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The posterior salivary gland of Octopus vulgaris is apocrine and has a discrete 

character in the animal kingdom. In general, studying the evolution of any toxic organism 

typically starts with an examination of its defense system, including the minute structures 

with similar organisms across various phyla in the animal kingdom. The posterior salivary 

gland of Octopus vulgaris consists of a thick gland wall with a contraction function for 

pushing the toxin through the gland duct and into the pass tube, which opens in a buccal 

mass. The posterior salivary gland of Octopus vulgaris secretes toxic saliva, which is 

thermostable liquid resistant to heat and has a darkened blue appearance when stained 

with bromophenol blue, more pronounced than the venom. The present gland consists of 

nine types of cells associated with a canal that transports the toxin from the posterior to 

anterior salivary glands. These glands are located in the middle of the gland and consist 

of a mixture of circular and longitudinal muscle fibers, respectively. The secretion of the 

present gland is considered analogous to the evolutionary progression from octopus to the 

cobra snake. In the cobra snake, there are two types of cells with thick walls that aid in 

the contraction of the gland to push the toxin outside the mouth. In octopuses, two small 

cells represent an early evolutionary stage observed in glands across the animal kingdom, 

as recorded in the earliest records.  

  

    INTRODUCTION   

Octopus vulgaris defense system is the first qualified and complete system in the animal’s 

kingdom, appearing in the shape of cells and structure of glands which is never unclear for 

qualified researchers for toxicology. The best study for toxicology and evolution process in toxic 

animals starts with a study of the structure of the defense system through all toxic animals’ phyla 

(Scheffer, 1991; Savitzky et al., 2012; Brady et al., 2017; Oziolor et al., 2020; Cerda, 2023). 

The octopus is renowned for its comprehensive defense system, which includes remarkable 

swimming abilities. Despite lacking a traditional skeleton, its hydrostatic structure enables agile 

and fast movement, distinguishing it within the animal kingdom. Toxicologists try to find the 

relation between the defense system and the evolution process, as documented in the literature, 
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which may sometimes appear reversed. The recent literature indicates that toxicity in the same 

phylum has no different types or species between the same individual in the same phylum (Ueda 

et al., 2006; Kiriake et al., 2013; Kiriake et al., 2014; Saggiomo et al., 2021; Brighton 

Ndandala et al., 2023). The posterior salivary gland consists of a parenchymatic wall and muscle 

medulla, all composed of connective tissue to facilitate the contraction of gland secretion outside 

the gland. Moreover, there are nine types of cells, all of which secrete the toxin. Some types of 

cells are also used to store the toxic saliva, composed of tetradotoxin. The gland is composed of 

thick parenchyma and is similar to the anterior salivary gland, with small secretion granules 

scattered inside. This feature is common in Octopus vulagis (Martin, 1971; Matus, 1971; Barlow, 

1972; Ebd Elrheem, 2022 ). The secretion of this gland and toxicity among toxic animals was 

defined about 125 years ago. However, there is a common misconception that only  Hapalochlaena 

maculosa, a type of octopus, possesses toxicity. All feeding and environment are similar and the 

escaping of predators requires good adaptation, including shape, toxicity, inking, colorations, and 

finally coordination of the cartilaginous skeletal system with movement (Ebd Elrheem, 2022, 

2023a, 2023b). The secretion of present gland is unique among animals, as it contains both anterior 

salivary glands that secret venom, while the posterior salivary gland secrets tetradotoxin in all 

members of the Octopoda class within the phylum Mollusca. The different types of secretion make 

animals more suitable for their environment. The fast acting secretion of the venomous anterior 

salivary gland is used for quickly incapacitating prey, while the secretion of the posterior gland 

provides protection against large predators. The cell types and shapes look resemble those found 

in toxic animals across the animal kingdom. This suggests a low level of differentiation, indicating 

a shared evolutionary process driven by adaptation to diverse environments. The secretions of the 

posterior salivary gland can immobilize prey for an extended period, providing protection against 

large-sized attackers. However,  during feeding, the same secretions are used to quickly 

incapacitate prey (Matus, 1971; Martin et al, 1972; Oziolor et al., 2020). The amino acids 

composition inside the saliva indicate the presence of tetradotoxin in all types of octopuses, as 

revealed by sequence investigation, thus all previous secretions contain tetradotoxin. Staining with 

different types of stain types is very useful for the demonstration of all secretion types of these 

glands, and for understanding the natural structure of the cells. Younger octopuses exhibit lower 

toxicity (allometric toxicity) than adults, indicating a maturation process corresponding to 

secretion. This suggests that as animals progress in the feeding process, they become increasingly 

self-reliant and better suited to their environments (Gibbs et al, 1978; Raimundo et al., 2008; 

Moniz, 2022; Liu et al., 2023). This work aimed to demonstrate of secretion of this gland and 

provide evidence of its structure, particularly focusing on previously undescribed structure.  

   MATERIALS AND METHODS  

Sampling  

Samples of Octopus vulgaris were collected in March from one site on the Western coast 

of the Red Sea. This site is located 17km south of Safaga City (latitude 26° 38' N longitude 33° 

59' E). The collection site is on rocky shores and samples were collected from the intertidal zone 

at the time of low tide. The collection was done by hand, and the samples were packed up. Each 

specimen was collected and put in plastic containers containing seawater. The specimens were 
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narcotized by adding menthol crystals (El-Naser Chemicals Company in Egypt) to the water 

surface of the jar and allowing them to relax. Specimens dissected in the field to get the studied 

organs were fixed and put in Bouin's solution for 24 hours for histological preparations.  

Histological studies  

 Organs sectioned were cut off from the body and placed into Bouin’s solution in seawater 

for 24 hours. Fixed parts were then passed to the graded series of alcohol from 30 to 100%. They 

were cleared in toluene three times each for 5 minutes then embedded in paraffin wax. Sectioning 

was made by microtome at 5- 7µm thickness. Moreover, sections were stained with the following 

stains:  

• Harris hematoxylin and eosin combination (H&E) (Harris, 1900).  

• Mercuric bromophenol blue for demonstration of general proteins (Mazia et al., 1953).   

Periodic acid Sheaf’s reaction (PAS) for the demonstration of polysaccharides in various 

cells and tissues (McManus, 1948).  

The slides were dehydrated through an ascending series of ethanol after staining. They were then 

passed through xylene to mounting medium and covered with coverslips.  

   RESULTS                                                                                                                                

The shape of the Octopus vulgaris in the Red Sea is typical of the species and exhibits the same 

characteristics as the models shown in Fig. (1).  

  

  

Fig. 1. The body plan of a marine Octopus vulgaris (Cuvier, 1797). (Ventral view)  

Octopus vulgaris has a complete defense system including both the anterior salivary gland 

and posterior salivary gland. Both have a good contact point above the first stomach and below the 

buccal mass with direct contact by a pair of ducts connected the two glands. The gland consists of 

a wide, thick wall similar to previous animals and is composed of connective tissue parenchyma. 

It contains gland pressure cells (GPC), which are present in the beginning stages and are more 

https://www.ajol.info/index.php/ajms/article/view/66437
https://www.ajol.info/index.php/ajms/article/view/66437
https://www.ajol.info/index.php/ajms/article/view/66437
https://www.ajol.info/index.php/ajms/article/view/66437
https://www.ajol.info/index.php/ajms/article/view/66437
https://www.ajol.info/index.php/ajms/article/view/66437
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advanced compared to those found in cobra snakes. Also, type A (T.A) cells secrete the mucus 

(Mu) to facilitate the passing of toxic saliva through paired ducts of the glands. The gland is 

supplied with blood sinus to provide adequate blood flow, enabling gland enlargement (Fig. 2A, 

B, C, D, G, H, I, J). The second type of cells (T.B) are commonly observed as free-form cells and 

their function may involve supporting the parenchyma or having a free function (Fig. 2C). The 

fourth type of cells (T.C) exhibit a mixed shape, ranging from rounded to flattened, and serve 

multiple functions based on their structure as observed. The primary function is the secretion of 

the mucus (Mu), while the secondary function is the secretion of the saliva (Fig. 2D). The fifth 

type (T.E) exhibits a structure similar to the anterior salivary gland structure in Octopus vulgaris. 

These cells are commonly scattered throughout the gland parenchyma and secrete saliva. They are 

differentiated and stained by bromophenol blue stain (Fig 2D, I). The sixth type of cell T.F) appears 

as irregular in shape and performs mixed functions, including transporting saliva and secreting 

mucus (Mu) exclusively. These cells are stained by basic stains as H&E, but slightly. This indicates 

low acidophilic granules, as shown in Fig. (2E). The seventh type (T.G) appears completely 

rounded and is involved in transporting saliva to facilitate rapid defense. Similar to the previous 

type, it is lightly stained by basic stains (Fig. 2F). The eighth type (T.H) is also for transporting, 

but it is characterized by thick connective tissue within the cell. This type is commonly found in 

glands to supports the gland’s transport function (Fig. 2G). The pair of ducts also make contact 

with both the anterior and posterior salivary glands, with the contact site referred to as the gland 

duct (GD) in this study. This duct is responsible for transporting the entire gland secretion from 

the posterior salivary gland to the anterior (Fig. 2H). The nine types of cells (T.I) are rounded and 

scattered with the parenchyma, but they are positioned deep. They secret saliva (S) and appear 

rounded and fanshaped. These cells are deeply stained blue at the sites of salvia secretion by basic 

stains such as H&E (Fig. 2H). Saliva cells (S) are visible in the section and are completely stained 

by basic stains (H&E) and bromophenol blue stain. Additionally, mucus secretion is observed in 

this gland, as shown in all previous figures (Figs. 2H, I, J).   
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Fig. 2A- J. All images are taken at high magnification (30- 100µ) and depict the structure of the posterior 
salivary gland of Octopus vulgaris. A- H stained with H&E show various types of cells including T.A, T.B, 
T.C, T.E, T.F, T.G, T.H, and T.I, as well as features such as Bs (blood sinus), GW (gland wall), C 
(connective tissue between cells), GB (gland parenchyma), GD (gland duct), and S (saliva). (I) stained by 
protein stain (Bromophenol blue stain) shows both types T.A and T.E, which secrete proteins. (J) stained 
by periodic acid chief (Carbohydrates stain) highlights mucus secretion sites in T.A cells  

  

     DISCUSSION   

The posterior salivary gland of Octopus vulgaris exhibits a very advanced structure, which 

aids in reducing predation from larger prey animals. The structure of this gland is mentioned in 

those literatures, such as Matus (1971), Martin et al. (1972), Moustafa and Awaad (2016) and 

Elrheem (2022). The types of gland cells and the structure of their parenchyma are similar to the 

structure of the anterior salivary gland of Octopus vulgaris (Abd Elrheem, 2022). Pagella et al. 

(2014) discussed the structure and functions of different cells similar to those found in glands. The 

stain with bromophenol blue is positive in some cells, indicating their contents and structural 

nature. The mucus is positive for periodic acid stain, while the protein secretion gives a negative 

reaction by the same stain, in accordance with the basic science principle. The allometric 

phonemon is common in the animal kingdom for giving the relations between two changing 

parameters (Gibbs & Greenaway, 1978; Raimundo et al., 2008; Moniz, 2022; Liu et al., 2023). 

The development of animals in defense system is opposite to the development of animals during 

evolution, leading to a relationship that is commonly reversed (Ueda et al., 2006; Kiriake et al., 

2013; Kiriake et al., 2014; Saggiomo et al., 2021; Brighton Ndandala et al., 2023). The 

evolution of the defense system through the animal kingdom is differentiated by position in the 

evolution site, thus the octopus occupies an advanced position in the systematic hierarchy by their 

defense system.  
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   CONCLUSION  

The aim of this study is to accurately describe the structure of the posterior salivary gland 

and to elucidate its features using various staining techniques, with the objective of identifying any 

differences between our findings and those of previous studies. This study elucidates the common 

cells that have not been previously described, providing evidence for all previously identified cells 

using various staining techniques.  
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