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INTRODUCTION  

 

The Labridae family, commonly known as wrasses, stands out as one of the most 

widespread and conspicuous fish families on tropical reefs worldwide. Wrasses exhibit a 

remarkable diversity in colors, forms, and sizes, often displaying significant variations, 

even within a single species (Parenti & Randall, 2011). Representing the third largest 

family within the Perciformes order, Labridae comprises over 600 species distributed 

across 82 genera, showcasing a wide array of morphological and ecological adaptations 
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This study investigated the sequence variation and phylogenetic 

relationships among 14 labrid fish species (Family: Labridae) from the coral 

reefs of Hurghada, the Red Sea, Egypt, using a fragment of the 16S 

mitochondrial gene (16S mt-rDNA). Comparison with similar species from 

the GenBank/NCBI published sequences was conducted. Sequencing 

analysis and phylogenetic tree construction employed maximum likelihood, 

neighbor-joining, and maximum parsimony methods. The results 

demonstrated the efficiency of 16S mt-rDNA in illustrating the genetic 

variation, indicating close genetic relations and shared ancestry among the 

studied genus and species, viz.  Epibulus with Cheilinus and genus 

Gomphosus with Thalassoma. The phylogenetic hypotheses (ML, NJ and 

MP) produced similar topologies with slight differences in the bootstrap 

support values. Two main lineages, cheilines and julidines, each containing 

clades of genera, revealed a monophyletic group of labrid species. Distinct 

clades and clusters among genera highlighted evolutionary relationships 

within the Labridae family. The 16S gene effectively elucidates genetic 

diversity and phylogenetic patterns, underscoring its utility as a molecular 

marker for reef fish phylogenetic studies. The development of such 

molecular markers helps detect biodiversity and understand molecular 

phylogenetic relationships in this important aquatic biological resource. 
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in tropical and subtropical environments (Sanderson, 1990; Parenti & Randall, 2000; 

Tatom-Naecker & Westneat, 2018; Ghezelayagh et al., 2022; Baldwin et al., 2023). 

Members of the Labridae family exhibit a diverse range of trophic behaviors, 

playing prominent roles in reef communities as herbivores, planktivores, piscivores, 

durophages, ectoparasite feeders, and consumers of various reef-associated invertebrates 

(Randall, 1983; Gomon & Randall, 1984; Lieske & Myers, 1994; Floeter et al.,  

2007; Khalaf-Allah, 2013; AL-Zahaby, 2015; Sampaio et al.,  2016; Pradhan & 

Mahapatra, 2017). This dietary variation is mirrored in the diverse functional 

morphology observed within the family (Westneat, 1995; Burress & Wainwright, 

2019; Evans et al., 2019). 

The Red Sea coasts represent one of the highest degrees of endemism and 

diversity among the coral reef fishes globally (Alwany & Stachowitsch, 2007). While 

the taxonomic knowledge of the Red Sea ichthyofauna is relatively well-developed 

compared to other tropical Indo-Pacific regions, research on the community structure of 

shore fishes remains less investigated (Tatom-Naecker & Westneat, 2018; 

Ghezelayagh et al., 2022; Baldwin et al., 2023). Within the Red Sea reefs, the Labridae 

family emerges as the most species-rich family after the damselfishes and ranks among 

the top three most abundant families in the northern Red Sea (Alwany & Stachowitsch, 

2007), thus underscoring its significance in phylogenetic investigations. Previous studies 

have reported on the phylogenetic relationships of several subfamilies of the labrid fish 

(Westneat, 1993; Bellwood, 1994; Gomon, 1997; Hanel et al., 2002; Streelman et al., 

2003; Clements et al., 2004; Barber & Bellwood, 2005; Westneat & Alfaro, 2005; 

Phillips et al., 2016). 

Genetic analysis offers opportunities to enhance data accuracy and accessibility of 

species characteristic information. With the limitations associated with morphological 

investigations, genotypic studies have emerged as a valuable alternative for exploring 

species-level relationships (Syam & Syahputra, 2016). However, more precise, sensitive 

molecular identification techniques are required to elucidate the true evolutionary 

relationships among animal species including fish (Ramadan, 2011; Saad et al., 2012). 

DNA barcoding techniques, in particular, provide simple and reliable approaches for 

species identification through standardized genomic regions, facilitating the detection of 

genetic variations among fish genera, species, and populations (Hebert et al., 2004; 

Ward et al., 2005; Saad & Abd El-Sadek, 2017; Saad, 2019). 

Mitochondrial DNA variants serve as valuable barcoding systems for studying 

fish speciation and other aquatic taxa, offering considerable potential in genetic 

population analysis and evolution studies (Miya & Nishida, 2000; Saad et al., 2019). 

The interest in mitochondrial DNA stems from its ability to describe the maternal 

inheritance, rapid evolution, and unique recombinant DNA events, making it a valuable 
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tool for reconstructing phylogenetic relationships among fish species (Craig et al., 2001; 

Ding et al., 2006; Ghorashi et al., 2008; Nematzadeh et al., 2013; Qi et al., 2013). 

Molecular phylogenetics has significantly influenced the Labrids taxonomy, 

providing consistent resolutions of phylogenetic relationships through multi-locus data 

analysis (Clements et al., 2004; Westneat & Alfaro 2005; Smith et al., 2008; Choat et 

al., 2012; Aiello et al., 2017; Hughes et al., 2023). Utilizing the 16S mitochondrial gene 

as a marker, previous studies have examined phylogenetic relationships within the 

Labridae family, such as those conducted by Bernardi et al. (2004) on the genus 

Thalassoma, Westneat et al. (2005) across major Labrid clades, and more recent work by 

Baldwin et al. (2023) describing new species and providing phylogenetic placements. 

This study aimed to investigate sequence variations and molecular phylogenetic 

relationships among some species of the coral reef fishes from the Labridae family 

inhabiting the Red Sea coasts in Egypt, utilizing partial gene sequencing of the 16S 

mitochondrial DNA. 

MATERIALS AND METHODS  

 

Sample collection and identification  

A total of 14 specimens of the reef fish belonging to the family Labridae 

(Epibulus insidiator, Cheilinus lunulatus, Cheilinus fasciatus, Cheilinus cholourus, 

Oxycheilinus unifasciatus, Oxycheilinus digramma, Hemigymnus fasciatus, Hemigymnus 

melapterus, Cheillio inermis, Thalassoma rueppellii, Gomphosus caeruleus, Coris 

aygula, Stethojulus bandanensis, and Novaculichthys taeniourus) were collected from the 

Red Sea near Hurghada City, Egypt. Morphological identification of each fish was 

conducted according to Randall (1983). Muscle tissues were isolated from each 

specimen and preserved at -80 °C until further processing. 

DNA extraction and PCR amplification  

Genomic DNA extraction from the preserved samples was performed using the 

QIAamp DNA Mini kit (Qiagen, Germany) following the manufacturer's instructions. A 

partial sequence of the mitochondrial 16S mt-DNA gene was amplified using the primers 

16S_L (CGCCTGTTTATCAAAAACAT) and 16S_H (CCGGTCTGAACTCAGATCACG) 

(Palumbi, 1996) (100pmol/ μl, Macrogen Inc., Seoul, Korea). 

Polymerase chain reaction (PCR) was carried out using a thermocycler (PeQLab, 

Primus 25) in a total volume of 50μl, comprising 25μL Taq PCR Master Mix Kit 

(Qiagen, Germany), 1μL of each forward and reverse primer, 1μL of genomic DNA 

template, and 22μL Nuclease-Free Water. The PCR amplification conditions included an 

initial denaturation at 94°C for 4min, followed by 35 cycles of denaturation at 94°C for 



Mahrous et al., 2024 1188 

1min, annealing at 56°C for 1min, and extension at 72°C for 1min, with a final extension 

at 72 °C for 10min. 

Five microliters of each PCR product were mixed with 2µl of 5X gel loading dye 

(Qiagen) and loaded into a 1.5% agarose gel stained with ethidium bromide, alongside 

5µL of 100bp DNA ladder (Qiagen). Gel electrophoresis was conducted using a 

documentation system (MicroDoc Cleaver Scientific Ltd, United Kingdom) to confirm 

the presence of PCR product bands. 

Sequencing analysis 

The amplified DNA was purified using a QIAquick Gel Extraction Kit (Qiagen) 

following the manufacturer's protocol. Sequencing reactions were performed in an MJ 

Research PTC-225 Peltier Thermal Cycler using an ABI PRISM® BigDyeTM 

Terminator Cycle Sequencing Kits with AmpliTaq® DNA polymerase (FS enzyme) 

(Applied Biosystems), following the manufacturer's protocols with the same primers used 

for PCR amplification. All sequencing procedures were carried out by Macrogen Inc., 

Seoul, Korea. 

Data analysis  

The newly generated 16S mt-DNA sequences were submitted to the GeneBank, 

National Center for Biotechnology Information (NCBI) (Table 1). These sequences were 

aligned with previously published sequences of the most similar Labridae taxa obtained 

from a Blast search on the GenBank NCBI database (Table 1). Alignments were 

performed using the Clustal W tool, and conserved region analysis was conducted using 

BioEdit software version 7.2.5 (Hall, 1999), as illustrated in Fig. (1). 

The resulting alignments were manually refined, and sequences from the studied 

gene were trimmed to the size of the smallest fragment to minimize the amount of 

introduced missing data. Pairwise distances were calculated using MEGA X software 

version 10.2.2 (Kumar et al., 2018), as shown in Table (2). 

A phylogenetic tree was constructed using three different methods implemented in 

MEGA X software version 10.2.2 (Kumar et al., 2018). Methods applied were: 

Neighbor-joining (NJ) (Saitou & Nei, 1987), maximum likelihood (ML) (Tamura & 

Nei, 1993), and maximum parsimony (MP) (Nei & Kumar, 2000). Moreover,  thebranch 

relative support was assessed using the bootstrap test with 1000 replicates (Felsenstein, 

1985), all methods are depicted in Figs. (2, 3). Sequence divergences were calculated 

using Kimura's two-parameter distances (Kimura, 1980), and the majority-rule 

consensus tree from the parsimony analysis was presented. 
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Table 1. The 14 studied labrid fish species of the current study and 17 species from the 

most similar published sequences of family Labridae taxa with their (GeneBank/ NCBI) 

submitted accession numbers. Epinephelus polyphekadion is used as an outgroup species. 

 

. 

 

 

 

No. Species Accession number Reference 

1 Epibulus insidiator MW332305 Present study 

2 Epibulus insidiator JF457451 GeneBank 

3 Epibulus brevis KY815393 GeneBank 

4 Hemigymnus fasciatus MW332308 Present study 

5 Hemigymnus melapterus MW332309 Present study 

6 Hemigymnus fasciatus JF457499 GeneBank 

7 Hemigymnus melapterus DQ076711 GeneBank 

8 Cheilio inermis MW332310 Present study 

9 Cheilio inermis JF457361 GeneBank 

10 Thalassoma rueppellii MW332311 Present study 

11 Thalassoma genivittatum JF457670 GeneBank 

12 Thalassoma lutescens KY815461 GeneBank 

13 Cheilinus lunulatus MW332313 Present study 

14 Cheilinus fasciatus MW332314 Present study 

15 Cheilinus chlorourus MW332318 Present study 

16 Cheilinus fasciatus JF457349 GeneBank 

17 Cheilinus trilobatus JF457358 GeneBank 

18 Cheilinus abudjubbe KY815371 GeneBank 

19 Cheilinus lunulatus KY815373 GeneBank 

20 Coris aygula MW332315 Present study 

21 Coris aygula AY279692 GeneBank 

22 Oxycheilinus digramma MW332317 Present study 

23 Oxycheilinus unifasciatus MW332323 Present study 

24 Oxycheilinus digramma JF457549 GeneBank 

25 Oxycheilinus unifasciatus JF457554.1 GeneBank 

26 Novaculichthys taeniourus MW332322 Present study 

27 Novaculichthys taeniourus JF457546 GeneBank 

28 Gomphosus caeruleus MW332312 Present study 

29 Gomphosus varius AY279700 GeneBank 

30 Gomphosus caeruleus KY815396 GeneBank 

31 Stethojulis bandanensis MW332321 Present study 

32 Epinephelus polyphekadion AY947569 GeneBank 
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RESULTS  

 

The sequence data obtained from the partial 16S mitochondrial gene with 

accession numbers (Table 1) exhibited remarkable resolution among genera and species 

within the Labridae family. The trimmed sequences had a length of 526bp, containing 

162 polymorphic sites and 126 parsimony informative sites, with 14 gap sites excluded. 

Analysis using the BioEdit program revealed the presence of six conserved regions, each 

with varying segment lengths (Fig. 1). Pairwise distance analysis (Table 2) highlighted 

notable differences between species. The highest pairwise distances were observed 

between the sequences of Gomphosus varius (AY279700) with Oxycheilinus unifasciatus 

(MW332323) (0.198), and with both species Cheilinus chlorourus (MW332318) and 

Cheilinus abudjubbe (KY815371) (0.197). Conversely, different sequences exhibited no 

pairwise distance (0.000), indicating a genetic similarity between these species. 

In this study, multiple methods of phylogenetic analysis produced similar 

topologies of relationships among the species, with some differences in the support 

values (Figs. 2, 3). Such phylogenetic analyses are particularly useful in species-rich 

genera like the labrid fishes, which have few distinctive morphological characteristics.  

The different constructed phylogenetic trees of the present study illustrated 

various major clades and clusters. The first major group includes the cheilines lineage 

genera, with distinct clusters for each species. For instance, Epibulus insidiator clustered 

with high support values (NJ = 100, ML = 97, MP = 98) and exhibited similarity to 

Cheilinus fasciatus (NJ = 78, ML = 70, MP = 74). Meanwhile, Oxycheilinus species 

formed a separate clade, indicating their evolutionary divergence from other cheilines. 

The species Stethojulis bandanensis (MW332321) of the current study is represented in a 

separated clade in the different constructed trees methods. 

Another major group consisted of julidines lineage genera, with distinct clusters 

for each species. For example, the Hemigymnus species formed a distinct clade, as did 

Gomphosus and the Thalassoma species. Among julidines lineage genera the genus Coris 

form a paraphyletic clade with the two genus of the current study Coris aygula 

(MW332315) and Novaculichthys taeniourus (MW332322) which was clustered together 

with high support values (NJ, ML =100, MP =96), meanwhile Novaculichthys taeniourus 

(JF457546) was clustered to Cheilio inermis (MW332310.1) and Cheilio inermis 

(JF457361) with support values (NJ =81,ML=80, MP =56). 
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Table 2. Pairwise distance of the partial 16S mitochondrial rDNA nucleotide sequences 

of the labrids fish species of the current study and GenBank/NCBI similar sequences. 
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Fig. 1. Multiple sequence alignment of the partial 16S mitochondrial rDNA nucleotide 

sequences of the labrids fish species of the current study and GenBank/NCBI similar 

sequences after trimming the ends, a dot indicates identity with the top sequence. The 

alignment is from 1- 270 bp. 
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Fig. 1. Multiple sequence alignment of the partial 16S mitochondrial rDNA nucleotide 

sequences of the labrids fish species of the current study and GenBank/NCBI similar 

sequences after trimming the ends, a dot indicates identity with the top sequence. 

Alignment is from 271- 526 bp. 
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Fig. 2. Neighbor-joining (NJ) and Maximum likelihood (ML) trees constructed using the 

16S mitochondrial rDNA fragment sequences of the family Labridae species, sequences 

of this study labrids fishes are labeled with the symbol    , the most identical published 

GenBank/NCBI sequences from Blast search of labrids species marked with symbol    ,    

the sequences marked with the symbol     rooted the tree as an out-group. The numbers 

above the tree branches indicate the bootstrap confidence values of the (ML) and (NJ) 

hypotheses, and branch lengths are proportional to genetic distance. 
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Fig. 3. Maximum parsimony (MP) tree constructed using the 16S mitochondrial rDNA 

fragment sequences of the family Labridae species, sequences of this study labrids fishes 

are labeled with the symbol    the most identical published GenBank/NCBI sequences 

from Blast search of labrids species marked with the symbol    , the sequences marked 

with the symbol     , rooted the tree as an out-group. The numbers above the tree branches 

indicate the bootstrap confidence value and branch lengths are proportional to genetic 

distance. 
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DISCUSSION 

 

It is important to note that marker selection is a complex decision influenced by 

multiple factors, and no single marker is universally applicable. Researchers determine 

which molecular markers to use in their phylogenetic analyses based on several factors, 

including the specific research question, the evolutionary timescale of interest, the 

taxonomic group under study, and the characteristics of the markers themselves (Kocher 

et al., 1989; Baker & DeSalle, 1997; Slowinski & Page, 1999; Wiens, 2004; Avise, 

2009; Toonen & Grosberg, 2011; Taberlet et al., 2012; McCormack et al., 2013; 

Edwards et al., 2016; Lemmon et al., 2019). 

Sequencing of the 16S mitochondrial rDNA gene is a common choice for 

phylogenetic analyses due to several key considerations. Researchers often opt for this 

marker based on its evolutionary rate and variation, which are suitable for the taxonomic 

group and timescale of interest. The 16S rDNA gene typically evolves at a moderate 

pace, making it appropriate for resolving both deep and recent phylogenetic relationships 

within a taxonomic group (Baker & DeSalle, 1997; Toonen & Grosberg, 2011). 

In terms of informativeness and phylogenetic signal, the 16S rDNA gene 

possesses sufficient variability to resolve relationships of interest. Researchers assess its 

utility by evaluating its variability across taxa and its ability to capture informative 

genetic changes, such as substitutions within the gene (Slowinski & Page, 1999; Wiens, 

2004). Another advantage of using mitochondrial 16S rDNA sequencing is its widespread 

availability and practicality. Well-established protocols, existing reference databases, and 

primers for marker amplification facilitate its use in phylogenetic studies. Researchers 

often benefit from the wealth of resources accumulated from previous studies utilizing 

this marker (Kocher et al., 1989; Taberlet et al., 2012). 

When considering marker selection, researchers also assess the coherence and 

compatibility of mitochondrial 16S rDNA with other markers, especially when 

combining multiple markers. Compatibility ensures consistency in inheritance patterns 

and evolutionary dynamics, minimizing the potential for conflicting results (Edwards et 

al., 2016; Lemmon et al., 2019). Comparative analyses further support the use of 

mitochondrial 16S rDNA by highlighting its performance in resolving evolutionary 

relationships within a taxonomic group. Studies on closely related taxa or within the same 

taxonomic group provide valuable insights into the marker's suitability and efficacy 

(Avise, 2009; McCormack et al., 2013). 

The results of this study underscore the effectiveness of partial 16S mitochondrial 

gene sequences in elucidating phylogenetic relationships and genetic diversity among the 

Labridae species. These findings align with previous molecular studies, which have also 

demonstrated the utility of 16S rDNA as a barcoding system for revealing genetic 

variation among fish species and validating its suitability for resolving genetic 
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relationships within this fish family (Craig et al., 2001; Pondella et al., 2003; Mitani et 

al., 2009; Quraishia et al., 2015; Singh et al., 2015; Saad, 2019; Wang, et al., 2023  

;Baldwin et al., 2023).  

The phylogenetic analyses conducted in this study yielded consistent topologies 

among species, albeit with some variations in support values. Such analyses are 

particularly valuable in species-rich genera like the labrid fish, where few distinctive 

morphological characteristics exist (Bernardi et al., 2004; Rocha, 2004; Barber & 

Bellwood, 2005; Rocha et al., 2005; Westneat & Alfaro, 2005). Establishing robust 

hypotheses for phylogenetic relationships within and among major groups of coastal 

marine and coral reef fish enhances our understanding of their evolutionary biology 

(Westneat et al., 2005). 

The constructed phylogenetic trees revealed distinct clades and clusters, 

highlighting evolutionary relationships among genera. For example, the cheilines lineage 

exhibited a clade comprising Epibulus insidiator and Cheilinus fasciatus, with strong 

support values. Meanwhile, the Oxycheilinus species formed a separate clade, indicating 

their evolutionary divergence. These results corroborate the results of Westneat et al. 

(1995) and the previous chromosomal study of Almeida et al. (2017), supporting the 

hypothesis of a monophyletic group comprising Cheilinus and Epibulus. Regarding to the 

separated clade of Oxycheilinus, Westneat et al. (1993) in a phylogenetic analysis of the 

Cheilini group according to morphological characters supported the hypothesis that 

Cheilinus and Oxycheilinus form a monophyletic group with Epibulus outside that group. 

In contrast, the julidines lineage genera formed distinct clusters, with notable 

phylogenetic relationships observed among species such as the clustering of Gomphosus 

with Thalassoma genus was supported by previous molecular studies, further 

emphasizing the importance of molecular markers in resolving phylogenetic relationships 

(Westneat & Alfaro, 2005; Aiello et al., 2017; Hughes et al., 2023). The monophyly of 

the genus Thalassoma agrees with the previous results of the mitochondrial DNA study 

of Mikami and Machida (1999), and the results of the phylogenetic relationships 

obtained by the study of Bernardi et al. (2004). 

The clustring of the genus Stethojulis bandanensis in a separated clade with 

different hypothesis, agreed with the results of the study of Westneat et al. (2005), who 

concluded that the species Stethojulis bandanensis show no close relation with the other 

labrids in his study. In our results, the clade for the Stethojulis bandanensis exhibits no 

similar relation to the genus Hemigymnus clade, meanwhile molecular phylogenetic 

studies based on partial mitochondrial sequences and nuclear genes by Westneat and 

Alfaro (2005) and Yi et al. (2019) revealed that Hemigymnus melapterus has a close 

evolutionary relationship with the Stethojulis strigiventer, and they are grouped together. 

In the current study results, the paraphyly of the clade of the genus Coris with the 

species Novaculichthys taeniourus nested within is supported with the result of the study 
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of Westneat et al. (2005), who reported that several genera in the Labridae are paraphyly 

and the positions of Cheilio inermis as monotypic genera are uncertain in most analyses 

as Cheilio placed as the sister-species to the razorfish including the Novaculichthys genus 

(Cheilio inermis nested as a sister species to Novaculichthys taeniourus with strong 

parsimony support). In addition, molecular studies indicated that the monophyly of some 

julidines genera including the genus Coris is challenged (Westneat & Alfaro, 2005; 

Aiello et. al., 2017). 

The present study contributes to our understanding of the Labridae species' 

genetic relationships and evolutionary history. Using the 16S mitochondrial rDNA gene 

as an informative marker facilitates the elucidation of genetic diversity among reef fishes, 

offering insights into their shared ancestry and evolutionary dynamics. However, further 

research incorporating complete mitogenome information and additional molecular 

markers is necessary to fully uncover the true phylogeny of the Labridae family (Saad, 

2019; Yi et al., 2019). 

 

CONCLUSION 

 

The results of the discussed manuscript emphasize the effectiveness of partial 16S 

mitochondrial gene sequences in elucidating phylogenetic relationships and genetic 

diversity among the Labridae species. The phylogenetic analyses conducted in the study 

yielded consistent topologies among species and provided valuable insights into the 

evolutionary relationships within the Labridae. Distinct clades and clusters were 

observed, highlighting evolutionary relationships among genera. The findings corroborate 

previous studies and support hypotheses regarding the monophyletic nature of certain 

groups within the Labridae. While this study contributes to our understanding of the 

genetic relationships and evolutionary history of the Labridae species, further research 

incorporating complete mitogenome information and additional molecular markers is 

necessary for a comprehensive understanding of the true phylogeny of the Labridae 

family. In summary, this work demonstrates the utility of the 16S mitochondrial rDNA 

gene as an informative marker for studying genetic diversity and phylogenetic 

relationships among the reef fish that is important to conserve these valuable biological 

resources. The findings underscore the importance of molecular markers in elucidating 

shared ancestry and evolutionary dynamics and pave the way for future research in this 

field. 
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