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INTRODUCTION  

 

The Nile tilapia, or O. niloticus, is a quickly growing fish that is found all over the 

world. As it is widely known, this species makes a substantial contribution to Egypt's 

freshwater fish polyculture (Ali et al., 2020). As a result, there has been an increased 

demand among fishpond operators for a sufficient supply of fry and fingerlings of this 
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Ancient roles of CRF and ACTH in immune–endocrine interactions 

were obtained early in the development process of fish alimentary canal. The 

immunolocalization of corticotrophin releasing factor (CRF) and 

adrenocorticotropic hormone (ACTH) was inspected in the developing gut of 

Oreochromis niloticus larvae. The aim was to investigate a possible involvement 

of these molecules early in the integration of immunological and endocrine 

systems. Immediately after hatching, the gut of O. niloticus is observed as a 

straight undifferentiated tube, and with the rapid development, it differentiates 

into four segments: buccopharinx, esophagus, presumptive stomach and 

intestine. The immunohistochemical investigation showed the 

immunolocalization of CRF in the growing digestive tract at all stages (from 

hatching to 42 days post-hatching). Immunoreaction of CRF was detected in the 

mucosal epithelium of both the undifferentiated gut and the developing 

esophagus, stomach, and intestine. Furthermore, CRF immunoreactivity was 

found in the gastric glands of the stomach. The number of CRF-immunoreactive 

(ir) cells and the strength of immunoreaction gradually increased as the larvae 

developed, particularly after the exogenous feeding began; 21 days after 

hatching. Only the goblet cells of the developing intestine exhibited an ACTH 

immunoreactivity, which increased at 7dph during the yolk sac resorbtion period. 

A dramatic decrease was recoded in the number and size of ACTH-ir cells  

associated with the beginning of the exogenous feeding, and at 28 days post 

hatching, a very weak immunoreaction was produced. The widespread anatomic 

distribution and early onset of CRF and ACTH activities, in the developing gut, 

indicate that these molecules play a functional role in food intake, growth, 

immunological response, and osmoregulation during O. niloticus development, 

particularly with the start of the exogenous feeding.  
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species (Nasr-Allah et al., 2021). Raising larvae has proven to be very challenging, with 

significant mortality rates typically occurring in the second and third weeks following 

hatching (Cuevas-Rodríguez et al., 2017; Ali et al., 2020). Given that starvation results 

from the physical inability to eat after endogenous reserves are exhausted, the cause of 

these deaths may be physiological in nature (Ranjan et al., 2018; Sakyi et al., 2021).  

Due to their small size and the challenges associated with rearing them, the 

functional life history of larval stages for many teleost species is poorly understood 

(Timmermans, 1987). Fish larvae have been difficult to rear, with relatively low survival 

rates during the larval and juvenile stages, and high mortality has been detected during 

the early yolk sac stage in hatcheries (Harboe et al., 1994; Ottesen & Bolla, 1998; 

Santos et al., 2021). Although the causes are frequently complicated and unknown, 

microbes have been linked to epizootic fatalities (Ottesen & Olafsen, 2000; Taha et al., 

2020; Deng et al., 2021). Fish take at least a few weeks after hatching to fully develop 

their unique immune systems (Ellis, 1988; Chantanachookhin et al., 1991; Elkatatny et 

al., 2020). Therefore, fish larvae may have to rely primarily on non-specific defense until 

the appearance of lymphoid cells and the production of immunoglobulins (Bly et al., 

1986; Kanlis et al., 1995; Williams & Bernier, 2020).  

Daily adaptation increases occur in teleost larvae, and numerous organs 

differentiate and become active. The neuro-immune-endocrine integration must occur 

early in these coordinated processes. Many physiological processes and several known 

signal molecule families are involved in the communication between the nervous, 

endocrine, and immune systems. According to reports, CRF controls the thyroid function, 

food intake, body temperature, and growth (De Pedro et al., 1985, 1993; Watanabe et 

al., 2016; Rousseau et al., 2021; Maugars et al., 2022) and the reproductive system 

(Rivier & Rivest, 1991; Lovejoy & Hogg, 2021). Furthermore, CRF is believed to be 

the main stimulatory factor and is essential for the secretion of ACTH during the reaction 

to stress (Rotllant et al., 2000; Van Enckevort et al., 2000; Flik et al., 2006; Lai et al., 

2021). Moreover, during times of stress, CRF controls cardiac output and the secretion of 

ACTH from catfish leukocytes in circulation (Arnold & Rice, 2000; Arai et al., 2001; 

Pohl et al., 2001; Pepels et al., 2004). Thus, more details on modifications to the CRF 

and ACTH systems in various organs during the Nile tilapia's, O. niloticus, larval 

development may improve our comprehension of the physiological roles of CRF and 

ACTH in immune response, food intake, and growth during this species' development. 

This study aimed to explore the anatomical distribution of CRF- and ACTH-

immunoreactivity in the digestive system during the larval development of O. niloticus. 

 

MATERIALS AND METHODS  

 

Spawning and rearing of larvae 

 To ensure a high-quality and sufficient number of eggs, brood fish were reared in 

two ponds prior to spawning. The males and females were kept apart in separate ponds 
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since January and were fed a 40% protein diet every day. 150– 250g medium-sized tilapia 

brood fish were utilized. In hapas designated for spawning, semi-natural spawning 

(Khalil & Mousa, 2013) took place on May 1st (temperature: 23– 25°C). 30 fine-mesh 

1-m
2
 spawning hapas were stocked with brood O. niloticus at a ratio of two males and 

four females per hapa. Every day, breeding activity was checked.  

 Following the breeding process, the fertilized eggs were gathered, placed in 

plastic funnels for hatching, and given access to a running water stream. Larvae that had 

just hatched were placed in glass aquariums and kept at 25ºC. Every aquarium has 

roughly 500 larvae per aquarium; 10 larvae per liter. Every day, the water in the 

aquariums was replaced, and the latters were cleaned, and the dead larvae were removed. 

Pressurized air was used for a gentle aeration. Moreover, ambient photoperiod was used 

to maintain all aquariums. The larvae were naturally fed with fresh plankton collected 

from a pond that was previously fertilized using a plankton net. 

Sampling and handling of larvae 

 Eight distinct post-hatched ages of tilapia larvae were sampled. Ten animal 

groups were anesthetized in a solution of clove oil (40mg/ l) from Sigma on days 0, 1, 2, 

3, 4, 7, 21, 35 and 42 after hatching. The animals were then fixed in toto in Bouin's fluid 

at room temperature for 48 hours. After fixation, the samples were moved to 70% alcohol 

and dehydrated using a sequence of graded ethanol solutions. They were then cleaned in 

xylene and embedded in paraplast (M.P. 56– 58˚C). Serial transverse and longitudinal 

sections, each measuring 5μm in thickness, were then cut and placed on glass slides. 

Serial transverse and sagittal sections, each 5μm thick, were cut, stained with Harris's 

hematoxylin (Conn, 1953), and counter-stained in an aqueous solution of eosin for 

microscopical inspection. 

Method of immunohistochemistry 

Antibodies 

The National Institutes of Health provided a rabbit antiserum against human 

ACTH. Dr. Nigel Brooks generously donated rabbit anti-ovine CRF (MRC Reproductive 

Biology Unit, Centre for Reproductive Biology, Edinburgh, Scotland).  

Immunohistochemical reactions 

As previously mentioned, vectastain ABC (Avidin-biotin peroxidase complex) Kit 

(Vector Laboratories) was typically used for immunohistochemical staining (Mousa & 

Mousa, 1999). To summarize, the sections were deparaffinized in xylene and then 

rehydrated using graded ethanol, and two 10-minute washings in phosphate-buffered 

saline (PBS; pH 7.4). Except as noted, all incubations were carried out at room 

temperature, and PBS was used to wash the samples three times for a total of twenty 

minutes following each step. The sections were incubated for 45 minutes with 10% 

methanol, 0.3% H2O2, and PBS in order to inhibit endogenous peroxidase. The sections 

were incubated for 60 minutes in PBS containing 0.3% Triton X-100, 1% BSA, 4% goat 

serum (GS), and 4% horse serum (block solution) in order to prevent nonspecific binding. 
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After that, the sections were incubated with the subsequent antibodies for an entire night 

at 4°C: a polyclonal antibody of rabbit (1:500) against human ACTH or a polyclonal 

antibody of rabbit (1:1000) against ovine CRF. Next, the sections were incubated for one 

hour with Vector Laboratories' biotinylated secondary antibody and for forty-five minutes 

with avidin-biotin-conjugated peroxidase. Afterward, the sections were cleaned and 

stained for 3- 5 minutes using 3, 3-diaminobenzidine tetrahydrochloride (DAB) (Sigma) 

with 0.01% H2O2 in 0.05M Tris-buffered saline (pH 7.6). The sections were cleaned 

using tap water, dehydrated in alcohol, cleared in xylene, and mounted in DPX following 

the enzyme reaction. 

 

RESULTS  

 

Histological changes during alimentary tract development 

 During the early life stage, after hatching, the alimentary canal was observed as a 

straight tube, and histologically undifferentiated and positioned dorsally in relation to the 

yolk sac. O. niloticus larvae underwent fast developmental changes within 7 days of 

hatching, resulting in the distinguishing of the gut into 4 segments: the buccopharinx, 

esophagus, presumptive stomach, and intestine (Fig. 1). The last organ in the digestive 

system to differentiate was the stomach. Following yolk sac resorbtion at 7dph, clusters 

of cuboidal cells were visible in the future fundic region, which would develop into 

gastric glands. (Fig. 1a, b). At 7dph, a dilation of the posterior esophagus, lined by a basic 

cuboidal epithelium, began to differentiate as the prospective stomach (Fig. 1a, b). A 

primitive pyloric sphincter, which divides the future stomach from the anterior section of 

the intestine, began to form at 21dph (Fig. 1c, d). The stomach developed a pouch at 

28dph, and its epithelium started to separate, allowing the fundic and pyloric regions to 

be identified (Fig. 1c- f). The stomach's folded mucosa in the pyloric region was kept 

apart from the anterior intestine by the pyloric sphincter, which was lined by a short 

ciliated columnar epithelium (Fig. 1c). The stomach wall, which is thicker in the pyloric 

region, was made up of circular muscle fibers, some blood vessels, a thin serosa with 

squamous cells, submucosa, and mucosa (Fig. 1c, d). At 28dph, submucosal acinar cell 

aggregates, primarily centered in the fundic area, giving rise to gastric glands (Fig. 1e, f). 

 A basic ciliated columnar epithelium with median to basal nuclei lined the newly 

hatched larvae's primitive gut (Fig. 1g). At the onset of exogenous feeding, the intestinal 

lumen expanded. but there was no intestinal mucosa folding, and from 7dph onward, tiny, 

non-staining vacuoles were visible in the cytoplasm of intestinal enterocytes (Fig. 1h). 

Primordial mucosal folding started at 21dph and by 28dph, the anterior intestine looked 

well developed (Fig. 1i). From 28dph, goblet cells were seen scattered among the 

intestinal enterocytes (Fig. 1i). 
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Fig. 1. Parts of sagittal sections of O. niloticus larvae stained with hematoxylin and eosin 

showing: a) Larvae at 7 days post-hatching showing presumptive stomach (arrows), 

beside (E) esophagus, (L) liver, and (Y) yolky material. X100; b) A magnified portion 

of (a) showing clusters of cuboidal cells (future fundic region) that would develop into 

gastric glands. X400; c) Larvae at 21dph showing primordial pyloric sphincter, 

separating the future stomach from the anterior portion of the intestine; d) A magnified 

portion of (c) showing mucosa (columnar epithelium) (arrows) and submucosa 

(arrowheads) of the wall of the pyloric region. X400; e) Larvae at 28dph showing 

fundic region of developed stomach. X100; f) A magnified portion of (e) showing 

gastric glands (arrows) appeared as submucosal acinar cell aggregates. X400. g) newly 

hatched larvae showing undifferentiated intestine lined by a simple ciliated columnar 

epithelium. X400; h) Larvae at 7 days post-hatching showing the intestinal wall with no 

folding of the mucosa. X400. i), Larvae at 21dph showing folding of the mucosa and 

the appearance of goblet cells (arrows). X400 
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Immunoreactivity of CRF and ACTH during alimentary tract development 

Immunohistochemical analysis was used to examine the distribution of CRF and 

ACTH in developing O. niloticus larvae between 0 and 35dph. 

 

CRF immunoreactivity 

 According to the immunohistochemical analysis, CRF was found in the growing 

digestive tract (Figs. 2, 3). The immunoreaction of CRF was found in the esophagus, 

stomach, and intestine, three distinct areas of the developing digestive tract (Figs. 2-3). 

Moderately, CRF immunoreactivity was found in the mucosal layer of the 

undifferentiated digestive tube at hatching (0dph) (Fig. 2a). After the yolk sac resorbs at 

7dph, the digestive tract differentiates into distinct regions, and strong CRF 

immunoreactivity is limited to the mucosal epithelium of the esophagus, stomach, and 

intestine (Fig. 2b, c). Furthermore, CRF immunoreactivity was detected in the gastric 

glands of the stomach (Fig. 2b, c, d, f). There was a relative decrease in CRF 

immunoreactivity at 12dph, following the completion of yolk sac resorbtion but prior to 

the full development of the stomach (Fig. 3a, b). CRF immunoreactivity was elevated in 

the pyloric region of the developing stomach at 21dph, following the start of exogenous 

feeding and the differentiation of the fundic and pyloric portions of the stomach (Figs. 3c- 

f). 

 

ACTH immunoreactivity 

 According to the immunohistochemical analysis, ACTH was only restricted to the 

intestine (Fig. 4). Following hatching, certain cells in the mucosal layer of the 

undifferentiated alimentary canal exhibited an ACTH immunoreactivity during the early 

life stage (Fig. 4a). The goblet cells of the developing intestine were found to exhibit 

strong ACTH immunoreactivity at 7dph during the period of yolk sac resorbtion (Fisg. 

4b, c). When exogenous feeding began, ACTH immunoreactivity demonstrated a marked 

decline in ACTH-ir cell quantity and size, resulting in extremely low immunoreactivity at 

28dph (Figs. 4d, f).  
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Fig. 2. Sagittal sections of O. niloticus larvae immunostained with rabbit polyclonal 

antibody against ovine CRF. a) Newly hatched larvae showing undifferentiated 

intestine exhibiting moderately immunoreactivity in mucosal layer; X400. b) 

Larva at 7dph showing strong immunoreactivity in the (E) esophagus, (S) stomach 

and (I) intestine; X100. c) A magnified portion of (b) showing CRF strong 

immunoreactivity in the gastric glands (arrows) of the stomach; X400. d) Larva at 

10dph showing CRF immunoreactivity in the (E) esophagus and (S) stomach. e) 

A magnified portion of (d) showing CRF strong immunoreactivity in the mucosal 

epithelium of esophagus (arrows); X400. f) A magnified portion of (d) showing 

CRF immunoreactivity in the mucosal epithelium (arrowheads) and the gastric 

glands (arrows) of the stomach; X400 
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Fig. 3. Sagittal sections of O. niloticus larvae immunostained with rabbit polyclonal 

antibody against ovine CRF; a) Larva at 12dph showing CRF immunoreactivity in 

the (E) esophagus and the pyloric portion of the (S) stomach  ;X100; b) A 

magnified portion of (a) showing CRF moderately immunoreactivity in the 

mucosal epithelium of the pyloric portion of the stomach (arrows); X400. c) Larva 

at 21dph showing CRF immunoreactivity in the (S) stomach; X100. d) A 

magnified portion of (c) showing CRF strong immunoreactivity in the mucosal 

epithelium of the pyloric portion of the stomach (arrows); X400. e) Larva at 

35dph showing strong CRF immunoreactivity in the (S) stomach and weak 

immunoreactivity in the (E) esophagus; X100. f) A magnified portion of (e) 

showing CRF strong immunoreactivity in the mucosal epithelium of the pyloric 

portion of the stomach (arrows); X400 
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Fig. 4. Sagittal sections of O. niloticus larvae immunostained with rabbit antibody against 

human ACTH. X400. Immunostaining is observed mainly in some cells of 

mucosal layer of the undifferentiated alimentary canal immediately after (a) 

hatching, and in the (b- f) goblet cells of the developing intestine. a) 0dph larva. 

b) 7dph larva. c) 10dph larva. d) 15dph larva. e) 21dph larva. f) 28dph larva. 

Note, that the beginning of external nutrition, ACTH immunoreactivity showed 

significantly decrease in both size and number of ACTH-ir cells, which gave very 

weak immunoreaction at 28dph 

 

DISCUSSION 

 

The digestive system of O. niloticus larvae underwent ontogeny in a manner 

comparable to that of most teleost fish species that have been characterized thus far. After 

seven days of hatching, or the initial feeding, the digestive tract of O. niloticus 

differentiated into four morphologically distinct regions: the buccopharynx, esophagus, 
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presumed stomach, and intestine. Before O. niloticus transitioned to exotrophic feeding, 

the immunocytochemical results demonstrate that immunoreactivity to antibodies against 

CRF and ACTH, which are well-known for being involved in stress response (Stefano et 

al., 1996; Ottaviani et al., 1997; Mola et al., 2004; Pepels & Balm, 2004; Flik et al., 

2006; Lai et al., 2021), existed in the gut of the larva from an early stage (0dph). In 

Dicentrarchus labrax, immunostaining for CRF is localized in nerve fibers of the gut 

wall from the pharynx to the former gut at eight days following hatching, while the larvae 

are still feeding on yolk. A similar pattern of immunolocalization is observed in 24-day-

old larvae, with the addition of large cells immunopositive to CRF found in the wall of 

the midgut and hindgut (Mola et al., 2011).  

Only the goblet cells of the developing intestine exhibited ACTH 

immunoreactivity in the current study, and these cells demonstrated a strong 

immunoreaction between 7 and 10dph. When exogenous feeding began, ACTH-ir cells' 

size and number dramatically decreased, and at 28dph, they produced a very weak 

immunoreaction. Similar immunolocalization of ACTH was demonstrated in the 

digestive tract of Dicentrarchus labrax (Mola et al., 2004). CRF and ACTH are major 

players in the stress response (Ottaviani et al., 1997; Mola et al., 2004; Pepels & Balm, 

2004; Flik et al., 2006; Lai et al., 2021). The finding of CRF- and ACTH-like materials 

by immunohistochemistry in the same digestive tract regions of O. niloticus, where the 

gut-associated lymphoid tissue (GALT) will differentiate, raises the possibility that CRF 

and ACTH are involved in early defense mechanisms in O. niloticus before the growth of 

immune responses mediated by cells in GALT. 

The early immunoreaction of CRF in the developed O. niloticus along with its 

dissemination into the esophagus, stomach, and intestine, additionally its elevated 

immunoreactivity during larval development, imply that CRF may participate in the 

processes of immune defense. Furthermore, CRF-related peptides may mediate the 

appetite-suppressing effects of subordination stress on fish, which may have a 

physiological function in controlling food consumption (Bernier, 2006; Conde-Sieira et 

al., 2018; Rupia et al., 2023). Additionally, central nervous system endogenous CRF 

plays a function in promoting fish larvae's locomotor activity (Clements et al., 2002; 

Faught & Vijayan, 2022). 

Primary neurohormone CRF is accountable for controlling the release of ACTH in 

mammals (Vale et al., 1997). Additionally, it works in fish and other vertebrates as an 

effective ACTH secretagogue (Ando et al., 1999; Bernier et al., 1999; Flik et al., 2006; 

Lai et al., 2021). According to research results, this peptide may have a primary function 

in vertebrates as a dual hypophysiotropic agent acting on both the interrenal (adrenal) and 

thyroid axes (Denver, 1999; Boorse & Denver, 2004; Kaneko et al., 2005; Watanabe 

et al., 2016; Rousseau et al., 2021). Thyroid hormones are known to increase the 

survival rates of teleost larvae and hasten the immune system's growth and development 
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(Power et al., 2001; Gavlik et al., 2002; Lam et al., 2005; Rousseau et al., 2021; 

Lazcano et al., 2023).  

The distribution of ACTH in O. niloticus during its early larval stages points to a 

paracrine/autocrine mode of action. The localization of extra-pituitary ACTH has been 

reported in both mammalian and non-mammalian species, and its function in immune-

regulation has been studied (Ottaviani et al., 1997; Feng et al., 2022). Regarding 

chemotaxis and phagocytosis, human peripheral blood mononuclear cells and 

invertebrate immunocytes exhibit an enhanced bacterial phagocytosis upon stimulation of 

cell migration by ACTH (1-24) and other fragments (Genedani et al., 1990, 1994; 

Ottaviani et al., 1990, 1994; Feng et al., 2022). Given that O. niloticus's gut exhibits 

ACTH-like immunoreactivity, its function in osmoregulation regarding salinity 

fluctuations over the first 28 days of life may also be explained. The results presented 

here highlight the significance of both CRF and ACTH in osmoregulation, 

immunological response, feeding behavior, and growth during O. niloticus development.    
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