• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Egyptian Journal of Aquatic Biology and Fisheries
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 29 (2025)
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 28 (2024)
Volume Volume 27 (2023)
Volume Volume 26 (2022)
Volume Volume 25 (2021)
Volume Volume 24 (2020)
Volume Volume 23 (2019)
Volume Volume 22 (2018)
Volume Volume 21 (2017)
Volume Volume 20 (2016)
Volume Volume 19 (2015)
Volume Volume 18 (2014)
Volume Volume 17 (2013)
Volume Volume 16 (2012)
Volume Volume 15 (2011)
Volume Volume 14 (2010)
Volume Volume 13 (2009)
Volume Volume 12 (2008)
Volume Volume 11 (2007)
Volume Volume 10 (2006)
Volume Volume 9 (2005)
Volume Volume 8 (2004)
Volume Volume 7 (2003)
Volume Volume 6 (2002)
Volume Volume 5 (2001)
Volume Volume 4 (2000)
Volume Volume 3 (1999)
Volume Volume 2 (1998)
Volume Volume 1 (1997)
et al., R. (2025). Predictive Modeling of pH in a Small-Scale Aquaponics System: Multi-Layer Perceptron (MLP) Regression, Support Vector Regression (SVR) and Random Forest Regression Models. Egyptian Journal of Aquatic Biology and Fisheries, 29(1), 101-115. doi: 10.21608/ejabf.2025.403145
Rharrhour et al.. "Predictive Modeling of pH in a Small-Scale Aquaponics System: Multi-Layer Perceptron (MLP) Regression, Support Vector Regression (SVR) and Random Forest Regression Models". Egyptian Journal of Aquatic Biology and Fisheries, 29, 1, 2025, 101-115. doi: 10.21608/ejabf.2025.403145
et al., R. (2025). 'Predictive Modeling of pH in a Small-Scale Aquaponics System: Multi-Layer Perceptron (MLP) Regression, Support Vector Regression (SVR) and Random Forest Regression Models', Egyptian Journal of Aquatic Biology and Fisheries, 29(1), pp. 101-115. doi: 10.21608/ejabf.2025.403145
et al., R. Predictive Modeling of pH in a Small-Scale Aquaponics System: Multi-Layer Perceptron (MLP) Regression, Support Vector Regression (SVR) and Random Forest Regression Models. Egyptian Journal of Aquatic Biology and Fisheries, 2025; 29(1): 101-115. doi: 10.21608/ejabf.2025.403145

Predictive Modeling of pH in a Small-Scale Aquaponics System: Multi-Layer Perceptron (MLP) Regression, Support Vector Regression (SVR) and Random Forest Regression Models

Article 5, Volume 29, Issue 1, January and February 2025, Page 101-115  XML PDF (1.08 MB)
DOI: 10.21608/ejabf.2025.403145
View on SCiNiTO View on SCiNiTO
Author
Rharrhour et al.
Abstract
Aquaponics is a growing industry that combines intensive food production with waste-stream recycling and water conservation, offering alternative solutions to soil degradation and water scarcity. This technique can contribute to global food security but requires careful management. One of the key parameters in aquaponics is pH, which must be maintained to accommodate three different types of living organisms: fish, plants, and bacteria. In aquaponics systems, pH naturally decreases due to the nitrification process, making monitoring essential. To predict pH levels in a small-scale aquaponics system—consisting of three hydroponic techniques (DWC, media bed culture, and NFT) combined with a tilapia fish tank—three machine learning models were proposed in this study. The results showed that the random forest regressor model can predict pH fluctuations over 12 days with a root mean square error (RMSE) of 0.0260 and a mean squared error (MSE) of 0.0006. The random forest model outperformed the MLP regressor and SVR models in terms of accuracy, suitability, and prediction error. Predicting pH is crucial for the stability of an aquaponics system.
Keywords
Aquaponics; Biodiversity; Food security; Machine learning; MLP Regressor; SVR; RF Regressor
Statistics
Article View: 239
PDF Download: 287
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.