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INTRODUCTION  

 

Indonesia's marine ecosystems support approximately 37% of the world's fish 

species diversity, underscoring the country's significant contribution to global aquatic 

biodiversity. The nation benefits from an abundance of high-value marine resources, 

including tuna, shrimp, lobster, reef fish, ornamental species, shellfish, and seaweed, 
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    The Maluku region recognizes tuna loin as a premier processed commodity 

derived from capture fisheries resources. This study developed an innovative 

non-destructive quality prediction model for tuna loin utilizing deep learning 

technology. Traditionally, quality assessment of tuna meat relies on color and 

texture evaluation through organoleptic/sensory methods, which demands 

significant time and specialized expertise. Expanding on prior CNN-based 

research for tuna treatment classification (Tupan et al., 2025); this investigation 

pioneers the application of Deep Convolutional Neural Networks (DCNN) 

specifically for tuna grading purposes. The research focused on evaluating the 

effectiveness of various CNN architectures (ResNet, DenseNet, and Inception) 

for tuna loin grade classification, while simultaneously developing an integrated 

prediction system available as both a web-based application and Android 

mockup. Performance analysis of the multi-architecture CNN algorithms 

revealed varied accuracy levels across different grade classification schemes. In 

the three-tier classification system (Alpha, Bravo, and Charley), DenseNet 

demonstrated superior performance with 94.64% accuracy, while ResNet 

achieved 91.07% and Inception reached 83.93%. These results highlight the 

significant potential of deep learning approaches for automated quality 

assessment in fishery products. The resulting integrated platform features an 

intuitive user interface that enables tuna loin image uploads for analysis by the 

dual-classification prediction model. Validation testing confirms the successful 

implementation of both treatment and grading classification systems, providing 

the fish processing industry with a comprehensive, efficient tool for real-time 

quality assessment. The deployed solution addresses critical industry challenges 

including consistency in quality evaluation and enhanced decision-making 

capabilities throughout the tuna processing supply chain. 



Tupan et al., 2025 

 

1182 

which serve as key economic commodities. The estimated sustainable potential of 

Indonesia’s marine fisheries reaches 12.54 million tons annually, spanning its territorial 

waters and exclusive economic zone (ZEEI), highlighting its substantial fishing capacity. 

However, the allowable catch quota (JTB) is limited to 80% of this potential, 

approximately 10.03 million tons per year, while actual utilization in 2019 accounted for 

only 69.59% of this limit, with combined marine and inland capture fisheries producing 

7.53 million tons. Furthermore, marine microflora and fauna remain largely unexplored, 

yet they hold considerable potential for future applications in functional food 

development (Gustiano et al., 2021). 

The fisheries sector plays a vital role in Maluku Province's economy, serving as a 

key driver of regional economic growth. Statistical data reveal that between 2016 and 

2020, fisheries contributed an average of 12.64% to Maluku’s Gross Regional Domestic 

Product (PDRB). Among the various fisheries commodities, yellowfin tuna has become a 

leading export product, with production nearly doubling from 15,608 tons in 2015 to 

30,804 tons in 2019. However, the outbreak of the COVID-19 pandemic in 2020 led to a 

sharp decline in production, decreasing by 53% to 14,349 tons. In terms of geographical 

distribution, Island Cluster 7 recorded the highest tuna production, contributing 48% 

(12,293 tons) of the total regional output, followed by South Seram Island Cluster 5 with 

18% (4,510 tons) and Banda Island Cluster 6 with 12% (3,704 tons) (Tauda et al., 2021). 

The expansion of production capacity has also facilitated an increase in direct tuna 

exports from Maluku, rising by 11.8% from 1,432 tons in 2019 to 1,601 tons in 2020. 

Tuna fisheries in Maluku primarily rely on traditional fishing methods, where 

fishermen commonly process their catch into loin cuts directly onboard to maximize the 

limited storage capacity. However, these onboard processing practices often do not 

adhere to proper sanitation standards, increasing the risk of contamination that may 

degrade the quality of tuna loins during subsequent distribution and marketing stages 

(Suryaningrum et al., 2017). The quality of fish products is influenced by multiple 

factors, including safety, sensory attributes, physical characteristics, nutritional content, 

availability, freshness, and overall product integrity. Various assessment techniques, such 

as chemical, physical, biochemical, and microbiological methods, are available to 

evaluate quality. However, these techniques often require significant financial resources, 

prolonged processing times, and specialized technical expertise (Kılıçarslan et al., 2024). 

Additionally, color evaluation is a crucial quality indicator widely used to assess 

consumer perception and to determine seafood freshness based on observable visual 

changes. 

The quality of fish products is influenced by various factors, including safety, 

sensory attributes, nutritional content, freshness, availability, physical characteristics, and 

overall product integrity. To assess fish quality, several methodologies have been 

developed, encompassing chemical, physical, biochemical, microbiological, and sensor-

based approaches. Although chemical and biochemical techniques are commonly 
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employed to determine freshness levels, these methods often involve high costs, lengthy 

processing times, and the need for specialized expertise (Sengar et al., 2018). Another 

crucial parameter in quality assessment is color, which serves as a key indicator for 

evaluating consumer perception and determining seafood freshness based on visual 

changes. In the fishing industry, manual sorting techniques traditionally used by 

fishermen can lead to inaccuracies due to visual fatigue, while physical inspection 

methods may inadvertently cause damage to fish destined for consumption. Extensive 

research has been conducted on fish freshness evaluation, highlighting the importance of 

visual attributes such as color, skin texture, and eye clarity, which significantly influence 

both economic value and consumer preferences. Consumers primarily rely on seafood 

color as a freshness and quality indicator (Shi et al., 2019). However, conventional 

freshness assessment techniques remain time-intensive and are typically limited to 

professional evaluators. 

Machine vision systems (MVS) have been developed as a solution to address the 

limitations of traditional assessment methods. This technology integrates data acquisition 

with image processing techniques specifically designed for seafood evaluation (Dowlati 

et al., 2012). The MVS framework consists of essential components, including an image 

capture camera, illumination system, and a specialized software for image analysis (Hong 

et al., 2014). The primary applications of MVS technology focus on assessing seafood 

quality, encompassing morphology evaluation, species identification, and the analysis of 

various physical and chemical properties during processing and storage (Dowlati et al., 

2012). Initial studies on MVS applications in seafood quality assessment examined fish 

freshness by analyzing eye appearance (Murakoshi et al., 2013) and extracting gill 

characteristics (Issac et al., 2017). These studies consistently highlight the effectiveness 

of MVS in reflecting seafood quality and predicting freshness. Digital image processing 

serves as a key approach for extracting relevant information and recognizing objects 

within images. Furthermore, such techniques are widely utilized in deep learning-based 

identification methods, a rapidly evolving domain in machine learning with advanced 

computer vision capabilities. Recent advancements in computer vision, particularly 

convolutional neural networks (CNNs), have demonstrated high accuracy in tasks such as 

object detection. Research on fish freshness assessment also includes comparisons of 

various machine learning algorithms, such as K-Nearest Neighbor (Prasetyo et al., 

2024). 

Studies utilizing tuna loin imagery in conjunction with deep learning models based 

on convolutional neural networks (CNNs) remain relatively limited. Existing literature 

indicates that computer vision and machine learning techniques have been employed in 

evaluating fish meat quality (Lugatiman et al., 2019; Moon et al., 2020; Medeiros et 

al., 2021). Moreover, artificial intelligence methodologies have been widely explored in 

fisheries and marine science, particularly for assessing fish freshness. Among these, deep 

learning with CNN-based algorithms is the most frequently applied approach for 
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predicting freshness (Priyatman et al., 2019; Wu et al., 2019; Taheri-Garavand et al., 

2020; Rayan et al., 2021; Yildiz et al., 2024). Various algorithmic models have been 

utilized to evaluate prediction performance, including VGG 16 architecture (Taheri-

Garavand et al., 2020), the YOLOv architecture (Anas et al., 2021), and MobileNet 

architecture (Prasetyo et al., 2021). Additionally, some studies have combined multiple 

architectures such as Xception, MobileNet VI, ResNet 50, and VGG 16 to enhance 

prediction accuracy (Prasetyo et al., 2021). However, there is a notable gap in research 

exploring hybrid deep learning models integrating CNNs with architectures like 

DenseNet, ResNet, and Inception, which have the potential to achieve prediction 

accuracies exceeding 85%. 

Considering these factors, a thorough analysis is crucial to assess the quality of tuna 

loin raw materials while simultaneously advancing automated prediction models based on 

image processing. These models should incorporate multiple architectural approaches 

utilizing convolutional neural networks (CNNs) to enable comparative evaluations of 

prediction accuracy. Such an approach is particularly relevant for optimizing tuna loin 

quality assessment within the fish processing industry on Ambon Island. This study 

extends previous research on CNN-based tuna treatment classification (Tupan et al., 

2025) by utilizing the same CNN architectures for a three-class grade prediction model. 

The results from both treatment and grade classifications are further developed into a 

web-based prediction system, providing a scalable and efficient solution for real-time 

tuna loin quality assessment. This approach offers a significant advancement in fishery 

product evaluation, ensuring consistency, reducing dependency on manual inspections, 

and improving decision-making processes throughout the tuna supply chain. 

 

MATERIALS AND METHODS  

 

1. Research/system overview 

The research flowchart outlines a systematic approach to developing a Convolutional 

Neural Network (CNN) model for classifying fish meat images. The process begins with 

collecting a diverse dataset of fish meat images, followed by a pre-processing stage to 

clean, standardize, and prepare the data for analysis. To enhance the model’s ability to 

generalize, data augmentation techniques are applied, artificially expanding the dataset. 

These processed and augmented images are then utilized in the "Modeling" phase, where 

the CNN model is trained. Once training is complete, the model's performance is assessed 

by comparing its predictions with actual data. If the model achieves the desired accuracy 

and effectiveness, it is deemed ready for deployment. However, if the results are 

unsatisfactory, modifications are made, and the model undergoes re-training. The 

flowchart illustrates a feedback loop that ensures continuous refinement until optimal 

performance is reached. Once the model is fully trained and meets the required standards, 

it is deployed for practical use. The research flowchart is presented below in Fig. (1). 
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Fig. 1. Flowchart of the research 

        To serve as a reference, images of tuna loin that had been graded by skilled 

personnel from the quality assurance division at PT. Maluku Prima Makmur underwent 

microbiological evaluation. This assessment aimed to verify that the tuna loin's safety and 

quality complied with the company's national standards, specifically SNI 4104:2015. The 

microbiological analysis included tests for total plate count (TPC), coliform, E. coli, 

Salmonella, and Staphylococcus, while histamine levels were assessed through chemical 

testing. These examinations were conducted within the quality assurance section of PT. 

Maluku Prima Makmur in Ambon, Maluku, Indonesia, which functioned as the research 

site. Additionally, the tuna loin samples' color was analyzed to generate a dataset for deep 

learning-based modeling. This color assessment utilized a Color Reader (Minolta CR-10) 

and was carried out at the Fisheries Product Technology Laboratory, Faculty of Fisheries 

and Marine Sciences, Pattimura University, Ambon, Maluku, Indonesia. The recorded 

color values were subsequently transformed into hue degrees using the formula Hue 

Degree = tan⁻¹ (b/a) (Loppies et al., 2021). 

 

2. Image datasets 

The data collection process involved capturing high-resolution images of fish meat to 

ensure a well-distributed representation across different classification grades. The final 

dataset consists of 287 images, categorized into three distinct grades: 100 images for 
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Grade Alpha, 88 images for Grade Bravo, and 99 images for Grade Charley. This dataset 

serves as the primary foundation for the classification analysis. 

To maintain consistency in image quality, all images were captured under controlled 

lighting conditions and a standardized environment. Table (1) outlines the specific 

camera settings applied during the image acquisition process, including resolution, 

exposure time, white balance, and other key parameters. Standardizing these settings 

helps reduce external variations, ensuring the dataset remains reliable and consistent for 

classification purposes. 

To provide a visual reference for each category, Fig. (2) showcases representative 

images from each grade: Fig. (2A) corresponds to Grade Alpha, Fig. (2B) represents 

Grade Bravo, and Fig. (2C) illustrates Grade Charley. These sample images help establish 

a clear classification framework for the study. 

Table 1. Configuration of camera parameters for capturing tuna images (Adapted from 

Tupan et al., 2025) 

Parameter Specification 

Object Distance 10 cm 

Grade/Treatment Tuna loin classification: Alpha, Bravo, and Charley 

Image Format 
JPEG normal (8.6 MB), [2.3] K resolution (standard 

quality) 

Lens Type DX VR (AF-P NIKKOR 18-55mm, f/3.5–5.6 G) 

Touch Shutter Disabled 

Image Resolution Large (L) 

Shutter Mode Continuous High-Speed 

Autofocus Mode Single-servo AF (AF-S) 

Flash Setting Automatic 

Resolution 6000 × 4000 pixels 

ISO image Automatic ISO-A 6400 

Time setting 2–20 s 

 

 

 

 (a)     (b)                           (c) 

Fig. 2. Image for (a) Grade Alpha, (b) Grade Bravo, (c) Grade Charley 
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Furthermore, preprocessing techniques were implemented to optimize the dataset 

for model training. Images were resized to 224×224 pixels to enhance computational 

efficiency while preserving essential details. Rather than analyzing all pixels, 

segmentation techniques were applied to focus on key features, improving the model’s 

capability to accurately differentiate between classification grades. 

3. Image resizing and augmentation 

The image dataset underwent dimensional standardization, transforming the 

original high-resolution captures (6000 × 4000 pixels) to a compact 224 × 224 pixel 

format the preferred input dimensions for various deep learning architectures including 

MobileNet, the images underwent a resizing process to reduce their dimensions. This 

transformation ensured uniformity across the dataset while improving computational 

efficiency. Standardizing image dimensions was essential for maintaining consistency 

when handling varying image sizes, allowing for reliable model training and evaluation. 

In the enhancement stage, data augmentation procedures were applied to diversify 

the image collection. The process incorporated multiple transformation techniques 

rotations, scaling operations, shear distortions, zoom adjustments, width/height 

modifications, brightness alterations, and both horizontal and vertical flips. These 

manipulations generated varied representations of source images, significantly improving 

the model's ability to generalize patterns during the training phase. By producing 

modified samples that Convolutional Neural Networks process as independent inputs, the 

augmentation strategy effectively mitigated dataset size constraints while simultaneously 

increasing sample diversity and strengthening the overall robustness of the training 

material. 

4. Model architecture 

DenseNet 

DenseNet utilizes identity connections at every layer, enabling the concatenation 

of residual mappings from all preceding layers. As a result, each layer receives input 

from the feature maps of all earlier layers while also forwarding its output to subsequent 

layers. This architecture encourages effective feature reuse throughout the network 

without substantially increasing computational demands. For this research, the DenseNet-

121 variant was chosen based on its common implementation and proven effectiveness in 

deep learning applications (Zhou et al., 2020). 

ResNet 

ResNet-50 consists of a 50-layer deep convolutional neural network architecture 

as described by Nashrullah et al. (2020). Its principal innovation involves the 

implementation of shortcut connections, which serve a vital function in convolutional 
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neural networks, particularly within ResNet-50, as indicated by Elsharif and Abu-Naser 

(2022). These bypass connections, and residual learning frameworks address challenges, 

such as vanishing and exploding gradients during the training process, as highlighted by 

Liu et al. (2022). 

Inception 

Inception V3, created by Google for the 2012 ImageNet Large Visual Recognition 

Challenge, represents an advanced deep convolutional neural network model. In contrast 

to conventional methods, it implements multiple filters within its convolutional layers 

and merges their outputs through channel concatenation before advancing to subsequent 

stages (Pujiarini & Lenti, 2023). The Inception module operates as a multi-scale feature 

extraction mechanism, integrating outputs from multiple convolutional filters within a 

unified framework. The resulting features are then organized along the channel 

dimension for further processing in subsequent layers. 

5. Model training and testing 

The CNN architectures utilized in this study include ResNet, DenseNet, and 

Inception, each selected for their unique advantages. ResNet was chosen for its ability to 

train deep networks effectively using skip connections, DenseNet for its efficient feature 

reuse through dense connections, and Inception for its multi-scale processing, which 

captures features at different resolutions. 

After data augmentation and segmentation, the processed dataset were used for 

model training and testing. To ensure a balanced representation across all grades, 80% of 

the dataset (231 images out of 287) were allocated for training, while 20% (56 images) 

were reserved for testing. 

6. Performance model 

To evaluate the effectiveness of the proposed model, four performance metrics 

(Equations (1)–(4)) were employed (Carrington et al., 2022; Shahi et al., 2022, 2023; 

Sitaula & Shahi, 2022; Tupan et al., 2025). These metrics are derived from the 

confusion matrix, which compares actual class labels with predicted outcomes. Correctly 

classified instances are positioned along the diagonal of the matrix, serving as a key 

measure of model accuracy. 

 
(1) 

 
(2) 
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(3) 

 
(4) 

  

In this framework, TPa, TNa, FPa, and FNa correspond to the true positive, true negative, 

false positive, and false negative values for class "a," respectively. Likewise, Pa, Ra, F1a, 

and ACC denote the precision, recall, F1-score, and accuracy metrics associated with 

class "a." 

7. Implementation 

The prediction modeling for tuna loin treatments was implemented in Python using 

Keras. The hyperparameters used in the modeling process are detailed in Table (2). The 

dataset was split into training and test sets following an 80:20 ratio, ensuring a balanced 

distribution across all categories. 

 

Table 2. Detailed hyper-parameters used in research (Adapted from Tupan et al., 2025) 

 

Parameter Description 

Image dimensions 224 × 224 pixels 

Color mode RGB (three-channel color representation) 

Class mode Categorical classification 

Defined classes {“Alpha”: 0, “Bravo”: 1, “Charley”: 2} 

Batch size 64 samples per training iteration 

Epochs 15 full dataset passes during training 

Rotation range Random rotations up to 90 degrees 

Width shift range Horizontal displacement up to 5% of image width 

Height shift range Vertical displacement up to 5% of image height 

Shear range Shearing transformation up to 5% 

Horizontal flip Enabled for data augmentation  

Vertical flip Enabled for data augmentation  

Optimization algorithm  Adam optimizer 

Brightness adjustment Scaled within the range of 0.75 to 1.25 

Rescaling factor  
Pixel values normalized to [0,1] by dividing by 

255 

Validation data split 20% of the dataset used for validation 

Loss function 
Categorical cross-entropy for multi-class 

classification 
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RESULTS AND DISCUSSION 

 

This section explores tuna loin quality for dataset and the training procedure of 

three deep convolutional neural network (DCNN) architectures: ResNet, DenseNet, and 

Inception. The study evaluates each model’s effectiveness in classifying tuna loin grades 

based on four performance metrics. The assessment is conducted using tuna loin image 

samples that were not included in the training and validation phases. Additionally, the 

obtained results are compared against the performance of alternative architectures 

reported in prior research. 

1. Tuna loin quality for dataset 

Microbiological and histamine test results for three fresh tuna loin samples, which 

were captured as images for the dataset, are displayed in Table (3). 

 

Table 3. Microbiological and histamine testing of tuna loin for dataset 

Sample 

Microbiological test results1 

Histamine test2  

ppm (mg/Kg) 
TPC 

(cfu/g) 

Coliform 

(cfu/g) 

E-coli 

(cfu/g) 

Salmonella 

(Neg/g) 

Staphylococcus 

(cfu/g) 

Sample 1 800 0 0 Negative Negative 3 ppm 

Sample 2 1500 0 0 Negative Negative 3 ppm 

Sample 3 1200 0 0 Negative Negative 5 ppm 
1,2 Data sourced from PT. Maluku Prima Makmur Ambon, Maluku, Indonesia (2024) 

 

Based on the test results presented in Table (3), the following analysis can be made: 

• Total Plate Count (TPC): The recorded TPC values varied between 800 and 1,200cfu/ 

g, indicating the total microbial presence in the tuna samples. Although these values 

are relatively elevated, they remain significantly lower than the 5 × 10⁵cfu/ g 

threshold set by SNI 4104:2015, which regulates Quality and Food Safety Standards 

for Frozen Tuna Loin Raw Material. Generally, microbial counts below 100,000cfu/ g 

are regarded as safe. Therefore, these findings confirm that the samples fall within 

acceptable safety parameters. 

• Coliform and E. coli: The analysis confirmed that no coliform or E. coli colonies 

were found in any of the tested samples. This result is an encouraging indication that 

the tuna products are not contaminated with fecal matter or harmful pathogens. 

• Salmonella: Every sample examined tested negative for Salmonella, a bacterium 

known to pose a significant foodborne health hazard. The absence of Salmonella 

suggests that the tuna samples meet safety standards and do not present a risk of food 

poisoning. 

• Staphylococcus: The test results further indicated that none of the samples contained 

Staphylococcus bacteria. Since this microorganism is capable of producing dangerous 
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toxins, its absence ensures a minimal risk of contamination and associated health 

issues. 

• Histamine Analysis: The histamine levels detected in the samples ranged between 2 

and 5ppm. According to SNI 4104:2015, the upper limit for histamine content in tuna 

is 100mg/ kg (100ppm). As the recorded histamine levels are significantly below this 

limit, the results confirm that the tuna products are well within the safety standards. 

 

Additionally, the fresh tuna loin samples that had been tested for microbiological and 

histamine parameters were then analyzed for color measurement and conversion. The 

outcomes of this color analysis and conversion are displayed in Table (4). 

 

Table 4. Color measurement using color reader and hue degree conversion 

Sample code 
LAB Value Hue 

degree 

Color 

conversion 
Description 

L a b 

Sample 1 43.24 20.45 7.62 20.440 

 

Approaching 

Reddish-

Orange 

Sample 2 42.71 13.62 5.51 22.000 

 

Between Red 

and Orange, 

leaning 

towards 

Orange 

Sample 3 38.05 15.68 6.41 22.250 

 

Between Red 

and Orange, 

leaning 

towards 

Orange 

The interpretation of the color measurement and conversion results from Table (4) is as 

follows: Among all samples, Sample 1 exhibited the highest L value (43.24), signifying 

greater brightness in the meat. Sample 2 had the lowest ‘a’ value (13.62), indicating a 

weaker red intensity. With a comparatively high ‘b’ value (5.51), the orange tone appears 

more prominent. In contrast, Sample 3 closely resembled Sample 2, as its ‘a’ (15.68) and 

‘b’ (6.41) values are quite similar, suggesting a coloration that is more inclined towards 

orange than red. 

The appearance of fish meat, especially tuna, is a key factor in assessing product 

quality and attracting consumers. Within the seafood processing sector, meat color is 

often used as a freshness indicator, significantly affecting buying preferences. The 

pigmentation of fish meat is strongly associated with myoglobin levels, which play a role 
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in delivering oxygen to muscle tissues. A higher a* value in fresh tuna loin samples is 

linked to superior quality and freshness (Kristinsson et al., 2008). Fish exhibiting a deep 

red hue is typically fresher and considered to be of higher grade. 

 

2. Training model result 

ResNet model result 

This section presents the training outcomes and performance evaluation of the 

CNN-based classification model, which was developed and trained using the processed 

dataset outlined below. Fig. (3) depicts the ResNet model’s performance across 15 

training epochs, showcasing trends in validation loss, validation accuracy, training loss, 

and training accuracy. The consistent decline in validation loss suggests effective 

learning and generalization of the model. However, validation accuracy initially increases 

but then stagnates, suggesting limited improvement in predicting unseen data. The 

training loss consistently decreases, reflecting effective learning from the training data. 

However, its lower value compared to validation loss hints at potential overfitting. 

Meanwhile, training accuracy increases but then plateaus and slightly declines, further 

suggesting that the model may be memorizing the training data. Overall, the model 

demonstrates good performance, but the observed trends indicate overfitting, highlighting 

the need for further refinement to enhance generalization capability. 

Table 5. Model fitting for ResNet architecture 

Epoch Val_loss Val_accuracy Train loss Train 

accuracy 

Description 

1/15 1.2211 0.3478 1.4824 0.3405 val_loss improved from inf to 1.22109 

2/15 0.9052 0.5870 0.7733 0.6432 val_loss improved from 1.22109 to 

0.90518 

3/15 0.6780 0.6522 0.7122 0.6324 val_loss improved from 0.90518 to 

0.67799 

4/15 0.7237 0.6522 0.4257 0.8595 val_loss did not improve from 0.67799 

5/15 0.5987 0.6522 0.3945 0.8703 val_loss improved from 0.67799 to 

0.59867 

6/15 0.6679 0.6522 0.3368 0.8865 val_loss did not improve from 0.59867 

7/15 0.5240 0.7391 0.2460 0.9297 val_loss improved from 0.59867 to 

0.52405 

8/15 0.4029 0.8043 0.2245 0.9297 val_loss improved from 0.52405 to 

0.40294 

9/15 0.4814 0.7609 0.1870 0.9568 val_loss did not improve from 0.40294 

10/15 0.5197 0.6957 0.1639 0.9622 val_loss did not improve from 0.40294 

11/15 0.1548 0.8043 0.1548 0.9459 val_loss did not improve from 0.40294 

12/15 0.4570 0.7609 0.1373 0.9676 val_loss did not improve from 0.40294 

13/15 0.4110 0.7826 0.1235 0.9730 val_loss did not improve from 0.40294 

14/15 0.5159 0.7826 0.1379 0.9676 val_loss did not improve from 0.40294 

15/15 0.6704 0.6957 0.1266 0.9568 val_loss did not improve from 0.40294 
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Fig. 3. Training model result for ResNet 

 

DenseNet Model Result 

Fig. (4) illustrates the training performance of the DenseNet model over 15 

epochs, showing the progression of validation loss, validation accuracy, training loss, and 

training accuracy. The steady decline in validation loss suggests enhanced model 

generalization to previously unseen data. Validation accuracy follows an upward trend 

but eventually stagnates and fluctuates slightly, suggesting that while the model becomes 

better at predicting on the validation set, the improvement is marginal after reaching a 

certain point. Training loss decreases throughout the epochs, which is expected as the 

model learns from the training data. However, the fact that training loss remains lower 

than validation loss could indicate potential overfitting. Training accuracy continues to 

rise but, like validation accuracy, it plateaus and exhibits slight variations, possibly 

signaling that the model is memorizing the training data rather than learning 

generalizable patterns. Overall, the DenseNet model demonstrates solid performance, but 

these trends suggest a risk of overfitting, necessitating further adjustments to enhance its 

generalization ability. 
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Table 6. Model fitting for DenseNet architecture 

Epoch Val_Loss Val_Accuracy Train Loss Train 

Accuracy 

Description 

1/15 0.8632 0.5435 0.8947 0.6054 val_loss improved from inf to 

0.86318 

2/15 0.8833 0.6739 0.6596 0.7351 val_loss did not improve from 

0.86318 

3/15 0.5320 0.7174 0.5310 0.7784 val_loss improved from 0.86318 to 

0.53198 

4/15 0.5331 0.7174 0.4465 0.8216 val_loss did not improve from 

0.53198 

5/15 0.6370 0.6739 0.3221 0.8649 val_loss did not improve from 

0.53198 

6/15 0.5100 0.7174 0.3340 0.8162 val_loss improved from 0.53198 to 

0.50996 

7/15 0.5230 0.7174 0.2812 0.8811 val_loss did not improve from 

0.50996 

8/15 0.4892 0.7609 0.2397 0.8973 val_loss improved from 0.50996 to 

0.48921 

9/15 0.4722 0.7174 0.2679 0.8703 val_loss improved from 0.48921 to 

0.47223 

10/15 0.4041 0.7826 0.1977 0.9297 val_loss improved from 0.47223 to 

0.40413 

11/15 0.3866 0.8043 0.2147 0.9189 val_loss improved from 0.40413 to 

0.38663 

12/15 0.3767 0.7609 0.1920 0.9243 val_loss improved from 0.38663 to 

0.37675 

13/15 0.3970 0.7391 0.1834 0.9189 val_loss did not improve from 

0.37675 

14/15 0.4706 0.7826 0.1681 0.9459 val_loss did not improve from 

0.37675 

15/15 0.3173 0.8043 0.1548 0.9405 val_loss improved from 0.37675 to 

0.31734 
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Fig. 4. Training model result for DenseNet 

 

Inception model result 

Fig. (5) depicts the training performance of the Inception model over 15 epochs, 

outlining trends in validation loss, validation accuracy, training loss, and training 

accuracy. A notable decline in validation loss, particularly during the initial epochs, 

suggests effective learning and improved model performance on previously unseen data. 

However, validation accuracy (orange line) stabilizes after an initial increase, suggesting 

that the model's predictive ability on the validation set reaches a point of diminishing 

returns. Training loss (green line) also decreases but fluctuates more compared to 

validation loss, which could indicate instability in learning or noise in the training data. 

Training accuracy (red line) gradually increases, aligning with validation accuracy, 

though both remain relatively stable after several epochs. This behavior suggests that the 

model is not heavily overfitting, as the training and validation metrics follow similar 

trends. Overall, the model appears to perform well, with decreasing loss and stable 

accuracy, though minor fluctuations in loss metrics indicate potential room for further 

optimization. 
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Table 7. Model fitting for Inception architecture 

Epoch Val_Loss Val_Accuracy Train Loss Train 

Accuracy 

Description 

1/15 1.3194 0.3043 3.0939 0.2865 val_loss improved from inf to 1.31939 

2/15 1.4525 0.4565 1.6130 0.4324 val_loss did not improve from 

1.31939 

3/15 0.8357 0.5652 1.1257 0.5568 val_loss improved from 1.31939 to 

0.83574 

4/15 0.9826 0.4783 0.8351 0.5892 val_loss did not improve from 

0.83574 

5/15 0.8062 0.5870 0.7673 0.6162 val_loss improved from 0.83574 to 

0.80620 

6/15 0.8245 0.5652 0.5995 0.7784 val_loss did not improve from 

0.80620 

7/15 0.6818 0.6522 0.5760 0.7297 val_loss improved from 0.80620 to 

0.68184 

8/15 0.6293 0.7391 0.4310 0.8541 val_loss improved from 0.68184 to 

0.62928 

9/15 0.6993 0.6522 0.4159 0.8378 val_loss did not improve from 

0.62928 

10/15 0.7475 0.6087 0.4058 0.8486 val_loss did not improve from 

0.62928 

11/15 0.7271 0.6304 0.3639 0.8811 val_loss did not improve from 

0.62928 

12/15 0.6258 0.7174 0.2875 0.9081 val_loss improved from 0.62928 to 

0.62581 

13/15 0.6495 0.6957 0.3131 0.8757 val_loss did not improve from 

0.62581 

14/15 0.6587 0.5870 0.2717 0.8973 val_loss did not improve from 

0.62581 

15/15 0.7552 0.6522 0.2578 0.8919 val_loss did not improve from 

0.62581 
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Fig. 5. Training model result for Inception 

ResNet model evaluation 

Fig. (6) displays the confusion matrix illustrating the classification performance of 

the ResNet model across three categories: Alpha, Bravo, and Charley. The results 

indicate that the model accurately classifies all 20 instances of Alpha with no 

misclassifications. For Bravo, 15 out of 17 instances are classified correctly, with one 

misclassified as Alpha and another as Charley. Similarly, for Charley, 16 out of 19 

instances are correctly predicted, while one is misclassified as Alpha and two as Bravo. 

This matrix provides a clear insight into the model's accuracy and the areas where 

misclassifications occur, particularly between Bravo and Charley. 

Table (8) presents the classification report detailing the model’s performance 

metrics, including accuracy, precision, recall, and F1-score. The overall accuracy of the 

ResNet model is 91.07%, indicating that the majority of instances are correctly classified 

across all classes. Precision is high for all categories, with Alpha at 90.91%, Bravo at 

88.24%, and Charley at 94.12%, reflecting the model’s effectiveness in making accurate 

positive predictions. Recall is perfect for Alpha at 100% but slightly lower for Bravo 

(88.24%) and Charley (84.21%), suggesting that while the model excels at identifying 

Alpha instances, it occasionally misses some Bravo and Charley cases. The F1-score, 

which balances precision and recall, remains strong across all classes, although Charley 

shows a slight drop in performance compared to Alpha. Overall, the model demonstrates 

consistent and reliable classification capabilities. 
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Fig. 6. ResNet model confusion matrix 

Table 8. ResNet model classification report 

Confusion 

matrix 

Grade 

Alpha 

Grade 

Bravo 

Grade 

Charley 

Accuracy 0.9107 0.9107 0.9107 

Precision 0.9091 0.8824 0.9412 

Recall 1.0000 0.8824 0.8421 

F1 Score 0.9524 0.8824 0.8889 

 

DenseNet model evaluation 

Fig. (7) presents the confusion matrix illustrating the performance of the 

DenseNet model in classifying the Alpha, Bravo, and Charley classes. The model 

correctly predicts all 20 instances of Alpha without any errors. For Bravo, it accurately 

classifies 14 out of 17 instances, with the remaining three misclassified as Charley. 

Notably, the model correctly predicts all 19 instances of Charley, demonstrating strong 

performance in identifying this class. The confusion matrix highlights that while the 

model excels in classifying Alpha and Charley, it faces slight challenges in distinguishing 

some Bravo instances, which are occasionally misclassified as Charley. 

Table (9) provides a classification report detailing key performance metrics, 

including accuracy, precision, recall, and F1-score. The overall accuracy of the model is 

94.64%, reflecting a high capability in classifying instances across all classes. Precision is 

perfect for Alpha and Bravo at 100%, indicating that all positive predictions for these 

classes are correct. However, precision for Charley is slightly lower at 86.36%, 
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suggesting some misclassifications. Recall is perfect for Alpha and Charley at 100%, but 

slightly lower for Bravo at 82.35%, meaning the model misses a few Bravo instances. 

The F1-score, which balances precision and recall, is strong across all classes, with a 

perfect score for Alpha and slightly lower but still high scores for Bravo (90.32%) and 

Charley (92.68%). Overall, the model delivers excellent performance with minor areas 

for improvement in classifying the Bravo class. 

 

Fig. 7. DenseNet model confusion matrix 

Table 9. DenseNet model classification report 

Confusion 

matrix 

Grade 

Alpha 

Grade 

Bravo 

Grade 

Charley 

Accuracy 0.9464 0.9464 0.9464 

Precision 1.0000 1.0000 0.8636 

Recall 1.0000 0.8235 1.0000 

F1 Score 1.0000 0.9032 0.9268 

 

Inception model evaluation 

Fig. (8) presents the confusion matrix illustrating the performance of the Inception 

model in classifying the Alpha, Bravo, and Charley classes. The model correctly predicts 

all 20 instances of Alpha without any misclassification. However, for Bravo, it accurately 

classifies only 12 out of 17 instances, with 2 misclassified as Alpha and 3 as Charley. 

Similarly, for Charley, the model correctly predicts 15 out of 19 instances, with 4 

misclassified as Bravo. This confusion matrix highlights that while the model performs 

well in classifying Alpha, it struggles to differentiate between Bravo and Charley, leading 

to some misclassifications. 
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Table (10) provides a classification report detailing key performance metrics, 

including accuracy, precision, recall, and F1-score. The overall accuracy of the model is 

83.93%, indicating that while the majority of instances are classified correctly, there is 

still room for improvement. The highest precision is for Alpha at 90.91%, meaning most 

of its predictions are correct. Precision for Bravo is lower at 75.00%, reflecting some 

misclassifications, while Charley achieves a precision of 83.33%. Recall is perfect for 

Alpha at 100% but lower for Bravo (70.59%) and Charley (78.95%), suggesting that the 

model misses some instances of these classes. The F1-score, which balances precision 

and recall, is strong for Alpha (95.24%) but lower for Bravo (72.73%) and Charley 

(81.08%). 

Overall, the Inception model demonstrates strong classification capabilities for 

Alpha but less consistent performance for Bravo and Charley, indicating areas that 

require further refinement. Based on these observations, it can be concluded that the 

model shows a solid ability to classify data into three distinct classes, although 

improvements are needed to enhance its accuracy for Bravo and Charley. 

 

Fig. 8. Inception model confusion matrix 

Table 10. Inception model classification report 

Confusion 

matrix 

Grade 

Alpha 

Grade 

Bravo 

Grade 

Charley 

Accuracy 0.8393 0.8393 0.8393 

Precision 0.9091 0.7500 0.8333 

Recall 1.0000 0.7059 0.7895 

F1 Score 0.9524 0.7273 0.8108 
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3. Web-based tuna loin quality prediction application design and mockup 

Based on the findings of Tupan et al. (2025), deep learning models have 

demonstrated significant potential in automating the classification of tuna loin quality. 

This study builds upon that research by utilizing a Model Classification Grade approach 

to develop a web-based application for real-time tuna loin classification. By leveraging 

deep learning techniques, the proposed system enables efficient and accurate assessment 

of tuna loin quality, ensuring consistency in classification while reducing the dependency 

on manual inspection. To implement this system effectively, a robust deployment strategy 

is required to integrate the trained model into an accessible and user-friendly application. 

Deploying a deep learning model is the final stage in the artificial intelligence 

development cycle, where a trained and tested model is made available for real-world 

applications. At this stage, the model is not only executed locally for research purposes 

but is also implemented in an application that end users can access. The deployment 

process involves various techniques to ensure that the model runs efficiently and 

integrates seamlessly into web or mobile-based applications, such as Android. 

One of the popular methods for deploying deep learning models is using Streamlit, 

an open-source framework that enables quick and easy web application development. 

Streamlit provides a simple interface for integrating deep learning models into web 

applications. In this context, Streamlit can be used as a platform to develop an application 

that allows users to upload tuna loin images and receive real-time quality predictions. 

Streamlit offers several advantages, such as an easy front-end development process 

without requiring in-depth web programming knowledge. This makes it an ideal choice 

for deploying deep learning models, especially for users who want to quickly implement 

their models into widely accessible applications. 

In addition, the importance of the user interface (UI) in deploying deep learning 

models cannot be overlooked. A well-designed UI enables users to interact with the 

model intuitively and efficiently. In the context of a tuna loin quality assessment 

application, a user-friendly UI simplifies the process of uploading images, viewing 

prediction results, and understanding the presented information. Without an effective UI, 

even the most accurate deep learning model would be difficult for end users to utilize. 

Therefore, designing a functional and responsive UI is crucial to ensuring that the web- or 

Android-based tuna loin quality prediction model fulfills its primary goal: providing 

automated and easily accessible quality assessment. 

The application testing results demonstrate the successful implementation of the 

tuna loin classification model into a simple web-based application. By leveraging 

Streamlit, the model integrates seamlessly with the web interface, allowing users to 

upload images and receive instant classification results into two predefined categories. 

The application operates with consistently accurate classification results, confirming that 

the model deployment is effective. This makes the website an intuitive and easily 

accessible tool for real-time tuna loin quality classification. 
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Fig. 10a. User interface design for tuna loin quality assessment application 

 

Fig. 10b. Confusion matrix results and image prediction sub-menu 
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Fig. 10c. Microbiological & histamine test report sub-menu for raw materials  

and finished products 

 

CONCLUSION 

 

This research successfully developed an AI-powered tuna loin quality assessment 

system using Deep Convolutional Neural Networks (DCNN), addressing industry 

challenges in non-destructive grading and treatment classification. Traditional sensory-

based methods for assessing tuna quality require significant time and expertise, 

prompting the need for automated solutions. This study assessed the performance of three 

CNN architectures ResNet, DenseNet, and Inception in classifying treatments (No-

Treatment, CO-Treatment, and CS-Treatment) based on previous research and a three-tier 

grading system (Alpha, Bravo, and Charley). Among these models, DenseNet 

demonstrated the highest grading accuracy at 94.64%, surpassing ResNet at 91.07% and 

Inception at 83.93%. Similarly, for the three-class treatment classification, DenseNet 

achieved the highest accuracy at 95.54%, followed by ResNet at 93.75% and Inception at 

91.07%. The developed system integrates a web-based interface and an Android mockup, 

enabling users to upload tuna loin images for real-time analysis. Validation testing 

confirmed the system's reliability in differentiating tuna quality categories, making it a 

valuable tool for improving quality consistency and decision-making in the fish 

processing supply chain. While the model performs well, some instances of 

misclassification indicate areas for improvement. Future work will focus on optimizing 

data preprocessing, expanding the training dataset through augmentation techniques, and 

exploring more advanced CNN architectures to enhance classification accuracy. 

Additionally, full implementation of the mobile platform could further streamline real-

time quality control, making AI-driven assessments more accessible and efficient for the 

seafood industry. With continuous development, this research contributes to advancing 
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AI-based quality assessment tools in fisheries, offering a scalable and practical solution 

for modernized tuna processing. 
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