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INTRODUCTION  
 

Reports indicate that Indonesia generates 4.8 million tons of improperly managed 
plastic waste, with an estimated 0.62 million tons ending up in aquatic environments 
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Microplastic pollution in Indonesian waters is a critical environmental 
issue. The Kedung Ombo Reservoir, which contributes to the economic 
well-being of the surrounding community, is one of the affected water 
bodies. Poor management of plastic waste can lead to microplastic 
contamination, which threatens aquatic organisms such as algae, snails, and 
fish through respiratory and food chain processes. In addition to being a 
source of high-quality protein, fish can serve as a media for microplastic 
contamination in humans. One fish species in high market demand from this 
reservoir is the carp. This study aimed to determine the concentration of 
microplastics in carp (Cyprinus carpio), snails (Pila ampullacea), 
macroalgae (filamentous algae), water, and sediment in the Kedung Ombo 
Reservoir, Central Java. The research used laboratory tests and Fourier 
Transform Infrared (FTIR) analysis. The results revealed significant 
differences (P< 0.004) in microplastic concentrations in carp from cages and 
fishermen's catch based on sampling time, with the digestive system 
exhibiting the highest microplastic exposure. Snail specimens from the 
reservoir and outlet showed significant differences in microplastic 
concentrations (P< 0.012), whereas macroalgae from the outlet and tourist 
areas did not differ significantly (P> 0.342). Sediment samples exhibited the 
highest average microplastic concentration of 31.3 particles/g. The 
identified microplastics were categorized into five morphological forms 
(fibers, fragments, films, pellets, and foam), nine colors (black, red, purple, 
yellow, brown, gray, blue, transparent, and green), and five polymer types 
(PA, PE, PET, PS, and PVC). 
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(Kamaruddin et al., 2022; Isfarin et al., 2024). This plastic waste is broken down into 
microplastics and particles smaller than 5mm (GESAMP, 2019; Celmar et al., 2024), 
posing a significant threat to the health of organisms and humans. These microplastic 
contaminants can enter the food chain, affecting human cells and potentially leading to 
increased long-term illness and mortality (Bamigboye et al., 2024). Microplastics have 
been identified in various human tissues, including placenta (Ragusa et al., 2021), lungs, 
blood (Amato-Lourenço et al., 2021; Jung et 
al., 2022), and infant feces (Liu et al., 2023). Microplastics are considered the primary 
pollutants infiltrating freshwater ecosystems (O'Connor et al., 2022; Bexeitova et al., 
2024). These freshwater systems serve as transitional ecosystems, characterized by high 
ecological productivity and provide crucial habitats for flora and fauna while offering 
economic benefits (Borah et al., 2024; Chatterjee et al., 2024).  

Kedung Ombo Reservoir in Central Java (Fig. 1) is one of the important 
freshwater ecosystems in Indonesia. The reservoir has extensive aquaculture using 
floating net cages (FNC), with 3,978 plots that exceed its carrying capacity of 1026 plots 
(Pamali Juana River Basin Center, 2017). The reservoir has multiple functions, 
including agricultural irrigation, raw water supply, power generation, aquaculture, 
fisheries, and tourism, and covers a water area of 60,965 ha (Novandi et al., 2019). The 
intense human activity in this area makes the reservoir a likely place for microplastic 
accumulation (Di & Wang, 2018). In addition, the reduced flow rate in the reservoir 
promotes the deposition of microplastics, leading to higher concentrations in the water 
(Saarni et al., 2023). Not only in water, sediments also provide a potential accumulation 
of microplastics of about 70-90% over a long period of time (Booth et al., 2016; Su et 
al., 2016; Huang et al., 2021; Duong et al., 2023). 

Microplastic build-up can negatively impact the well-being of aquatic organisms 
in reservoirs, both directly and indirectly (Azizi et al., 2021). The effects of microplastics 
extend across multiple trophic levels in the food chain, from algae to fish, triggering 
stress responses in these organisms (Li et al., 2024b). Algae and macroalgae can 
facilitate the transfer of microplastics to fish and invertebrates via herbivory (Huang et 
al., 2023). Filamentous macroalgal species have a greater ability to retain microplastics 
than non-filamentous species (Ng et al., 2022; Ji et al., 2024). This type of filamentous 
macroalgae is attached to floating net cages and to the tourism area of the Kedung Ombo 
Reservoir. However, microplastics can inhibit algal photosynthesis and cause other 
detrimental effects in freshwater ecosystems (Zhang et al., 2017). Microplastics can also 
enter snail bodies, leading to increased toxicity and reduced protein content (Bour et al., 
2018; Song et al., 2019; Qu et al., 2020). As gastropods, snails are commonly used as 
bioindicators of environmental pollutants, making them effective for detecting 
microplastics (An et al., 2022). Zhang et al. (2024) showed that microplastics can be 
efficiently transferred to freshwater food chains, such as snails (B. aeruginosa) and black 
carp (M. amblyceph piceus), and accumulate in various tissues. Pila ampullacea is a type 



Microplastics in Common Carp, Apple Snails, and Macroalgae in the Kedung Ombo Reservoir 
 

 

2627 

of snail found in this area. Microplastics in water can enter the fish body through gill 
filaments, attach to the gill surface, or penetrate blood vessels and cell membranes, 
thereby disrupting the normal respiratory function (Zheng et al., 2024). When fish ingest 
microplastics, they can cause decreased energy reserves, impaired reproduction and 
growth, intestinal inflammation, metabolic problems, oxidative stress, and death (Qiao et 
al., 2019; Hasan et al., 2021; Jaafar et al., 2021; Onaji et al., 2025). Therefore, 
studying microplastics in macroalgae, snails, and fish at different trophic levels is 
essential for research in this area. 

According to the Ministry of Marine Affairs and Fisheries (2019), carp ranked 
as the 6th highest in production value among 20 fish species in Central Java. This high 
ranking is due to the popularity of this fish among farmers and consumers, owing to its 
robust disease resistance, low cultivation risk, and desirable quality (Ma et al., 2018; 
Chen et al., 2022; Luo et al., 2024). The potential for human exposure to microplastics 
through fish consumption has become a major public health concern (Hasan et al., 2023; 
Borah et al., 2024). Investigating microplastic contamination in commercially important 
fish species is crucial, especially in regions with high microplastic potential, such as the 
Kedung Ombo Reservoir tourist area, where carp are highly sought (Wijianto & Effendi, 
2022; Lestari et al., 2023). Consequently, this study aimed to measure microplastic 
concentrations in carp (Cyprinus carpio), snails (Pila ampullacea), macroalgae 
(filamentous algae), water, and sediment within the Kedung Ombo Reservoir in Central 
Java. This study offers insights into the current health status of aquatic biota, particularly 
carp affected by microplastic contamination. The findings could inform policy decisions 
for enhancing water quality management and aquatic biota conservation in the Kedung 
Ombo Reservoir while raising public awareness of environmental protection. 

 
MATERIALS AND METHODS  
 

1. Research area and sampling 
The research materials comprised samples of aquatic biota (carp, snails, and 

macroalgae), water, and sediment. Data were collected in September and October 2024, 
at the Kedung Ombo Reservoir in Central Java, which encompasses the districts of 
Grobogan, Boyolali, and Sragen (Fig. 1). Eight fish specimens were obtained directly 
from floating net cages and fishermen's catches, for a total of 16 fish. Snail samples were 
collected from cages and outlets, four from each location, while macroalgal specimens 
were gathered from cages and tourist stations, with four samples per station. The cages 
were situated in the Sragen district (Fig. 1), and the fish were procured from fishermen as 
catches across the three districts. 

Four stations were used for water and sediment sampling based on areas with the 
highest human activity as the basic source of microplastics. The positions of the four 
stations are as follows: station 1 (Floating Net Cage: 7° 18' 13.27''S; 110° 50' 5.7''E), 
station 2 (tourism: 7° 15' 4.84''S; 110° 49' 30.83''E), station 3 (reservoir inlet: 8° 42' 
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2.64''S; 110° 45' 44.34''E) and station 4 (reservoir outlet: 7° 15' 46.96''S; 110° 50' 
38.41''E) each station has three sub-stations. Each station also measured the water quality 
(temperature, pH, dissolved oxygen, brightness, and depth) as supporting data. Water and 
sediment samples were collected using a Nansen water and sediment grab sampler, with a 
total of 24 samples. All samples were placed in a cool box and transported to the 
laboratory for microplastic identification. 

 
Fig. 1. Research map 

 
2. Microplastic identification procedure 
2.1. Destruction stage 

• Aquatic biota 
Prior to destruction, fish and snails were measured for their length and weight. 

Subsequently, the fish were dissected to separate the digestive organs and muscle tissue, 
and the snails were separated into body and shell components for further analysis. The 
destruction stage of the muscle tissue and digestive organs involved placing them in 
250mL Erlenmeyer flasks containing 10% KOH solution, equivalent to two-thirds of the 
sample weight, to remove organic matter (Ding et al., 2018). Erlenmeyer flasks were 
covered with aluminum foil and were stored at room temperature for 48h (Hassine et al., 
2024). Subsequently, NaCl (140g per 1 liter) was added to each sample, which was then 
stored at room temperature for 48h. This procedure was intended to facilitate the flotation 
of microplastics on the surface. Then, for the macroalgae extraction process, the first step 
taken was weighing. After weighing, the macroalgal samples were treated with 1mL of 
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30% H2O2 in enlemeyer flask covered with aluminum foil and maintained at room 
temperature until sample degradation occurred (Taurozzi et al., 2024). 

• Water  
A 100mL water sample was transferred to a 250mL Erlenmeyer flask and treated 

with 100ml of 30% H2O2 solution to eliminate organic matter, leaving only inorganic 
material and microplastics. The Erlenmeyer flask was then wrapped in aluminum foil and 
kept in the dark for 3 days (Haque et al., 2023). 

• Sediment 
A wet sediment sample (approximately 100g) was dehydrated in an oven at 60°C 

until being completely dry. A sieve shaker with <5mm mesh was used to filter the 
sample, from which approximately 3g was extracted (Haque et al., 2023) and placed in a 
glass beaker. The extraction process involved adding 30% H2O2 in a 1:20 ratio (3g 
sample to 60mL of H2O2 solution) (Anjeli et al., 2024) and allowing it to settle for 6h. 
The extracted material was then separated by introducing NaCl (60g NaCl dissolved in 
100ml of distilled water), followed by centrifugation for 2min. The resulting supernatant 
underwent filtration. Microplastic particles retained on the filter were analyzed for 
quantity, color, and shape based on NaCl addition. The remaining sediment from the 
density separation was mixed with ZnCl2 (d = 1.70g/ mL) for further density separation 
(Haque et al., 2023), followed by centrifugation and filtration. The particles collected on 
the filter paper were examined for the number, color, and shape of microplastics based on 
the ZnCl2 dilution. 
2.2. Filtering stage of destruction results  

Samples of aquatic biota, water, and sediment that were destructed subsequently 
underwent sample filtration using Whatman No. 42 paper (size 2.5µm) with the 
assistance of a vacuum pump. The filter paper was then desiccated in an incubator at 35-
40°C for 4h. Subsequently, the filter paper was placed on a Petri dish for examination 
using a binocular microscope to identify the concentration, color, and shape of the 
microplastics. 
2.3. Calculation of microplastic concentration  

The microplastic concentration in aquatic biota, water, and sediment (Anjeli et 
al., 2024) was calculated using the following formula: 

Microplastic concentrations (biota)  =  

Microplastic abundance (water) =  

Microplastic abundance (sediment)=  
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3. Statistics and FTIR analysis  
The data were subjected to several statistical tests, including normality, 

homogeneity, analysis of variance (ANOVA), and correlation tests. If the data exhibited a 
normal distribution, the analysis was proceeded with the ANOVA test using the IBM 
SPSS software. ANOVA was used to compare the results from various locations and 
sampling times (Chatterjee et al., 2024). A correlation test was conducted to determine 
whether a significant relationship existed between variables. Pearson’s correlation test 
was used for normally distributed data, whereas Spearman’s correlation test was used for 
non-normally distributed data. 

FTIR (Fourier transform infrared spectroscopy) analysis was employed to identify 
polymer content in microplastics present in carp, snail, macroalgae, water and sediment 
samples. The FTIR results were obtained in the form of absorption wavelengths for each 
type of microplastic polymer, which were subsequently compared with the FTIR 
reference spectra. The spectrum range utilized for this analysis ranged from 4500 to 
500cm-1 (Anjeli et al., 2024). 
 

RESULTS AND DISCUSSION 
 

1.  Microplastic concentration 
1.1.  Common carp 

The mean microplastic concentrations observed in carp from cages and catches 
were 2.04±1.32 and 1.83±1.20 particles/g, respectively. A statistically significant 
difference (P< 0.004) was found between the microplastic concentrations of carp from 
floating net cages (FNC) and those from fishermen's catches, with the former exhibiting 
higher concentrations at the time of collection. This disparity can be attributed to 
aquaculture practices that utilize floating net cages, which facilitate the degradation of 
fishing nets, fishing lines, and synthetic pellets into small fragments (microplastics) due 
to prolonged exposure to solar radiation (FAO, 2021). Furthermore, the confined area of 
floating net cages and reduced water flow contribute to the entrapment and accumulation 
of microplastics in the vicinity. Aunurohim et al. (2024) reported that among the three 
areas investigated (floating net cages, rivers, and lakes), the highest abundance of 
microplastics was observed in the floating net cages, with a microplastic concentration in 
tilapia of 28.96 particles/individual in Ranu Grati Lake, East Java. 

Further investigation related to microplastic concentrations and carp size, where 
the average weight of cage carp was greater than that of wild carp at 412±145 and 
321±98g, respectively (Table 1). Despite the difference in weight between the two types 
of fish, statistical analysis revealed no significant correlation (P> 0.389) between 
microplastic concentrations and carp length/weight. This observation may be attributed to 
various factors, such as differences in diet and metabolism among fish, which affect 
variations in microplastic absorption and impact individual specimens. Consistent with 
this study, Wang et al. (2021) and Borah et al. (2024) reported no significant 



Microplastics in Common Carp, Apple Snails, and Macroalgae in the Kedung Ombo Reservoir 
 

 

2631 

relationship between ingested microplastics and body weight/length of fish species. Fish 
ingest microplastics not only by perceiving them as food but also through passive 
respiration (Su et al. 2019). Another study posited that large fish require substantial 
energy and thus consume higher quantities of feed; therefore, it was hypothesized that 
more microplastics are ingested (Khan et al., 2023). In contrast, Haque et al. (2023) 
found a negative relationship between microplastic concentration and fish weight and 
length, suggesting that smaller fish ingest more microplastics. 

The concentration of microplastics in the digestive system was significantly 
higher than that in the flesh (Fig. 2). The mean microplastic concentrations in the 
digestive system and flesh were 1.61 ± 1.09  and 0.33 ± 0.21g, respectively. Analysis of 
variance (ANOVA) revealed a statistically significant difference in microplastic 
concentrations between the two regions (P< 0.001). This finding suggests that the 
digestive tract serves as the primary site for microplastic accumulation, with the potential 
for translocation to other body tissues (Abbasi et al., 2018; Akhbarizadeh et al., 2018; 
Su et al., 2019; Bora et al., 2025). The presence of microplastics in the digestive tract 
poses potential risks, including obstruction and damage to the digestive system, and the 
release of microplastics through pseudo-feces may disrupt energy transfer in organisms 
(Muhib & Rahman, 2023). Wang et al. (2021) posited that fish dried without removal 
of the digestive system present a higher risk of microplastic exposure upon human 
consumption, a concern particularly relevant to small fish due to dissection challenges. 
Furthermore, the inhalation of microplastics demonstrates their capacity for 
dissemination to various body tissues and organs via the circulatory system, rendering 
muscle tissue or flesh a potential site for microplastic accumulation (Utomo & Muzaki, 
2022). 

Table 1. Results of average length/weight and microplastic abundance of carp 
Carp sample 

type 
Average 
weight 

(g) 

Average 
length 
(cm) 

Average microplastic 
concentration 
(particles/gr) 

Average 
microplastic 

concentration per 
site (particles/gr) 

FNC P11 442±183 28±4.4 0.99±0.52 2.04±1.32 FNC P22 381±114 29±3.1 3.09±1.05 
Catch P11 219±25 23±1.1 0.95±0.29 1.83±1.20 Catch P22 179±25 21±1.8 2.71±1.11 

1P1: First Repetition 
2P2: Second Repetition 
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Fig. 2. Diagram of microplastic concentration in the flesh and digestive system of carp 

 
1.2. Apple snail (Pila ampullacea) 

The mean concentration of microplastics in snails from cages (FNC) and outlets 
was 5.9 ± 0.99 and 3.2 ± 1.33 particles/g, respectively (Fig. 3). A statistically significant 
difference was observed (P< 0.012), with the microplastic concentration in snails from 
cages being higher than that in snails from the reservoir outlet. This disparity can be 
attributed to the fact that cages are located in areas of the reservoir characterized by 
slower water flow, and the abundance of microplastics in the sediment is greater than that 
in the reservoir outlet area (Fig. 5). Reservoirs exhibit relatively weak hydrodynamics, 
which facilitates the deposition of microplastics in sediments, in contrast to river areas 
with strong hydrodynamics that promote microplastic transport (Chen et al., 2024). 
Microplastic sedimentation increases the absorption rate of benthic organisms (An et al., 
2022). In comparison to snails (Pila ampullacea) in the Rawa Jombor reservoir, where 
the concentration of microplastics ranges from 2.5-11 particles/g (Rahmayanti et al., 
2022; Khoshmanesh et al., 2023), the concentration values observed in this study fall 
within this range, as shown in Fig. (3). 

 
Fig. 3. Diagram of microplastic concentration in snails 
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1.3. Macroalgae (Filamentous algae) 
The average microplastic concentrations in macroalgae from cages (FNC) and 

tourism (T) areas were 2.0 ± 0.2 and 3.4 ± 1.6 particles/g, respectively. The microplastic 
concentrations of macroalgae from cages were lower than those from tourism areas. This 
variation may be attributed to the reduced abundance of microplastics in water and 
sediment near cages compared with that in tourism areas (Fig. 5). Xiong et al. (2018) and 
Han et al. (2024) observed significantly higher levels of microplastics in waters near 
tourism sites than in other locations. Macroalgae contribute to the distribution and 
transport of microplastics through physical mechanisms such as entanglement or 
entrapment (Huang et al., 2023). Microplastics not only adhere to the surface of algae 
but can also be trapped in the air sacs of filamentous algae, thereby increasing their 
capacity to trap filamentous algal cells (Feng et al., 2020; Peller et al., 2021; Li et al., 
2024b). However, the difference between cages and tourism in this study was not 
statistically significant (P> 0.342). Furthermore, microplastics negatively affect aquatic 
plants by affecting their growth and development (Yao et al., 2024). For instance, the 
exposure of Hydrilla verticillata to microplastics for 16 days significantly reduced the 
growth rate and chlorophyll content, which elicited an antioxidant response (Yu et al., 
2022). Fig. (4) provides detailed information for each sample. 

 
Fig. 4. Diagram of microplastic concentrations in macroalgae 

 
1.4.  Water and sediment 

The average abundance of microplastics in the first and second repetition water 
was 0.21±0.15 and 0.42±0.12 particles/ml, respectively (Fig. 5). The average abundance 
was comparable to the microplastic abundance of water samples in the Koto Panjang 
Hydroelectric Power Reservoir, Riau ranged 0-1,2 particles/ml, and Buriganga River, 
Bangladesh which ranged from 0.12-0.25 particles/ml (Friadi et al., 2023; Haque et al., 
2023). The difference in the abundance of water microplastics in this study was 
statistically significant (P< 0.01). This discrepancy can be attributed to the high rainfall 
during the second collection, which influenced water quality parameters (temperature, 
depth, transparency, pH, and dissolved oxygen). However, based on the correlation 
analysis, only temperature was significantly correlated with the microplastic abundance 
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(P< 0.007). The water temperature during the second measurement, ranging from to 31-
32.6°C, was higher than that during the first measurement, which ranged from to 30-
31.3°C. Temperature significantly affects the distribution of microplastics, because it can 
influence water hydrodynamics and microplastic degradation mechanisms (Buwono et 
al., 2021). Chang et al. (2024) projected that from 2025 to 2100, an increase in the global 
average temperature of 4.2°C would result in a substantial increase in microplastic 
concentration in Indonesia, reaching 111.27%. This projection indicates that the risk of 
microplastic contamination may escalate further with increasing temperatures, 
particularly during extreme weather conditions. Furthermore, the combination of 
increasing temperature and microplastic contamination can lead to a decline in the health 
of aquatic organisms owing to increased metabolism and toxicity, potentially causing 
oxidative stress and mortality (Martins et al., 2023). 

The concentration of microplastics in sediments varied from 13.7-51.3 particles/g, 
which is less than that observed in the Brantas River, East Java, where it ranged from 28-
77 particles/g (Wijayanti et al., 2021). Nevertheless, this finding differs markedly from 
studies on sediment microplastic abundance in other reservoirs and rivers, such as the 
Three Gorges Reservoir in China, with 0.025-0.864 particles/g (Di & Wang, 2018), and 
the Billings Reservoir in Brazil, with 1.67-6.69 particles/g (Queiroz et al., 2024). This 
elevated concentration may be attributed to intensive human activities in the reservoir 
area, including tourism, offshore floating net cages, and docks. Queiroz et al. (2024) 
proposed that extensive urbanisation surrounding the reservoir, fishing, industrial 
activities, waste disposal, and inflowing upstream rivers could be potential microplastic 
sources. However, no significant difference was observed between the stations based on 
the repetition time (P > 0.136) in this study. This is likely due to reservoir characteristics, 
such as slow flow and extended hydraulic time, which facilitate the settling of suspended 
particles from the water column, thus promoting microplastic accumulation in sediments 
(Dhivert et al., 2022; Cheng et al., 2024). Other studies have shown that reservoir 
sediments can retain a substantial portion (approximately 47%) of the microplastic flux 
that would otherwise reach the sea via rivers (Gao et al., 2023). Moreover, sediments act 
as the primary repository for particles of various sizes originating from eroded soil 
material, litter, and organic matter that settle at the bottom of waterbodies (Anjeli et al., 
2024). Fig. (5) shows the concentration of water and sediment microplastics at stations 1 
(FNC), 2 (Tourism), 3 (Inlet), and 4 (Outlet) in repetition 1 (P1) and repetition 2 (P2). 
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Fig. 5. Microplastic abundance diagram of (A) water and (B) sediment samples 

 
2. Shape of microplastics 

Microplastics were discovered in all samples and exhibited five distinct forms: 
fiber, fragment, film, pellet, and foam (Fig. 7). Fragments constituted the highest 
proportion of microplastic shapes in carp and sediment (29-52%), typically originating 
from the breakdown of plastic wraps and bags (Chatterjee et al., 2024). This finding 
aligns with the microplastic shapes observed in Buriganga River sediments, where 
fragments accounted for 34.51% (Haque et al., 2023). In contrast, fibers were the 
predominant form in snails and algae (29-31%), resulting from the fragmentation of 
fishing equipment (Cole, 2016; Haque et al., 2023). This prevalence mirrors the 
microplastic shapes found in Buriganga River snails, with fibers comprising 43.33% 
(Haque et al., 2023), and in Ranu Grati Lake, Pasuruan, where they made up 80.21% 
(Aunurohim et al., 2024). Water samples primarily contained pellets (41%), derived 
from industrial microbeads used in beauty products with polyethylene polymers 
(Lenaker et al., 2019; Anjeli et al., 2024). Foam, often used as a packaging material in 
various industries (Haque et al., 2023), such as laundry soap and waste residue, which 
are the least common form in goldfish samples (1%). In snails and sediments, film is the 
least prevalent form (7-9%), resulting from the decomposition of thin plastic waste 
(Imanuel et al., 2022). Fig. (8) shows a detailed breakdown of the microplastic shapes 
for each sample in this study. 
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Figs. 7. Microplastic shape (A: Fiber; B: Fragment; C: Film; D: Pellet; E: Foam) 

 
 

 

  
Fig. 8. Percentage of microplastic shapes in samples of a) carp, b) snail, c) macroalgae, 
d) water, and e) sediment 
 
3. Microplastic color 

Microplastic analysis of all samples revealed nine distinct colors: black, red, 
purple, yellow, blue, brown, gray, transparent, and green (Fig. 9). This finding closely 
resembles the microplastic color distribution observed in the Gresik aquaculture region of 
East Java, where eight colors were identified (black, purple, red, blue, yellow, pink, 
green, and transparent) (Anjeli et al., 2024). Black microplastics were predominant 
across all sample types (carp, snails, algae, water, and sediment), comprising 51-33% of 
the total. This aligns with microplastic studies conducted on fish, snails, and crabs in the 
Buringaga River, where black particles accounted for 36.6% of the findings (Haque et 
al., 2023), as well as water samples from Ranu Grati Lake, which showed a black 
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microplastic percentage of 56-39% (Aunurohim et al., 2024). In carp samples, brown 
microplastics represented the second highest percentage (19-25%). Darker hues, such as 
black and brown, typically originate from plastic waste that has not undergone significant 
color alteration owing to photochemical degradation caused by ultraviolet exposure 
(Anjeli et al., 2024). 

Transparent microplastics were the second most prevalent color found in snails, 
algae, water, and sediment samples, accounting for 15-29% of the total. This 
transparency may be attributed to extensive fishing activities that utilize colorless plastic 
fishing lines and nylon nets, which can be mistaken for zooplankton and consumed by 
fish and other aquatic organisms (Di & Wang, 2018). Transparent microplastics are 
commonly found in commercial plastic bags and textile materials (Haque et al., 2023). 
Green microplastics were the least common in carp, snails, and sediment samples (1-2%), 
whereas purple was the least frequent color in algae and water samples (1%). The 
occurrence of other microplastic colors varied: yellow (3-13%), blue (6-11%), purple (3-
5%), red (2-11%), and gray (4-11%). Fig. (10) shows a detailed breakdown of the 
microplastic colors. Brightly colored plastics, often used in packaging bags, textile 
materials, and fish traps, closely resemble zooplankton and other aquatic organisms 
(Haque et al., 2023).  

 

       

       

      
Fig. 9. Microplastics color (a) black; b) red; c) purple; d) yellow; e) blue; f) brown; g) 
transparan; h) green and i) grey 
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Fig. 10. Color diagram of microplastics in samples: a) carp, b) snails, c) macroalgae, d) 
water and e) sediment 
 
4. Microplastic polymers 

In the analysis of microplastics from five distinct samples (carps, snails, algae, 
water, and sediment), five primary polymer types were identified: nylon (PA), 
polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC), and 
polyethylene (PE). Microplastics act as vehicles for harmful chemicals, including 
biochemically unstable monomers released from polymers (Borah et al., 2024). PE and 
Nylon were consistently present in all samples. Polyethylene (PE) is the most widely 
produced plastic polymer, largely because of its cost-effectiveness (Ronca, 2017; Yao et 
al., 2022; Queiroz et al., 2024). The prevalence of black microplastics in this study 
aligns with the dominance of PE polymers, which, according to Aunurohim et al. 
(2024), typically exhibit dark, intense colors and are commonly used in plastic garbage 
bags, contributing significantly to microplastic debris. In contrast, nylon microplastics are 
primarily sourced from laundry waste and discarded fishing equipment (Yuan et al., 
2019; Anagha et al., 2023; Aunurohim et al., 2024).  

 Polyethylene terephthalate (PET), another type of polymer, was detected in carp, 
macroalgae, and sediment samples. PET is primarily utilized as a packaging material 
(Issac & Kandasubramanian, 2021) because of its safety, light weight, affordability, 
and low production costs. PS and PVC were exclusively identified in carp specimens. 
These polymers typically originate from fish containers, with PS specifically used in 
insulated floats, whereas PVC serves as the primary component in water pipes, cable 
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insulation, and construction applications (Chatterjee et al., 2024; Liu et al., 2024). 
Various microplastic forms are associated with different polymer types: fibers contain 
PA, PET, and PP; fragments composed of PET, PE, PP, PS, and PVC; films consist of PE 
and PVC; and pellets made of PE. 

   

  
Fig. 11. Wavelength results on samples: A) PS, PE, PET, PVC; B) PA 

CONCLUSION 
 

Microplastic levels were higher in carp from cages than in those caught by 
fishermen. This discrepancy could be due to damage in the floating nets caused by 
prolonged exposure to sunlight. The digestive system of carp accumulated the most 
microplastics, indicating potential contamination via the food chain. Snails in cages 
showed higher microplastic concentrations than those at the outlet, reflecting the higher 
levels found in cage water and sediment than in the outlet. In contrast, the macroalgae 
collected from tourism sites showed higher microplastic concentrations than those 
collected from cages. This pattern was consistent with the levels of microplastics in water 
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and sediment, which decreased in the following order: tourism, cage, outlet, and inlet. 
Microplastics were observed in five forms (fibers, fragments, films, pellets, and foam) 
and nine colors (black, red, purple, yellow, blue, brown, gray, transparent, and green). 
Five types of polymers were identified: nylon (PA), polyethylene (PE), polyethylene 
terephthalate (PET), polystyrene (PS), and polyvinyl chloride (PVC). The prevalence of 
black flakes indicates PE polymers, which are commonly associated with plastic wastes. 
The detection of microplastics in this study can provide the government with advice on 
policies to educate tourists and the surrounding community in the future regarding the 
impact of poor waste management. 
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