Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131

Vol. 29(3): 109 – 118 (2025) www.ejabf.journals.ekb.eg



# Pathogenic Bacteria Influencing Common Carp (*Cyprinus carpio L.*) Farming in Floating Cages in Dayla Province

## Safaa Alloul H.<sup>1</sup>, Sarmad J. JaliI<sup>2</sup> and Sabah M. Al-Shammari<sup>3</sup>

- <sup>1</sup> Department of Biotechnology, College of Sciences, University of Diyala, Iraq.
- <sup>2</sup>Department of Histology and Anatomy, College of Veterinary Medicine, Shatrah University, Iraq
- <sup>3</sup>Department of Pathology and Poultry Diseases, College of Veterinary Medicine. Diyala University, Iraq

\*Corresponding Author: dr.sabahmahmoud@uodiyala.edu.iq

## **ARTICLE INFO**

#### **Article History:**

Received: Feb. 12, 2025 Accepted: April 28, 2025 Online: May 3, 2025

#### **Keywords**:

Cyprinus carpio L., Aquaculture, Microbial pathogens, Sensitivity tests, Antibiotics

## **ABSTRACT**

Bacterial infections that arise naturally in the environment of fish present a major challenge for fish farming in Iraq and globally. The objective of this study was to isolate pathogenic bacteria from common carp that are raised in floating cages and subsequently sold in the local market of Diyala Province. The local examination involved counting 100 fish and collecting samples from them. A dissection was conducted on each fish in the laboratory, isolating bacterial strains from different regions including the skin, gills, liver, spleen, kidney and intestines. Bacteria were identified through microscopic examinations and biochemical tests to pinpoint potential isolates, subsequently confirmed using the API® 20 E system for each strain. The bacteria isolated from all targeted organs showed that the potential pathogenic bacteria identified include E. coli, Aeromonas hydrophila, Pseudomonas aeruginosa and Staphylococcus spp. In carp from this study, E. coli recorded the highest bacterial numbers in the skin and spleen compared of that Pseudomonas aeruginosa and Staphylococcus spp. The maximum bacterial count in fish organs is found in the skin and spleen  $(3.27 \times 106)$ , while the minimum count is observed in the gills and kidneys  $(1.91 \pm 0.14) \times 106$ . The study illustrates the effect of different antibiotics on the isolated bacteria. The antibiotics used include chloramphenicol (C30), ceftazidime (KF30), cefoxitin (ZOX30), ticarcillin (TI30), oxacillin (OX30), doxycycline (DO20) and amikacin (AK30). This research investigates the pathogenic bacteria impacting common carp in floating cages within Diyala Governorate, Iraq. Sensitivity tests indicated significant resistance rates to commercial broadspectrum antibiotics, underscoring their prevalence, impact on fish health, and implications for management strategies.

#### INTRODUCTION

Bacteria in aquaculture result in significant economic losses (Sánchez et al., 2022). Seasonal variations in water quality and stock conditions induce recurrent infections in common carp (Alrudainy & Jumma, 2016; Hossain et al., 2022). Fish are vulnerable to multiple bacterial infections, some of which are thought to be saprophytic and can induce disease (Dinev et al., 2023). Microbes are found in diverse environments, including the gills, skin, and internal organs (Alam et al., 2023; Hussein & Jumma, 2024). The efficacy of antibiotics in treating bacterial











infections guides treatment strategies (Al-Bayati et al., 2020; Milijasevic et al., 2024). The excessive use of antibiotics can lead to bacterial resistance, complicating treatment. Additionally, antibiotics may harm fish livers, alter fish tank ecology, and reduce essential bacteria necessary for ecosystem health (Oday et al., 2024; Dhyani et al., 2025). Prior to the application of antibiotics in aquaculture, it is essential to assess the associated risks and implement measures to mitigate their overuse (Imtiaz et al., 2024). Antibiotic residues in fish meat pose risks to food safety and consumer health (Alwan & Al-Bayati, 2020; Dhyani et al., 2025).

## MATERIALS AND METHODS

# **Sampling**

The study obtained 100 *Cyprinus carpio* fish samples from culturing in floating cages in Dayla Province from January to February 2024. Veterinary Medicine / Diyala University pathology laboratory received samples directly. Aseptically dissected fish components included Skin, Gills, Liver, Spleen, Kidney and Intestines. An incubated loop of soup was streaked at 37°C for 24 hours on various agars, including brain-heart infusion broth, blood agar MacConkey, and mannitol salt agar, for microbiological analysis.

## **Bacteria identification**

Gram's staining, phenotypic features (colonial morphology, microscopic appearance) and biochemical tests were used to identify bacteria using identification keys from **Mondal** *et al.* (2010) research. Pure culture of isolate were characterized use biochemically concepts from bergey's manually of formicative bacteriology (Garrity *et al.*, 2001). We used the API® 20 E system to confirm each strain.

## Study susceptibility testing using 7 antibiotics:

The susceptibility or resistance of the isolates to antibiotics was determined based on measuring the diameter of the growth inhibition zone (mm) around the disc. The measurements were made accurately and the results were extracted for comparison with the approved standards (Ataee *et al.*, 2011).

#### **Zone of inhibition**

This measurement reflects the effectiveness of each antibiotic against the bacteria tested, with a larger zone indicating greater antibacterial activity.

## RESULTS AND DISCUSSION

## 1- Bacteria identification

The analysis demonstrates the bacterial diversity present in various regions of the examined fish, as illustrated in Table (1). *Aeromonas hydrophila* is the primary bacterium linked to skin infections, accounting for 60% of positive cultures, indicating a significant risk for these infections. *Pseudomonas aeruginosa* shows a prevalence of 33%, alongside a notable occurrence of *Staphylococcus* spp. at 55%. *E. coli* was detected in the gills at a rate of 20%, whereas in liver *E. coli* recorded 10%. The spleen demonstrates a varied bacterial composition, comprising *E. coli* (12%), *Aeromonas hydrophila* (22%), *Pseudomonas aeruginosa* (15%), and *Staphylococcus* spp.

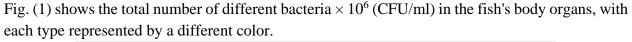
# Pathogenic Bacteria Influencing Common Carp (*Cyprinus carpio L.*) Farming in Floating Cages in Dayla Province

(12%). The intestines show a notable prevalence of Aeromonas hydrophila (75%) and Pseudomonas aeruginosa (55%), alongside E. coli (33%) and Staphylococcus spp. (22%). The current investigation confirmed the results of **Tesfaye** et al. (2018), demonstrating that Pseudomonas spp. was recorded from the skin and gut. Additionally, E. coli was detected in the skin, gills, and intestine from common carp. Aquaculture quality is influenced by numerous chemical and bacteriological parameters, as water quality directly impacts fish productivity and health (Hildah et al., 2019). The aquatic environment ultimately receives a multitude of contaminants due to the discharge of industrial, agricultural, and municipal waste, leading to alterations in water quality and the presence of sewage (Al-Shammari et al., 2024).

Table (1) shows that bacteria primarily affect the intestines and the gills demonstrate a modest infection rate.

| Organs     | Percentage of bacteria % |            |             |                |  |  |
|------------|--------------------------|------------|-------------|----------------|--|--|
|            | E. coli                  | Aeromonas  | Pseudomonas | Staphylococcus |  |  |
|            |                          | hydrophila | aeruginosa  | spp.           |  |  |
| Skin       | 10                       | 60         | 33          | 55             |  |  |
| Gills      | 20                       | 30         | 10          | 22             |  |  |
| Liver      | 10                       | 15         | 14          | 45             |  |  |
| Spleen     | 12                       | 22         | 15          | 12             |  |  |
| Kidney     | 11                       | 55         | 12          | 15             |  |  |
| Intestines | 33                       | 75         | 55          | 22             |  |  |

Table 1. The analysis of Percentage of bacteria %in different organs of the examination fish


## 2- Total count of bacteria

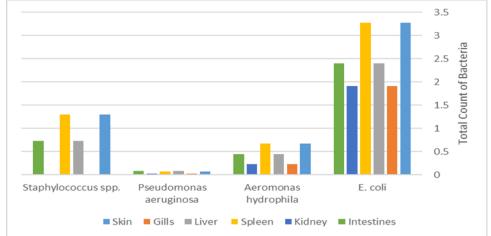

Maintaining sterile conditions is essential to prevent contamination. Samples were obtained from several areas of the fish, including the skin, gills, and internal organs. The total bacterial count in 1 ml of the sample was determined by utilizing the colony count and the inverse dilution ratio. The bacterial colonies were enumerated using a bacterial counting apparatus, which recorded the total number of colonies, resulting in the total bacterial count per milliliter (**Andrews**, **1992**).

Table (2) illustrates the total number of Bacteria (CFU/ml)  $\times$  10<sup>6</sup> in various organs.

**Table 2.** Total Count of Bacteria × 106 (CFU/ml) in different organs of the examination fish

| Organs     | Total Count of Bacteria× 10 <sup>6</sup> |                      |                        |                     |  |  |
|------------|------------------------------------------|----------------------|------------------------|---------------------|--|--|
|            | E. coli                                  | Aeromonas hydrophila | Pseudomonas aeruginosa | Staphylococcus spp. |  |  |
| Skin       | 3.27±0.4Aa                               | 0.68±0.4Ab           | 0.07±0.03Ac            | 1.3±0.29Ab          |  |  |
| Gills      | 1.91±0.14Ba                              | 0.23±0.11Ab          | 0.03±0.005Ab           | 0.02±0.01Bb         |  |  |
| Liver      | 2.4±1.01Ca                               | 0.45±0.09Abc         | 0.08±0.04Ac            | 0.73±0.05Ab         |  |  |
| Spleen     | 3.27±0.4Aa                               | 0.68±0.4Ab           | 0.07±0.03Ac            | 1.3±0.29Ab          |  |  |
| Kidney     | 1.91±0.14Ba                              | 0.23±0.11Ab          | 0.03±0.005Ab           | 0.02±0.01Bb         |  |  |
| Intestines | 2.4±1.01Ca                               | 0.45±0.09Abc         | 0.08±0.04Ac            | 0.73±0.05Ab         |  |  |
| LSD 0.05   | 0.68                                     |                      |                        |                     |  |  |





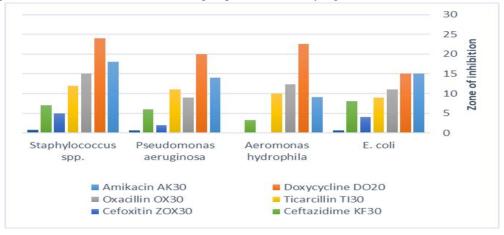
Skin:  $E.\ coli\ (3.27\pm0.4)$ ,  $Aeromonas\ hydrophila\ (0.68\pm0.4)$ ,  $Pseudomonas\ aeruginosa\ (0.07\pm0.03)$ , Staphylococcus spp.  $(1.3\pm0.29)$ .  $E.\ coli\ (1.91\pm0.14)$ ,  $Aeromonas\ hydrophila\ (0.23\pm0.11)$ ,  $Pseudomonas\ aeruginosa\ (0.03\pm0.005)$ , and Staphylococcus spp. were found in the gills. In the liver,  $E.\ coli\ (2.4\pm1.01)$ ,  $Aeromonas\ hydrophila\ (0.45\pm0.09)$ ,  $Pseudomonas\ aeruginosa\ (0.08\pm0.04)$ , and Staphylococcus spp.  $(0.73\pm0.05)$  were found. The spleen contained  $E.\ coli\ (3.27\pm0.4)$ ,  $Aeromonas\ hydrophila\ (0.68\pm0.4)$ ,  $Pseudomonas\ aeruginosa\ (0.07\pm0.03)$ , and Staphylococcus spp. The kidneys Aeromonas hydrophila:  $0.23\pm0.11$ ,  $Pseudomonas\ aeruginosa\ (0.03\pm0.05)$  and Staphylococcus spp.  $(0.02\pm0.01)$ . Intestines:  $E.\ coli\ (2.4\pm1.01)$ ,  $Aeromonas\ hydrophila\ (0.45\pm0.09)$ ,  $Pseudomonas\ aeruginosa\ (0.08\pm0.04)$ ; Staphylococcus spp.  $(0.73\pm0.05)$ .  $E.\ coli\ is\ most\ abundant\ in\ skin\ and\ spleen$ .

The maximum bacterial count in fish organs is found in the skin and spleen  $(3.27 \times 106)$ , while the minimum count is observed in the gills and kidneys  $(1.91 \pm 0.14) \times 106$ . Fish diseases may arise from microbial pollution in freshwater or contamination during harvesting activities (**Raufu** *et al.*, 2024; **Bashar** *et al.*, 2025). Human illnesses resulting from organisms conveyed from fish (**Robinson**, 2014). Mohammed (2024) documented isolates (Table 2) in their investigation on the isolate and identification of harmful bacterial of fresh fish tissues. Furthermore, prior reports revealed the presence of numerous harmful bacterial isolations in the fish market, which would diminish the quality of fish accessible for local consumptions.

# 3- Antibiotic sensitivity

Table (3) demonstrates antibiotic inhibition zones against *E. coli*, *Aeromonas hydrophila*, *Pseudomonas aeruginosa*, and *Staphylococcus* spp. The antibiotics are Chloramphenicol (C30), Ceftazidime (KF30), Cefoxitin (ZOX30), Ticarcillin (TI30), Oxacillin (OX30), Doxycycline (DO20), and Amikacin (AK30). Distribution of inhibition zones Amikacin (AK30) and Doxycycline (DO20) are the most effective antibiotics since they have extensive inhibition zones against all types. The less effective chloramphenicol (C30) and cefoxitin (ZOX30) do not suppress

# Pathogenic Bacteria Influencing Common Carp (*Cyprinus carpio L.*) Farming in Floating Cages in Dayla Province


bacterial strains. *E. coli* and *Aeromonas hydrophila* show significant inhibition, while *Staphylococcus* spp. and *Pseudomonas aeruginosa* show varying inhibition with more powerful antibiotics. The results are consistent with those found by **Kane** *et al.* (2024). Antibacterial treatments for pathogenic bacteria are frequently used for treating fish via medicated feed. Contamination of the external environment with these antibacterials mainly occurs through the leakage of waste food and feces. Additionally, the curative aquacultures practice could result in resistances of antibacteria in fish pathogens and environment (Al-Shammari *et al.*, 2019). The resistances to antibacteria at the fresh water of fish cultures activities is more recent and limited (Al-Shammari *et al.*, 2024). Currently, several disease that affect domestic fish stock are also a hazard to wild fish population (Hiba *et al.*, 2020; Jumma, 2024).

It is noted in Table (3) that the sensitivity of *Pseudomonas aeruginosa*, *Aeromonas hydrophila*, *E. coli* and *Staphylococcus* spp. to various antibiotics, is measured by inhibition zones (in mm) and is statistically significant (LSD, *P*<0.05).

**Table 3.** Zone of inhibition (mm) of Pseudomonas aeruginosa, Aeromonas hydrophila, E. coli and Staphylococcus spp. to antibiotics

|                      | Zone of inhibition (mm) |                    |                           |                           |  |  |
|----------------------|-------------------------|--------------------|---------------------------|---------------------------|--|--|
| Types of antibiotics | E. coli                 | Aeromonas          | Pseudomonas               | Staphylococcus            |  |  |
|                      |                         | hydrophila         | aeruginosa                | spp.                      |  |  |
| Amikacin AK30        | $15 \pm 0.74$ Aa        | $9.1 \pm 0.33$ Db  | $14 \pm 0.50  \text{Ca}$  | $18 \pm 0.20 \text{ Aa}$  |  |  |
| Doxycycline DO20     | $15 \pm 0.32$ Ab        | $22.5 \pm 0.13$ Aa | $20 \pm 0.70~Ab$          | $24 \pm 0.40 \text{ Aa}$  |  |  |
| Oxacillin OX30       | $11 \pm 0.58$ Bb        | 12.3± 0.10Ba       | $9 \pm 0.15  \text{Dd}$   | $15 \pm 0.33 \text{ Bb}$  |  |  |
| Ticarcillin TI30     | 9 ± 0.01Cb              | $10 \pm 0.05$ Ca   | $11 \pm 0.12 \mathrm{Cc}$ | $12 \pm 0.25 \text{ Bb}$  |  |  |
| Cefoxitin ZOX30      | $4 \pm 0.22$ Ea         | $0 \pm 0.08$ Fb    | $2 \pm 0.10 Ef$           | $5 \pm 0.12 \text{ Ea}$   |  |  |
| Ceftazidime KF30     | $8 \pm 0.00 Da$         | $3.3 \pm 0.16$ Eb  | $6 \pm 0.05$ Ef           | $7 \pm 0.19  \mathrm{Da}$ |  |  |
| Chloramphenicol      | $0.7 \pm 0.10$ Ea       | $0.11 \pm 0.41$ Fa | $0.7 \pm 0.05 \text{ Ga}$ | $0.8 \pm 0.30  \text{Fa}$ |  |  |
| C30                  | 0.7± 0.10Ea             | 0.11 ± 0.411 a     | 0.7 ± 0.03 Ga             | 0.0 ± 0.50 1 a            |  |  |
| LSD(P<0.05)          | 0.82                    |                    |                           |                           |  |  |

Statistical Significance: The LSD (P<0.05) value indicates the least significant difference, which is useful for determining if differences between the means of groups are statistically significant.



**Fig. 2.** The maximum and minimum inhibition zones observed with Doxycycline (DO20) against *Staphylococcus* spp.

Fig. (2). shows the maximum and minimum inhibition zones were observed with Doxycycline (DO20) against Staphylococcus spp., with the inhibition zone measuring approximately 24 mm, and the minimum inhibitory zone was recorded with Cefoxitin (ZOX30) against Aeromonas hydrophila, where the inhibition zone was zero mm, signifying its ineffectiveness against this bacterium. In view description of antimicrobial resistance varies among groups based on their perspectives. The microbiologist defines sensitive organisms as those lacking any resistanceconferring factors, whereas the clinical definition encompasses microorganisms that can be managed by therapeutically attainable concentrations of the medication (Khalifa et al., 2020; Shah et al., 2024). An organism is considered sensitivte if the pharmacological achievable concentration of antibiotic is sufficient to suppress or eradicate the pathogens (Abdullah et al., 2024; Wani, 2024). Wani (2024) stated that bacteria antibiotic resistances which were observed soon after antibiotic introduction have been extensively studied. Steady increase in antibiotic resistances and decrease number of newer antibiotic appear to point to a post-antibiotic period during which treatments of infection would become increasingly difficult (Shinu et al., 2022; Aljoburi et al., 2024). Aguiar et al. (2024) reported that bacterial isolates resistance to tetracycline, except for two isolates that demonstrated sensitivity to this antibiotic. The results aligned with the findings of Papaleo et al. (2022), who confirmed that bacterial isolates exhibited sensitivity to the antibiotic rifampicin and resistance to ciproflaxin, with the exception of one antibiotic that is effective only against actively growing forms of bacteria.

#### **CONCLUSION**

Pathogenic bacteria provide a considerable risk to the aquaculture of common carp in floating cages throughout Diayla Province. The research findings have indicated the necessity for efficient techniques to control fish health and avert bacterial infections in aquaculture. Antibiotics having limited potency, such as Cefoxitin and Chloramphenicol, are not advised for use against examined bacteria.

#### REFERENCES

- **Abdullah, S.A.; Al-Bayati, H.H.K.; Shihab, T.J., Sultan, M. and Jumaa, Q. S. (2024).** Immunogenicity of culture filtrated proteins and whole-cell killed formalin of Listeria monocytogenes to induced cellular immune response in vivo. *Open veterinary journal,* 14(12), 3581–3598. https://doi.org/10.5455/OVJ.2024.v14.i12.40
- **Aguiar, S.; Debnath, F. and Kaushik, S. (Eds.).** (2024). Reviews in Antibiotic Resistance and New Antimicrobial Drugs. *Frontiers Media SA*. <a href="https://www.frontiersin.org/research-topics/53219/reviews-in-antibiotic-resistance-and-new-antimicrobial-drugs/magazine">https://www.frontiersin.org/research-topics/53219/reviews-in-antibiotic-resistance-and-new-antimicrobial-drugs/magazine</a>

- Pathogenic Bacteria Influencing Common Carp ( $Cyprinus\ carpio\ L$ .) Farming in Floating Cages in Dayla Province
- Alam, S.; Afzal, G.; Siddique, A. B.; Hussain, R. and Mustafa, G. (2023). Incidence, transmission mechanisms and pathologic implications of bacterial zoonotic diseases of fish. Zoonosis, Unique Scientific Publishers, *Faisalabad*, *Pakistan*, 4, 625-645. https://doi.org/10.47278/book.zoon/2023.184
- **Al-Bayati, H.H.; Hussein, F.A.; Thamer, I.K. and Abdullah, B.A.** (2020). Effects of Coconut oil and fusidic acid extract in alternative traumatic wound healing in RATS model. *Systematic Reviews in Pharmacy.* 11(11), 208–213. https://doi.org/10.31838/srp.2020.11.30
- **Aljoburi, A.; Jumma, Q. and Al-shammari, S.** (2024). Effects of different vaccination methods against newcastle disease on immune response and some blood parameters in local chicken (gallus gallus domesticus) in shirqat city. *Assiut veterinary medical journal*, 70(183), 519-530. Doi: 10.21608/avmj. 2024.297170.1280
- **Alrudainy, A. J. and Jumaa, Q. S.** (2016). Effect of Magnitized Water On Common Carp Cyprinus Carpio Rearing In Different Salinity Concentrations. Iraqi Journal Of Agricultural Sciences.47(2),.646-655. DOI: https://doi.org/10.36103/ijas.v47i2. 611
- **Al-Shammari, S.M.; Jumma, Q. and Ali, A.** (2024). Oxidative Stress and Blood Parameters Affected by Carbaryl Insecticide in Cyprinus carpio. *Egyptian Journal of Aquatic Biology and Fisheries*, 28(6), 2195-2201. DOI: 10.21608/ejabf.2024.400585
- **Al-Shammari, S.M.; Sana, A.M. and Kane, A.M.** (2019). Evaluation the Ozone Treatment To Control the Infection of Saprolegniasis in Cyprinus carpio L. *In Journal of Physics: Conference Series* 12(6), 062049. https://doi.org/10.1088/1742-6596/1294/6/062049
- **Alshumary, H.; jumma, Q.; Khorsheed, H. and alKaisi, B.** (2024). Assessment of The toxic Effect of Environmental Pollution by 2, 3, 7, 8 Tetrachlorodibenzo-p-dioxin (TCDD) on The Female Reproductive System by Pathological and Biochemical Assay in Albino Female Rats. *Egyptian Journal of Veterinary Sciences*, 55(5), 1409-1415. https://doi.org/10.21608/ejvs.2024.254722.1721
- **Alwan, M.J. and Al-Bayati, H.** (2020). Immunohistopathological and immunological evaluation of listeria nanoparticle vaccine during the first and third semester in the pregnancy rat model. *Plant Archives.* 20 (2), 2016-2025. <a href="https://www.plantarchives.org/SPL%20ISSUE%2020-2/335">https://www.plantarchives.org/SPL%20ISSUE%2020-2/335</a>
- **Andrews, S.** (1992). Frequency and neighborhood effects on lexical access: Lexical similarity or orthographic redundancy. Journal of Experimental Psychology: *Learning, Memory, and Cognition*, 18(2), 234. https://doi.org/10.1037/0278-7393.18.2.234
- **Assane, I.M.; Gozi, K.S.; Valladão, G.M.R. and Pilarski, F.** (2019). Combination of antimicrobials as an approach to reduce their application in aquaculture: Emphasis on the use of thiamphenicol/florfenicol against Aeromonas hydrophila. *Aquaculture*. 507, 238–245. https://doi.org/10.1016/j.aquaculture.2019.04.021
- **Ataee, R.A.; Mehrabi, T.A.; Hosseini, S.M.; Moridi, K. and Ghorbananli, Z.M.** (2012). A method for antibiotic susceptibility testing: applicable and accurate. *Jundishapur J Microbiol*. *5*(1):341-5. https://doi.org/10.5812/kowsar.20083645.2374
- Bashar, S.N.; Qusai, S.J.; Muthanna, S.; Raghad, Z.S.; Khalid, A.H.; Ali, A.A. (2025). Preventive and Ameliorative Role of Lactoferrin in Improving Blood, Lipid and Liver Profiles Toward Immune Homeostasis in Lipopolysaccharides (LPS) Induced Dysregulation of Bio-Vital Parameters in the Common Carp (Cyprinus carpio). *Egyptian Journal of*

- *Aquatic Biology and Fisheries,* 29(2), 1173-1180. https://doi.org/10.21608/ejabf.2025.419336
- **Dhyani, V.; Dhyani, A. and Joshi, R.** (2025). Antibiotic resistance: Pathophysiology, implications of overuse, and strategies for recovery. *Hazardous Chemicals*. 795-811. https://doi.org/10.1016/B978-0-323-95235-4.00021-9
- **Dinev, T.; Velichkova, K.; Stoyanova, A. and Sirakov, I.** (2023). Microbial Pathogens in Aquaponics Potentially Hazardous for Human Health. *Microorganisms*, 11(12), 2824. <a href="https://doi.org/10.3390/microorganisms11122824">https://doi.org/10.3390/microorganisms11122824</a>
- **Eqbal, S.N.; Sabah, Al-Shammari, M.H. and Ali, M.K.** (2020). Evaluation the Effects of Zingiber officinale L. as a feed Additive on Growth and Some Serum Biochemical Profiles of Cyprinus carpio L. (2020). *Indian Journal of Forensic Medicine and Toxicology.* 14(2), 1175-1180. https://doi.org/10.37506/ijfmt.v14i2.3065
- Garrity, G.M. and Stanley, J.T. (2001). Bergey's Manual of Systematic Bacteriology: Volume One The Archaea and the Deeply Branching and Phototrophic Bacteria. D. R. Boone, and R. W. Castenholz (Eds.). *Springer New York*. <a href="https://link.springer.com/book/10.1007/978-0-387-21609-6">https://link.springer.com/book/10.1007/978-0-387-21609-6</a>
- **Hiba, A.S.; Siham, A.W.; Hassan, H. and Maythaem, A.I.** (2020). Evaluation the effect and efficacy of lidocaine on healing of skin wound in rabbits. *Systematic Reviews in Pharmacy*. *11*(12), 1368-1372. <a href="https://doi.org/10.31838/srp.2020.12.203">https://doi.org/10.31838/srp.2020.12.203</a>
- Hildah, J.; Josephine, M.; Emily, C.J. James, B.; James, W. and Christopher, S. (2022). Influence of Water Quality on Distribution Patterns and Diversity of Enteromius Fish Species in Small Water Bodies of Uasin Gishu County, Kenya. *African Journal of Education*, 7(2). https://doi.org/10.2022/ajest.v7i2.797
- Hossain, M.A.; Hossain, M.A.; Haque, M.A.; Mondol, M.M.; Harun-Ur-Rashid, M. and Das, S. K. (2022). Determination of suitable stocking density for good aquaculture practice-based carp fattening in ponds under drought-prone areas of Bangladesh. Aquaculture, 547,737485. <a href="https://doi.org/10.1016/j.aquaculture.2021.737485">https://doi.org/10.1016/j.aquaculture.2021.737485</a>
- **Hussein, A. and Jumma, Q.** (2024). Diagnosis of Infectious Bronchitis Infection in Broiler Chicken Farms in Salah Al-Din Governorate. Egyptian Journal of Veterinary Sciences, 55(6), 1619-1626. <a href="https://doi.org/10.21608/ejvs.2024.262773.1780">https://doi.org/10.21608/ejvs.2024.262773.1780</a>
- Imtiaz, N.; Anwar, Z.; Waiho, K.; Shi, C.; Mu, C.; Wang, C. and Qingyang, W. (2024). A review on aquaculture adaptation for fish treatment from antibiotic to vaccine prophylaxis. *Aquaculture International*, 32(3), 2643-2668. <a href="https://link.springer.com/article/10.1007/s10499-023-01290-6">https://link.springer.com/article/10.1007/s10499-023-01290-6</a>
- **Jumma, Q.S.** (2024). Detection of ESBL *E. coli* That Carried STX1 and STX2 Form Common Carp (Cyprinus carpio) in Salhaldeen Province, Egypt. J. Vet. Sci. 55(4): 1165-1170. <a href="https://doi.org/10.21608/EJVS.2024.255648.1728">https://doi.org/10.21608/EJVS.2024.255648.1728</a>
- Kane, A. M.; Al-Darwesh, A. A.; Al-Shammar, S. M. and Abd Al-Ameer, I. S. (2024). Inhibitor Properties of Rue (Ruta graveolens L.) on Spermatogenesis in Guppy Poecilia reticulata Peters, 1859. *Basrah Journal of Agricultural Sciences*, 37(1), 224-235. <a href="https://doi.org/10.37077/25200860.2024.37.1.17">https://doi.org/10.37077/25200860.2024.37.1.17</a>

- Pathogenic Bacteria Influencing Common Carp ( $Cyprinus\ carpio\ L$ .) Farming in Floating Cages in Dayla Province
- **Khalifa, S.Z.; Attee, R.S. and Al-Shammari, S.M.** (2020). Some Properties Of Morphological And Relationship Weight Length With Condition Factor Of The Coptodon Zillii (Gervais, 1848) In The Tigris River, Baghdad, Iraq. *Diyala Agricultural Sciences Journal.* 12(16), 194 205. <a href="https://doi.org/10.52951/dasj.20121018">https://doi.org/10.52951/dasj.20121018</a>
- Milijasevic, M.; Veskovic-Moracanin, S.; Milijasevic, J. B.; Petrovic, J. and Nastasijevic, I. (2024). Antimicrobial Resistance in Aquaculture: Risk Mitigation within the One Health Context. *Foods*, *13*(15), 2448. https://doi.org/10.3390/foods13152448
- **Mohammed, I. U.** (2024). Isolation and identification of pathogenic bacteria from commercially marketed fish in Wukari, North-Eastern Nigeria. *European Journal of Microbiology and Infectious Diseases*, 1(2), 66-66. <a href="https://doi.org/10.5455/EJMID.20240607073124">https://doi.org/10.5455/EJMID.20240607073124</a>
- **Mondal, S.; Roy, T. and Ray, A. K.** (2010). Characterization and identification of enzyme-producing bacteria isolated from the digestive tract of bata, Labeo bata. *Journal of the World Aquaculture Society*, 41(3):369-377. <a href="https://doi.org/10.1111/j.1749-7345.2010.00378.x">https://doi.org/10.1111/j.1749-7345.2010.00378.x</a>
- Oday, A. A.; Firas, A. H.; Qusai, S. J. and Marwa, A. H. (2024). Histological Investigation of the Skin Structure in the Common Carp (Cyprinus carpio) and the Catfish (Silurus triostegus): Aquatic Environment Adjustment". *Egyptian Journal of Aquatic Biology and Fisheries*. 28(6), 2219-2228. https://doi.org/10.21608/ejabf.2024.400587
- **Papaleo, S.; Alvaro, A.; Nodari, R.; Panelli, S.; Bitar, I. and Comandatore, F.** (2022). The red thread between methylation and mutation in bacterial antibiotic resistance: How third-generation sequencing can help to unravel this relationship. *Frontiers in Microbiology*, 13, 957901. <a href="https://doi.org/10.3389/fmicb.2022.957901">https://doi.org/10.3389/fmicb.2022.957901</a>
- Raufu, I. A.; Lawan, F. A.; Bello, H. S.; Musa, A. S.; Ameh, J. A. and Ambali, A. G. (2014). Occurrence and antimicrobial susceptibility profiles of Salmonella serovars from fish in Maiduguri, sub-Saharah, Nigeria. *The Egyptian Journal of Aquatic Research*, 40(1), 59-63. <a href="https://doi.org/10.1016/j.ejar.2014.01.003">https://doi.org/10.1016/j.ejar.2014.01.003</a>
- Robinson, R. K. (2014). Encyclopedia of food microbiology. Academic press.
- Sánchez, J. L.; Le Breton, A.; Brun, E.; Vendramin, N.; Spiliopoulos, G.; Furones, D. and Basurco, B. (2022). Assessing the economic impact of diseases in Mediterranean grow-out farms culturing European sea bass. *Aquaculture*, 547, 737530. <a href="https://doi.org/10.1016/j.aquaculture.2021.737530">https://doi.org/10.1016/j.aquaculture.2021.737530</a>
- Shah, S. N.; Bhat, M. A.; Bhat, M. A. and Jan, A. T. (2024). Antimicrobial Resistance: An Overview. Nanotechnology Based Strategies for Combating Antimicrobial Resistance, 1-44. <a href="https://www.sciencedirect.com/topics/immunology-and-microbiology/antimicrobial-resistance">https://www.sciencedirect.com/topics/immunology-and-microbiology/antimicrobial-resistance</a>
- Shinu, P.; Mouslem, A. K. A.; Nair, A. B.; Venugopala, K. N.; Attimarad, M.; Singh, V. A. and Deb, P. K. (2022). Progress report: Antimicrobial drug discovery in the resistance era. *Pharmaceuticals*, 15(4), 413. https://doi.org/10.3390/ph15040413
- Tesfaye, K.; Kruseman, G.; Cairns, J. E.; Zaman-Allah, M.; Wegary, D.; Zaidi, P. H. and Erenstein, O. (2018). Potential benefits of drought and heat tolerance for adapting maize to climate change in tropical environments. *Climate risk management*, 19, 106-119. <a href="https://doi.org/10.1016/j.crm.2017.10.001">https://doi.org/10.1016/j.crm.2017.10.001</a>

- Wang, F.; Qin, Z. L.; Luo, W. S.; Xiong, N. X.; Huang, M. Z.; Ou, J. and Liu, S. J. (2023). Alteration of synergistic immune response in gut–liver axis of white crucian carp (Carassius cuvieri) after gut infection with Aeromonas hydrophila. *Journal of Fish Diseases*, 46(9), 917-927. https://doi.org/10.1111/jfd.13799
- **Wani, M. Y.** (2024). Nanotechnology Based Strategies for Combating Antimicrobial Resistance. Springer Nature. <a href="https://link.springer.com/book/10.1007/978-981-97-2023-1">https://link.springer.com/book/10.1007/978-981-97-2023-1</a>