
 

 

 

 

Egyptian Journal of Aquatic Biology & Fisheries  

Zoology Department, Faculty of Science, 

Ain Shams University, Cairo, Egypt.  

ISSN 1110 – 6131 

Vol. 28(6): 211 – 227 (2024) 

www.ejabf.journals.ekb.eg 

  
The Role of Zooxanthellae in the Growth of the Giant Clam Tridacna maxima in 

Outdoor Aquaculture System, Red Sea, Egypt 

Esraa E. AbouElmaaty1, Asmaa H. Mohammed2, Eslam Farg3, Mahmoud H. Hanafy4* 

1National Institute of Oceanography and Fisheries, (NIOF), Egypt 
2Marine Sciences Department, National Authority for Remote Sensing and Space Sciences (NARSS), Cairo 

11769, Egypt 
3Agriculture Applications Department, National Authority for Remote Sensing and Space Sciences 

(NARSS), Cairo 11769, Egypt 
4Marine Biology Department, Faculty of Science, Suez Canal University, Egypt 

  
*Corresponding Author: asmahassan@narss.sci.eg 

  
 

INTRODUCTION  

 

The giant clams, namely those belonging to the Tridacninae subfamily, play a crucial 

role in the ecological functioning of coral reefs throughout the Indo-Pacific countries and 

its extend in the Red Sea (Richter et al., 2008; Neo et al., 2015, Rossbach et al., 2021). 

They are occurring naturally in subtropical and tropical marine water of the Indo-Pacific 
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The Tridacninae subfamily of the giant clams is vital for the biological 

functioning of coral reefs in the Red Sea. Despite a rise in the commercial 

mariculture of the giant clams in developing countries, there is still limited 

understanding of the factors that influence the growth rate of Tridacna species. 

This study aimed to address this gap by investigating the factors affecting the 

growth rate of Tridacna maxima under cultured conditions, including seasonal 

fluctuations, temperature, mantle colors, zooxanthellae density, and light energy 

absorption. Our findings indicate that all these factors influence the growth 

patterns of this species. Monthly and seasonal growth rate fluctuations correlate 

directly with temperature variations. Specifically, extreme winter and summer 

temperatures are associated with reduced growth rates, while milder temperatures 

in spring and fall correspond to higher growth rates. Additionally, the mantle 

color suggests a potential three-way interaction between growth rate, symbiont 

color, and zooxanthellae density. Individuals with brown mantles exhibited higher 

growth rates and greater zooxanthellae density. The number of zooxanthellae 

varied significantly among individuals of different colors, with brown individuals 

having much higher concentrations compared to blue-brown and blue individuals. 

Understanding the complex relationships among environmental conditions, 

symbiotic interactions, and growth dynamics is crucial for developing effective 

conservation and management strategies to protect T. maxima populations. 
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area. They serve as a food source for many predators and scavengers, provide refuge for 

commensal animals, and offer a substrate for epibionts to colonize. Additionally, they 

contribute to the structural integrity of reefs and act as reservoirs for Symbiodinium, 

dinoflagellate symbionts, commonly referred to as zooxanthellae (Ramah et al., 2017). 

Humans harvest them for food and ornamental uses as well (Alcazar, 1986; Mies et al., 

2017). The giant clams are considered the largest living bivalves, with the largest species, 

Tridacna gigas (Linnaeus, 1758), reaching a maximum recorded size of 137cm and 

weighing as much as 340kg (Fartherree, 2006). However, the two most commonly 

found species of the giant clams recorded in Indo-Pacific waters are T. maxima and T. 

squamosa (Andréfouët et al., 2005; Fauvelot et al., 2020). They reach sizes of 35cm to 

40cm (Calumpong, 1992) and <40cm (Gilbert et al., 2006), respectively. Undoubtly, all 

reef organisms have a role to play, but giant clams perhaps deserve special consideration 

not only becaused they are unique among bivalves (Muscatine, 1967; Fitt & Trench, 

1981; Klumpp et al., 1992); however, they are highly threatened throughout most of 

their geographic range (Lucas, 1994). Although various strategies have been 

implemented to protect and sustain the giant clam populations globally, particularly in the 

Indo-Pacific region, the majority of giant clam species have been excessively harvested in 

recent decades for their meat and shells (Mingoa-Licuanan & Gomez, 2002; Van 

Wynsberge et al., 2015). All species of Tridacninae are susceptible to long-term 

exploitation, and are therefore classified as vulnerable; in addition, they are listed on both 

the Convention on International Trade in Endangered Species of Wild Fauna and Flora 

(CITES) and the International Union for Conservation of Nature (IUCN) (Neo et al., 

2017). 

The Egyptian coral reef areas fluctuate between 10,000 and 14,000t/ year, depending 

on years and estimates. The current fishing in the Red Sea greatly exceeds sustainability 

levels, which in coral reef areas are mostly below 5t/ km2 of coral reefs/year worldwide 

(Kotb et al., 2008). Damage is further compounded by illegal practices such as seasonal 

fishing on spawning aggregations (80% of the catch) of the most valuable fish stocks, 

which accelerates stock depletion (Salem, 1999). Tridacna is among the most extensively 

exploited invertebrates in the Egyptian Red Sea due to over and bad fishing practicing. 

There is no need for costly and laborious stock assessments to decide immediately that 

good management is urgently needed. Hence, introducing marine aquaculture using non-

traditional and environmentally green techniques is the best solution for the existing 

complicated situation, and it could be an approach to reduce the potential of fishing on 

the natural stocks of the Red Sea minimizing the conflict rate between consumption and 

non-consumption uses of the Red Sea fish stocks. 

Generally, the Indo-Pacific developing countries have witnessed a growth of 

commercial mariculture of giant clams in recent years, owing to various research and 

development funded projects. Several mariculture techniques have been developed and 

are recorded in aquaculture protocols i.e. Heslinga et al. (1990), Calumpong (1992), 
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Hart et al. (1998) and Heslinga (2013). Despite the availability of protocols, there is still 

lack in characterizing the factors affecting the growth rate of Tridacna species. For 

instance, T. maxima has been recorded as very slow-growing in several studies, reaching 

a shell length of 100mm at around five years of age (Chambers, 2007; Bin Othman et 

al., 2010). Therefore in this study, we attempted to fill this gap by characterizing factors 

affecting the growth rate of T. maxima under culture condition (i.e. seasonal variations, 

temperature, mantle colors, density of zooxanthellae, and light energy absorption). 

 

MATERIALS AND METHODS  

 

1-Hatchery condition 

In the current study, Tridacna maxima juveniles were cultured at the HEPCA 

hatchery. The samples were placed in a growing area inside plastic boxes attached to 

small rocks that served as substrate. The seawater was generally characterized by 

temperatures between 18 and 28°C and a salinity of 38‰. The T. maxima samples were 

supplied with cultured zooxanthellae just three days post-fertilization upon reaching the 

D-veliger stage. No algal supply other than zooxanthellae was added, as the specimens 

relied mainly on photosynthesis and were unfed. All boxes were cleaned once a week, 

with attached algae removed from each specimen using a scrubbing brush while kept 

submerged in water. 

 

2-Morphometric measurements 

Shell length of about 50 randomly chosen individuals per tank was measured 

using a Vernier caliper to the nearest cm on a monthly basis from January 2022 to 

February 2023 to monitor the growth rate among the population.  

 

3-Morphometric measurements of different colors 

At the end of the experiment, 50 individuals per tank were selected according to 

the symbiont color categorized as follows; bicolor, green, blue, brown and purple (Fig. 

1). The shell length of each individual was measured using a Vernier caliper to the 

nearest cm to estimate the growth rate relevant to the symbiont color. 
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Fig. 1. Different colors of symbionts reared in the hatchery 

 

4-Counting zooxanthellae 

15 individuals of each color were sacrificed for zooxanthellae counting. The 

average number of zooxanthellae per specimen was also determined. The process 

involved the removal part of the mantle approximately measuring 1cm, followed by 

mixing the tissues with 50ml of seawater. The amount of zooxanthellae in subsamples of 

this homogenate was quantified using a hemocytometer, and these data were utilized to 

calculate the mean number of zooxanthellae per individual. 

5-Reflectance measurements from In-situ 

Five different colors of Tridacna sp. were measured to obtain the reflectance and 

absorption. The measurements were obtained underwater using a portable “ASD Field 

Spec_4 instrument” linked to an underwater fiber optic cable 5m in length with sensor at 

the end (Fig. 2). The portable Spectro-radiometer is capable of recording a spectral range 

of 350–2500nm by a rapid data collection time of 0.2 seconds per spectrum. It has a 

spectral resolution of three nm in the visible wavelength range of 350-700nm and NIR 

and SWIR from 750 to 2500nm.  
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Fig. 2. The measurements of reflection in-situ. 

The data measurements were subset from 350 to 750nm, as readings taken underwater 

showed limited reflectance beyond 750nm due to absorption. The readings were 

classified into different band ranges according to the WorldView scale: coastal range 

(350-450nm), blue (451-510nm), green (511-580nm), yellow (581-630nm), and red (631-

750nm). The reflectance measurements were then converted to light absorption to 

determine the total amount of energy entering the Tridacna tissues, which is essential for 

the photosynthesis processes of the symbiotic zooxanthellae. 

 

6-Statistical analysis  

The growth rate was calculated as a percent monthly increase in the shell length 

using the following equation: 

((Lc-Lp)/Lp)*100 

Where, Lc=Shell lenght in the current month; Lp= Shell lenght in the previous month. 

 

All graphs were performed using Excel. One way analysis of variance (ANOVA) 

using Minitab version 19 was performed to study the difference in lenght (mean ± S.E.)  

among months and varations in growth rates across seasons, symbionts color along with 

zooxanthallae occurance and light absorbance among different symbiont color. The 

correlation coefficients obtained from the various linear regression analyses were tested 

for significance. The statistical significance level was set at 0.05. 

 

RESULTS  

 

1. Growth rate  

The growth patterns of T. maxima were significantly influenced by multiple factors, 

including seasonal variations (P≤0.001), temperature (P≤0.001), mantle colors 

(P≤0.001), density of zooxanthellae (P≤0.001), and light energy absorption (P≤0.001). 
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2. Periodical growth rates 

At a monthly level, the mantle length of T. maxima exhibited consistent increments, 

ranging from an average of 3.2 ± 0.55cm in January 2022 to 7.1 ± 0.80cm in February 

2023. Peak growth rates occurred in March and April 2022, reaching 11.02 and 11.57%, 

respectively. Conversely, the lowest estimated growth rates were recorded in June, July, 

August, and December 2022, along with January and February 2023, ranging from 2.28 

to 5.28%. These variations showed significant differences between months and seasons 

(P≤0.05), with highly significant disparities observed among different seasons (P=0.000) 

(Table 1 & Fig. 3). 

 

Seasonal analysis revealed noticeable fluctuations, notably influenced by temperature. 

The lowest and highest average temperatures corresponded to significant declines and 

increases in growth rates, respectively. Winter and summer months demonstrated the 

lowest growth rates, whereas spring and autumn seasons showcased the highest rates, 

reaching 19.66 and 7.61%, respectively (Table 1 & Fig. 4). 

 

Table 1. Monthly/seasonal length and growth rates of T. maxima displayed as mean± 

standard deviation along with the overall mean of temperature and the day length in the 

period from Jan. 2022 to Feb. 2023 

Month/Season Length   Growth rate % Temperature  Day length 

Jan. 3.2±0.55  19.8 10:38:58 

Feb. 3.3±0.51 5.60±1.94 19.6 11:14:30 

Winter 3.3±0.50  19.7 10:56:44 

P-value 0.126  

March 3.7±0.53 11.02±0.58 21.9 12:00:29 

April 4.1±0.49 11.57±2.28 23.4 12:48:47 

May 4.5±0.55 9.38±0.24 24.9 13:29:17 

Spring 4.1±0.50 10.66 ±1.13 23.3 12:46:11 

P-value 0.000 0.338  

June 4.7±0.52 5.28±1.06 25.0 13:49:33 

July 4.9±0.54 3.68±0.11 26.8 13:39:40 

August 5.1±0.54 4.57±0.41 29.0 13:04:35 
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Summer 4.9±0.50 4.51±0.53 28.3 13:31:16 

p-value 0.002 0.127  

Sept. 5.5±0.52 6.88±0.88 29.1 12:18:35 

Oct.  6.0±0.57 8.53±0.08 28.5 11:30:38 

Nov. 6.4±0.59 7.41±0.42 25 10:49:03 

Autumn 6.0±0.6 7.61±0.46 25.6 11:32:45 

p-value 0.000 0.066  

December 6.7±0.59 3.92±0.25 23.5 10:27:44 

Jan. 23 6.9±0.63 3.80±0.24 21.0 10:38:45 

Feb. 23 7.1±0.80 3.28±1.75 22.0 11:14:08 

Winter 2023 6.9±0.70 3.67±0.75 21.5 10:46:52 

p-value 0.003 0.000  

p-value 

(months) 

0.000 0.000  

p-value 

(seasons) 

0.000 0.000  

 

 

 

Fig. 3. Estimated monthly growth rates of T. maxima and average monthly recorded 

temperature 

 



AbouElmaaty et al.  2024 218 

 

Fig. 4. Estimated seasonal growth rates as a percentage of shell length increment per 

seasons and seasonal overall means of temperature during the period between January 

2022 and February 2023 

 

3. Growth rate and zooxanthellae density among different mantle colors 

Comparative analyses of growth rates based on symbiont color exhibited distinct 

patterns. Brown symbionts displayed the highest growth rates, expanding by 

approximately 112% of their original length, followed by blue (84%) and purple 

individuals (82%). Bicolor and green-symbiont individuals showed relatively lower 

growth rates, implying potential vulnerability to environmental stressors (Fig. 5). 

Furthermore, the density of zooxanthellae varied significantly among colors, with higher 

occurrences in brown and brown-blue symbionts compared to violet and green, aligning 

with their respective growth rates (Fig. 6). 

 

 
 

Fig. 5. Annual growth rates in T. maxima estimated for different mantle colors as a shell 

growth percentage to the initial shell length 
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Fig. 6. Zooxanthellae density among different mantle colors 

 

4. Light energy absorption 

 

Distinct colors were categorized into different wavelength ranges to assess light 

absorption. Reflectance measurements displayed variance within specific wavelength 

ranges. For instance, as shown in Fig. (7), blue-colored samples exhibited high 

reflectance between 350 to 510nm (covering coastal and blue bands), followed by 

absorption in the subsequent ranges (511 to 650nm - covering green and yellow), with 

reflection occurring in the red range (700 to 750nm). In contrast, brown samples absorbed 

light, reflecting minimal amounts, especially beyond 700nm. Additionally, violet samples 

absorbed light along the wavelength, exhibiting substantial reflection beyond 700nm. 

Notably, brown-colored individuals recorded the highest light absorption levels, 

particularly in the near-infrared range, indicative of biological processes such as 

photosynthesis, releasing heat. Sequentially, blue-green, green, and violet-colored species 

exhibited decreasing levels of light absorption, with the blue-colored species 

demonstrating the lowest absorption. 



AbouElmaaty et al.  2024 220 

 

Fig. 7. The absorption of sun light (energy) for different colored individauls of tridacna 

 
 

DISCUSSION 

 

In general, the growth rates in Tridaca maxima is characterized with lower growth 

rate among other Tridacna species. The growth rates of Tridacna species, particularly 

Tridacna maxima, vary significantly based on environmental conditions. Under culture 

condition, T. maxima can exhibit growth rates ranging between less than 1.0cm in shell 

length per year (Toonen et al, 2012) to 1.5-2.1mm per month (Mohammed et al, 2019; 

Lim et al. 2020). However, this rate can be influenced by factors like water quality, 

temperature, availability of light, and food sources. 

These findings align with previous studies indicating that environmental factors 

profoundly impact the growth of marine organisms (Lucas, et al., 1989; Gula &  

Adams, 2018; Hsieh, et al., 2023). The observed monthly fluctuations in growth rates, 

particularly the substantial variations between months and seasons, underscore the 

species’ sensitivity to environmental changes. These fluctuations correlate with 

temperature variations, where extreme temperatures during winter and summer months 

coincide with lower growth rates. In contrast, milder temperatures during spring and 

autumn seasons correspond to higher growth rates. This aligns with the thermal 

sensitivity of Tridacna species reported in previous studies (Poloczanska et al., 2013; 

Foo & Byrne, 2016; Van Wynsberge et al, 2017; Syazili et al., 2020). 

Furthermore, mantle color emerged as a significant determinant of growth rates, 

where the brown individuals exhibited the highest growth rates, possibly indicating a 

favorable symbiotic relationship between these individuals and their zooxanthellae, as 

evidenced by higher zooxanthellae density. This observation concurs with studies 

highlighting the importance of symbiont density color in the growth and health of giant 
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clams (Fitt & Trench, 1981; Fitt et al., 1986; Gula & Adams, 2018, Li et al., 2024), as 

well as bleaching of zooxanthellae reduces the reproduction in Tridacna gigas (Sayco et 

al., 2023 a&b). 

The higher growth rates exhibited by individuals hosting brown-colored symbionts, 

alongside the elevated density of zooxanthellae within these specimens, underscored a 

potential symbiotic advantage. Brown symbionts exhibited not only superior growth rates 

but also a significantly higher occurrence of zooxanthellae compared to other color 

variants. This aligns with previous studies highlighting the pivotal role of zooxanthellae 

in facilitating the growth and metabolic processes of their host clams (Belda-Baillie et 

al., 1998; Ambariyanto, 2007, Hernawan, 2010; Klueter, et. al., 2017). 

Moreover, the density of zooxanthellae among different color variants exhibited 

distinct disparities. Brown symbionts harbored notably greater densities compared to 

blue-brown and blue individuals. This correlation between symbiont color, zooxanthellae 

density, and growth rates emphasizes the significance of symbiotic interactions in 

dictating growth dynamics within Tridacna species.  

It is unclear whether the higher absorption of light energy recorded in brown 

symbionts is related to the increased density of zooxanthellae or the type of pigment. 

However, it is worth noting that some studies have reported an interaction between 

symbiotic zooxanthellae and mantle iridocytes (Ghoshal et al., 2016; Li et al., 2022). An 

integrated optical system consists of spherical iridocytes that scatter light and microalgae 

that strongly absorb and scatter light (Holt et al., 2014). This cooperation might also 

explain the enormous clam mantle tissue coloration. These coloration spans from vibrant 

blue, showing a high concentration of iridocytes and a low number of symbiotic 

zooxanthallea, to dark brown which corresponds a low concentration of iridocytes with a 

high number of zooxanthellae (Rossbach et al., 2020). Hence, the higher absorbance of 

light energy recorded in brown symbiont might be attributed to the fewer iridocytes that 

scatter light and higher abundance of microalgae zooxanthallea that strongly absorb and 

scatter light. Actually, more investigation is recommended to clarify the raised point.  

The relationship between light energy absorption and growth rates also elucidates the 

critical role of light in the growth processes of T. maxima. Different mantle colors 

exhibited varying levels of light absorption, with brown-colored individuals displaying 

the highest absorption, likely facilitating optimal photosynthetic activity. This aligns with 

studies demonstrating the influence of light availability on the growth and physiology of 

symbiotic organisms within corals and clams (Iglesias-Prieto et al., 2004, Lajeunesse et 

al., 2018; Rossbach et al., 2019; Liu et al., 2020). 

Understanding these intricate relationships between environmental factors, symbiotic 

interactions, and growth dynamics is pivotal for effective conservation and management 

strategies aimed at protecting T. maxima populations. These findings underscore the 

importance of maintaining suitable environmental conditions and symbiotic relationships 

https://www.journals.uchicago.edu/doi/full/10.1086/698265#rf7
https://www.journals.uchicago.edu/doi/full/10.1086/698265#rf6
https://pubmed.ncbi.nlm.nih.gov/?term=Klueter%20A%5BAuthor%5D
https://www.frontiersin.org/articles/10.3389/fmars.2020.592852/full#B60
https://www.frontiersin.org/articles/10.3389/fmars.2020.592852/full#B60
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to ensure the sustained growth and resilience of these iconic marine species in the face of 

environmental fluctuations. 

 

CONCLUSION 

 

The growth rates of Tridacna maxima fluctuate significantly based on 

environmental conditions. Monthly growth rates also show considerable variation due to 

sensitivity to seasonal temperature changes. Additionally, mantle color, which partially 

depends on zooxanthellae density, affects growth rates; as zooxanthellae density 

increases, growth rates also rise, as evidenced by enhanced light absorption. These 

findings underscore the importance of maintaining suitable environmental conditions and 

symbiotic relationships to support the sustained growth and resilience of these vital 

marine species. 
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