selected for further characterization. These isolates were 

individually streaked onto fresh NA-1 % NaCl plates as working cultures and subcultured 

into NA-1% NaCl slants as stock cultures.   

 

Morphological and biochemical characterization 

 

The chosen isolates were characterized through colony and cellular morphology, 

chitinase production on chitin agar, and biochemical activities. Morphologically, bacterial 

colonies were evaluated based on color, form, margin, elevation, opacity, and texture. 

Cellular features for each isolate were assessed by performing Gram staining and motility 

test. Biochemical activities examined following the procedures of Cappuccino and 

Welsh (2019) include catalase, casein hydrolysis (protease), lipid hydrolysis (lipase), 

gelatin hydrolysis (gelatinase), starch hydrolysis (amylase), and hydrogen sulfide 

production test.  

 

Molecular identification 

 

Genomic bacterial DNA of isolates was extracted using Purelink Genomic DNA 

Mini extraction kit (Thermo Fisher Scientific) following the manufacturer’s procedures. 

Fresh samples in 5mL nutrient broth cultured overnight were prepared for the DNA 

extraction. The genomic DNA quantified and stored at -20°C for the subsequent 

molecular identification.  

Polymerase chain reaction (PCR) amplification of 16S rRNA was carried out 

following the conditions of Caipang et al. (2010) and using eubacterial universal primers 

(Forward: GAGAGTTTGATCCTGGCTCAG and Reverse: 

CTACGGCTACCTTGTTACGA) in a 25μL PCR reaction. The reaction mixture 
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consisted of 2μL (10-15ng) of template DNA, 2μL of each primer (5 pmol), 2.5μL of 

10X PCR buffer, 1.5μL of 2 mM dNTPs, and 1μL of 50 mM MgCl2, with distilled water 

added to reach the final volume. The PCR products were purified and sent for sequencing 

(Macrogen, Korea). The closest homologs of the bacterial isolates were identified by 

aligning the sequenced data with publicly available sequences in the National Center for 

Biotechnology Information (NCBI) GenBank database (blast.ncbi.nlm.nih.gov). 

 

Data analysis 

 

Sequences were assembled using BioEdit and were aligned with MAFFT v.7 via 

the web server (Katoh & Standley, 2013). Following alignment, sequences underwent 

automated trimming using Phylemon 2.0 (http://phylemon.bioinfo.cipf.es/l). The 

alignment file was then converted to phylip format using Alignment Transformation 

Environment or “ALTER” (https://www.sing-group.org/ALTER/) (Glez-Peña et al., 

2010). Phylogenetic analysis was performed using the maximum likelihood method by 

selecting the RAxML program in ALTER. The analysis employed rapid bootstrapping 

with 1000 replicates, and the resulting phylograms were visualized using FigTree v1.4.4 

(http://tree.bio.ed.ac.uk/software/figtree/) and were annotated in Microsoft PowerPoint 

2024. 

 

RESULTS  

  

Screening for chitinolytic isolates 

 

  A total of three hundred (300) bacterial isolates obtained from mangrove crabs 

with loose shell syndrome were screened for the presence of chitinase activity. The top 

five isolates that showed the highest chitinolytic activity had chitinolytic indices ranging 

from 1.17-3.65mm (Fig. 1).  

                                                         

 
Fig. 1. Average chitinolytic indices of the chitinase-producing bacterial isolates from     

mangrove crab (Scylla serrata) 
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Morphological and biochemical characterization 

 

Morphological analysis indicated that all isolates are Gram-negative and motile 

with variations in cell shape: some isolates exhibited a comma shape while others were 

rod-shaped. All colonies were circular, raised, opaque, and mucoid. Biochemical tests 

confirmed that all isolates were catalase positive. Table (1) summarizes the 

morphological, colonial, and biochemical characteristics of each isolate. 

Table 1. Morphological, colonial, and biochemical characteristics of the isolates 

 
 

 

Molecular identification 

 

Table (2) shows the sequence identities of the 16S rRNA of the chitinolytic 

isolates with known bacteria obtained from a public database. GCB01 and GCB02 

isolates had high sequence identity with Vibrio, isolate GCB03 with Shewanella, and 

isolates GCB04 and GCB05 with Brevundimonas.  
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Table 2. Molecular identities of isolated chitinase-producing bacteria by Blastn search 

via NCBI database  

 
 

 

 

 

 

Phylogenetic analyses showed that isolates GCB01 and GCB02 are closely 

associated with putative Vibrio neonatus (Fig. 2). Isolate GCB03 formed a distinct cluster 

with Shewanella algae (Fig. 3), while isolates GCB04 and GCB05 exhibited close 

genetic proximity to Brevundimonas diminuta (Fig. 4). 
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Fig. 2. Maximum likelihood phylogenetic tree of GCB01 and GCB02 isolates and 30 

Vibrio spp. strains based on partial 16S rRNA sequences. Values > 60% are shown 
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Fig. 3. Maximum likelihood phylogenetic tree of GCB03 isolate and 15 Shewanella spp. 

strains based on partial 16S rRNA sequences. Values > 60% are shown 

 

 

Fig. 4. Maximum likelihood phylogenetic tree of GCB04 and GCB05 isolates and 19 

Brevundimonas spp. strains based on partial 16S rRNA sequences. Values > 60% are 

shown 
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DISCUSSION 

 

In this study, the isolates underwent both morphological and biochemical 

characterization. Morphology-wise, every isolate had typical characteristics without any 

remarkable deviations. However, isolate GCB02, later putatively identified as Vibrio 

natriegens, exhibited pleomorphism unlike the rest, displaying both spherical (coccus) 

and rod-shaped (bacillus) forms. Although this phenomenon has not been previously 

reported for the aforementioned species, Janda et al. (1988) documented that many 

Vibrio spp. are markedly pleomorphic and may exhibit complicated morphology, 

especially under substandard growth conditions. Representative species include V. 

vulnificus and V. parahaemolyticus—the latter can appear in various forms including 

straight, slightly curved, swollen, and coccoid forms (Nickelson & Vanderzant, 1971; 

DiGaetano, 1989). 

While morphological, biochemical, and other phenotypic characteristics continue to 

hold importance for genus and species identification, molecular approaches based on 

nucleotide sequences have demonstrated superior reliability, reproducibility, and 

robustness (Durso & Hutkins, 2003). The emergence of the "molecular biology age" has 

introduced a multitude of instruments and techniques for the detection, identification, 

characterization, and typing of bacteria, serving various clinical and research objectives 

(Spratt, 2005). A significant portion of contemporary microbial taxonomy and 

metagenomic analyses rely on investigations of the bacterial 16S rRNA gene. 16S rRNA is 

a constituent of the 30S small subunit of the bacterial ribosome, and it is a vital gene 

present in all bacteria and archaea (Hao et al., 2017). The 16S rRNA gene is the most 

widely used housekeeping genetic marker for studying bacterial phylogeny and taxonomy 

due to several key reasons, summarized in the followings: (1) it is present in nearly all 

bacteria, often as operons or a multigene family, (2) its function has remained conserved 

over time, making random sequence changes a reliable measure of evolutionary time, and 

(3) its length of approximately 1,500 bp is sufficient for informatics analyses (Janda & 

Abbott, 2007; Hao et al., 2017). The standard procedure entails the amplification of the 

16S rRNA gene by PCR, succeeded by sequencing and comparison to established 

databases to allow for identification (Franco-Duarte et al., 2019). 

This study employed 16S rRNA gene sequencing to identify the chitinase-producing 

isolates. The results revealed that isolates GCB01 and GCB02 were classified within the 

genus Vibrio. Both were identified as putative Vibrio alginolyticus strain CIFRI V-TSB1 

and Vibrio natriegens strain AUCASVE5, respectively. Vibrios are Gram-negative, 

motile, and comma-shaped bacteria under the phylum Proteobacteria, specifically in the 

class Gammaproteobacteria, recognized for its diversity among Gram-negative bacteria. 

Within the order Vibrionales, the family Vibrionaceae includes aquatic bacteria that 

predominantly inhabit warm waters and can tolerate varying levels of salinity, including 
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fresh, brackish, and marine environments (Sampaio et al., 2022). He et al. (2020) report 

that Vibrio spp. have demonstrated the ability to utilize chitin as their sole carbon source, 

making them crucial chitin-degrading microorganisms in aquatic ecosystems. A prior 

study determined that 37 out of 47 Vibrio strains (80%) possessed the capacity to 

hydrolyze chitin (Hunt et al., 2008). In addition, Lin et al. (2018) found that 18 out of 20 

Vibrio spp. possess genes for chitinase (EC 3.2.1.14) and β-N-acetylhexosaminidase (EC 

3.2.1.52)—enzymes which degrade chitin into its monomer form, GlcNAc. Shell disease 

syndrome is primarily attributed to chitinolytic bacteria, particularly Vibrio spp., which 

act as opportunistic pathogens colonizing the shells of marine crustaceans (Eddy et al., 

2007). Although there are no specific records linking V. alginolyticus strain CIFRI V-

TSB1 to shell disease, V. alginolyticus has been frequently isolated from various 

crustaceans, including different species of crabs, shrimp, and lobsters afflicted with shell 

disease (Noga et al., 2000, Vogan et al., 2002; Jayasree et al., 2006; Mancuso et al., 

2010, Mancuso et al., 2013). For V. natriegens strain AUCASVE5, this strain has not 

been directly associated with shell disease. However, Bi et al. (2016) found that V. 

natriegens was responsible for the widespread mortalities reported in swimming crabs 

(Portunus trituberculatus) in Jiangsu Province, China. Pathogenic Vibrio spp. are known 

to cause a variety of severe infections and illnesses in humans (Vezzulli et al., 2013). 

While no available data suggested that the isolates were pathogenic to humans, V. 

alginolyticus is implicated in a range of infections affecting both humans and animals, 

including ocular and intracranial infections, otitis, osteomyelitis, and peritonitis (Fu et 

al., 2016; Jacobs Slifka et al., 2017). Moreover, in immunocompromised individuals, it 

is associated with severe extra-intestinal infections from seafood consumption, leading to 

fatal diseases like bacteremia, necrotizing soft-tissue infections, multiple organ 

dysfunction, and septic shock (Fu et al., 2016). On the other hand, despite the extensive 

use of V. natriegens for laboratory work spanning more than 70 years, there are no 

documented cases of this species causing human infection in the available literature (Hoff 

et al., 2020). 

Isolate GCB03 was identified to be a putative Shewanella sp. The genus 

Shewanella is composed of Gram-negative, rod-shaped, oxidase-positive, motile, and 

facultative anaerobic bacteria (Thorell et al., 2019; Yu et al., 2022). Owing to their 

remarkable physiological and respiratory adaptability, Shewanella spp. thrive in diverse 

ecological environments, even in extreme conditions such as elevated barometric 

pressure, high salinity, clinical specimens, and spoiled foods (Yu et al., 2022). The 

mechanism of pathogenicity of Shewanella is not yet fully elucidated. Certain strains of 

this genus are capable of generating a range of enzymes such as chitinase, protease, 

lipase, alkylsulfatase, and elastase, potentially contributing to their virulence (Janda & 

Abbott, 2014). Several species of Shewanella have been implicated in shell disease. 

Porter et al. (2002) isolated bacterial samples from both healthy and diseased regions of 

spiny lobsters (Panulirus argus), and detected the presence of seven (7) Shewanella spp. 
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In the study of Chistoserdov et al. (2005), it was found that lesions in some American 

lobsters (Homarus americanus) with epizootic shell disease were colonized with S. 

frigidimarina. Furthermore, Bergen et al. (2022) were able to isolate S. marinintestina 

IK-1 and S. piezotolerans WP3 from black spot disease lesions in edible crabs (C. 

pagurus). Regarding their pathogenicity to humans, species such as S. algae, S. 

xiamenensis, S. putrefaciens, and S. haliotis have been attributed to cause diseases, 

including skin and soft tissue infections, peritonitis, pericarditis, bacteremia, bone 

infections, and pancreatitis (Janda, 2014; Yu et al., 2022). 

Finally, isolate GCB04 was molecularly identified as putative Brevundimonas sp. 

N5(2011) and isolate GCB05 as a probable Brevundimonas diminuta. Brevundimonas 

species are Gram-negative, aerobic, motile, non-fermenting rods, and oxidase and 

catalase positive, under the Alphaproteobacteria class and Caulobacteraceae family 

(Segers et al., 1994; Ryan & Pembroke, 2018). Brevundimonas spp. have been widely 

detected across numerous environments such as purified water (Penna et al., 2002), the 

condensation water of a Russian space laboratory (Li et al., 2004) activated sludge (Ryu 

et al., 2007), soils (Kang et al., 2009; Wang et al., 2012), black sand (Choi et al., 2010), 

various aquatic habitats (Abraham et al., 2010), and deep subsea floor sediment 

(Tsubouchi et al., 2013; Tsubouchi et al., 2014). Several bacterial species within this 

genus have also been recognized for their chitinolytic activity (Jaspers & Overmann, 

2004; Warda et al., 2016). Nevertheless, there are no available data documenting the 

occurrence of Brevundimonas spp. in shell disease. However, Brevundimonas spp. were 

isolated in several species of fish and crustaceans, as part of their microbiota (Plainpun 

et al., 2011; Ozaktas et al., 2012; Parlapani et al., 2020). There also exist several 

studies in the scientific literature detailing their pathogenicity in humans. Brevundimonas 

spp. are infrequently held accountable for infections in humans, primarily appearing as 

nosocomial bacteremia in immunocompromised patients. Among these, B. diminuta, B. 

nasdae, and B. vesicularis are the only species isolated from human clinical cases, with 

the remaining 29 species not yet isolated in human hosts (Lupande-Mwenebitu et al., 

2021). These bacteria are recognized as opportunistic pathogens, causing a range of 

infections such as meningitis (Mondello et al., 2006), endocarditis (Yang et al., 2006; 

Estrela & Abraham, 2010), pneumonia/pleuritis (Donofrio et al., 2010), keratitis 

(Pandit, 2012), urinary tract infections (Shobha et al., 2013; Gupta et al., 2014), and 

septicemia (Singh et al., 2015). 

 

 

CONCLUSION 

 

This study investigated the potential role of chitinase-producing bacteria in loose 

shell syndrome affecting mangrove crabs in Capiz, Philippines. The chitinolytic bacterial 

isolates were identified as Vibrio, Shewanella, and Brevundimonas. This research 
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represents a significant contribution to understanding the potential microbial factors 

associated with loose shell syndrome in mangrove crabs from this region. While the study 

does not definitively establish causality, the isolation of chitinase-producing bacteria 

from affected crabs warrants further investigation into their role in the development of 

loose shell syndrome in mangrove crabs. Future research could explore the specific 

mechanisms by which these bacteria may contribute to shell degradation and the overall 

health of mangrove crab populations. 
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