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Mesozooplankton abundance and distribution at Damietta Branch, Nile 

River was studied to assess the impacts caused by human activities. The 

sampling was done monthly at seven stations during October 2013-

September 2014. A plankton ring net with 180 µm mesh size was used to 

avoid the bias toward the collection of smaller mesozooplanktons such as 

rotifers and copepod larvae. Thirty-six mesozooplankton taxa were 

recorded. Cladocera was the most abundant group (41.6%), followed by 

Copepods (29.9%), Rotifera (14.8%), and Ostracoda (13.2%). The 

decrease in rotifers density in favor of copepods and cladocerans in the 

ROT:CLA:COP ratio suggesting an increase in the area eutrophication. 

According to SIMPER analysis, the most important taxa were Bosmina 

longirostris, Ceriodaphnia reticulate, Moina micrura, Acanthocyclops 

americanus, Brachionus calyciflorus, and Candona subgibba. Multivariate 

analysis indicated that the variations in species distribution were associated 

with environmental factors, especially water temperature, conductivity, 

and nitrate. The degree of anthropogenic disturbance determines the 

quality and quantity of plankton in the study area. Consequently, the 

discharged post-cooling waters should be controlled to protect zooplankton 

fauna and in consequence the planktivorous fish of the study area. 

        

INTRODUCTION 

  

Rivers and streams ecosystems are sensitive to many environmental stressors; 

human activities mainly responsible for most of these stressors (Sala et al., 2000). 

Streams in developing countries such as Egypt have suffered from severe 

environmental problems such as chemical and organic pollution, caused by runoff 

from agricultural chemicals, poorly managed industrial process, and the absence of 

suitable treatment of sewage and other urban wastes. The results may include the 

denaturation of water which is no longer sustain healthy ecosystems to aquatic 

organisms (Arthington et al., 2010). Although the well known adverse effect of 

pollution in many river systems (Pernet-Coudrier et al., 2012; Xiong et al., 2017; 

Zhang et al., 2017), it remains indistinct how variety and differences in 

environmental variables interact to determine community structure of living 

organisms in stressed river ecosystems in a narrow geographical range, especially for 

those the critical but poorly studied communities such as zooplankton. Such 

communities are highly sensitive to environmental fluctuations. The variations in 
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zooplankton abundance and ⁄ or composition can be used as an significant sign of 

ecological changes or disturbance (Joseph and Yamakanamardi, 2011). 

Nile River is one of the longest rivers of the world, flowing from south to 

north, covering the whole of Egypt between latitudes 21°55′–31°17′N. At El-Kanater 

El-Khyria (close to Cairo) the Nile bifurcates into two branches, namely; the Rosetta 

and Damietta branches. Ending dams were erected on both branches. The Damietta 

Branch is about 240 km long. The lower 21 km of the branch is cut-off from the river 

and remains freely connected to the sea. This is achieved by the open⁄closed dam 

(Faraskour dam), 3 km south to Damietta City. This dam is rarely opened and usually 

closed for most of the year to prevent invasion of the sea water into Damietta 

Branch. Although the great benefit of this dam which maintains the river water levels 

by controlling the flow between the Damietta Branch and Mediterranean Sea, the 

significant reduction in river flow accumulated the wastes and converting the river 

into a waste collecting system. 

Zooplankton of freshwater rivers tends to be dominated by rotifers and 

bosminids; other cladocerans and copepods were relatively few (Bum and Pick, 

1996; Mola and Ahmed, 2015; Rodríguez et al., 2013). Zooplankton are considered 

to be one of the essential players in the Nile River ecosystem, acting as a link 

between the first trophic level (primary producers or phytoplankton) and higher 

trophic levels including planktivorous fish (El-Otify and Iskaros, 2015; Rzoska, 

1976) 

In the Egyptian waters the widespread use of fine plankton nets (55 µm or even 

lower) has led to a comparatively low diversity and abundance of mesozooplankton 

(adult copepods and cladocerans), as the fine nets are clogged easily which allowing 

the mesozooplankton to escape during the filtration process (Buskey et al., 2002). As 

a result, most of the zooplankton samples collected previously in the Nile River 

using fine nets showed an overwhelming increase in diversity (richness and 

quantities) of small taxa over the larger species. As pointed out by Riccardi (2010), 

the coarse nets (≈200µm) is providing reliable descriptions of the mesozooplankton 

assemblages than that of the finer nets. Also, Hopcroft and other (1998) mentioned 

that the use of coarse nets (180-300 µm) yields an adequate representation of the 

community structure and its dynamics. During the present study, we assumed that the 

used coarse net (180 µm) should display a reliable description of the 

mesozooplankton assemblage and avoid the strong bias towards collecting of small 

animals in most freshwater zooplankton studies. The study was also aimed to 

examine of the mesozooplankton community of the Nile River Damietta Branch with 

three objectives. The first was to determine the composition, distribution, and 

abundance of mesozooplankton in the Damietta Branch through monthly sampling 

over a one-year round. The second objective was to analyze the impact of some 

physicochemical factors on community variations. The third was to clarify the 

relationship between species and their environment within the study area.  

 

MATERIALS AND METHODS 

 

Study area and stations 

The study area (Fig. 1) extended about 78 km in Damietta Branch. The field 

data used in this paper were collected at seven stations every month from October 

2013 to September 2014. Pollutants slightly stressed the station I was located at the 

water inlet of water planet station. Staions II and VI near the hot water outlet of 

thermal power generations plants. Station III near the drainage canal of inorganic 
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fertilizer factory receiving industrial sewage. Stations IV, V, and VII near some 

villages receiving domestic sewage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Map of the study area showing the location of sampling staions. 

Sampling and analysis 

Surface water samples were collected concurrently with zooplankton samples 

for the measurement of physicochemical parameters. Temperature, water 

transparency, pH, electrical conductivity (EC), total dissolved solids (TDS), and 

dissolved oxygen (DO) were measured in-situ. In the lab, the analysis of 

physicochemical parameters namely, chloride (Cl‾), alkalinity (CaCO3), nitrate 

(NO3‾), nitrite (NO2‾), ammonium (NH4
+
), and inorganic dissolved phosphorus 

(PO4
3−

) was done by standard methods (Clesceri et al., 1999). The phytoplankton 

biomass (Chlorophyll-a) was determined according to the methods described by 

Wetzel and Likens (2000). 

Mesozooplankton collections were taken using a 180 μm mesh plankton ring-

net of 65cm mouth diameter hauled vertically from the bottom to the surface at each 

station. Samples were preserved in 4% buffered formaldehyde. Zooplankton taxa 

were identified (Balcer et al., 1984; Edmondson, 1959; Koste and Shiel, 1986; Koste 

and Shiel, 1987) and taxon abundance per cubic meter was determined from a 5 ml 

subsample, taken with a pipette of the entire sample (100 ml). 

Statistical analysis 
Canonical Correspondence Analysis (CCA) was performed to assess the 

association of mesozooplankton species with physicochemical parameters using the 

CANOCO 4.5 package (Ter Braak and Smilauer, 2005). A Monte Carlo test was 

used to evaluate the significance of the environmental factors (El-Tohamy et al., 

2018b).SIMPER analysis of similarity percentages between sampling stations was 
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applied to identify species contribution in the sampling area [CAP v3.0 (Seaby et al., 

2004)]. The TWINSPAN “Two Way Indicator Species Analysis” (Hill et al., 1975) 

was run using the default options to the second cut level. The significance of 

variations in environmental factors was assessed by ANOVA with tukey’s-b test to 

determine the significant difference between TWINSPAN groups. One way ANOVA 

analysis was carried out using the statistical program SPSS v18.0. 

 

RESULTS  

 

General water quality  

Water temperature varied temporally between a minimum of 19 °C in January 

and a maximum of 34.5 °C in June. The water was slightly alkaline; the pH range 

was 7.6-8.72 (Table 1). The water transparency varied significantly between station 

with values ranged between 39.3 cm at station IV and 390.8 cm at station VII. The 

total dissolved solids (TDS), ranged from 268 mg·l
-1

 at station VI in July to 686 mgl
-

1
 at station II in October with an average of 435 mg·l

-1
. Throughout this study, the 

EC values ranged from 398 at station III in January to 1434 µS·cm
–1

 at station IV in 

November with an average of 830 µS·cm
–1

. Chlorinity (Cl‾) values varied between 

144 to 210 mg·l
-1

 at the station I in October and August respectively, with an average 

of 163 mg·l
-1

. Dissolved oxygen (DO) levels exhibited variable results regarding the 

site nature. The values ranged from 3.7 to 7.8 mg·l
-1

 with an average of 5.9 mg·l
-1

. 

Nutrient concentrations were considerably high most of the year. Nitrate 

concentrations showed spatial differences, and in a parallelization with nitrite, the 

values were highest at station VI and lowest at station I. Ammonium ranged 5 to 550 

µg·l
-1

 (Table 1). Generally, the concentrations were higher at stations I and II 

compared to other stations. Phosphate concentrations ranged from undetectable 

limits at stations V during winter to >90 µg l
-1

 at the station I in March. The 

chlorophyll-a values ranged between 3.2 and 19.6 µg·l
-1

 with an average of 11.13 

µg·l
-1

 (Table 1). 

 
Table 1: Summary of basic descriptive statistics of different physicochemical parameters, and 

chlorophyll-a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zooplankton community and abundance 
A total of 36 mesozooplankton species were identified during the present study 

along the Nile River Damietta Branch, including 12 rotifers, 1 nematode, 8 

cladocerans, 10 copepods, and 5 ostracodes. The highest diversified communities (12 

taxa) were reported at station V in winter, while the lowest (7 taxa) occurred at 

Component Mean Stand.dev. Minimum Maximum 

Temperature (°C) 28.01 4.68 19 36.33 

Transparency (cm) 179.72 155.71 30 545 

pH 8.21 0.35 7.6 8.72 

DO (mgl
-1

) 5.91 0.78 3.68 7.83 

Alkalinity (mgl
-1

) 825.3 182.9 672.7 1438 

EC (µscm
-1

) 829.83 342 397.67 1433.67 

TDS (mgl
-1

) 435.26 117.17 276.67 686.33 

Cl‾ (mgl
-1

) 163.26 15.28 143.92 209.64 

NO2‾ (µgl
-1

) 40 20 17 95 

NO3‾(µgl
-1

) 100 47 35 200 

NH4
+
(µgl

-1
) 270 130 3 550 

PO4
3−

(µgl
-1

) 19 25 0 93 

Chlorophyll-a (µgl
-1

) 11.13 4.32 3.25 19.57 
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station VI during autumn and winter (Fig. 2). The present results reported 

pronouncedly high variations of mesozooplankton standing crop, whereas the total 

count over the study area varied from < 300 individual m
-3

 at stations V and VI 

during winter and summer respectively to > 2300 individuals m
-3

 in winter at the 

station VII (Fig. 2), with an annual average of 931.7 individuals m
-3

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Seasonal variations of mesozooplankton abundance (A) and species number (B) at the sampled 

stations. 

 

Crustaceans were the most abundant component, representing 84.62% and 63.9 

% of the total abundance and species richness respectively. Cladocerans dominated 

the Crustacea community structure, representing > 49 % of their total abundance. On 

the temporal scale, the cladocerans had the maximum role in winter at stations II and 

IV, in spring at stations II, V, and VI (Fig. 3). According to SIMPER analysis; 

Bosmina longirostris, Ceriodaphnia reticulate, Moina micura, and Chydours 

sphaericus were the dominant cladocerans and demonstrating the highest active 

contributors to the total mesozooplankton count between the sampling stations 

(Table 2). The former three dominant species contributed collectively about 8-19% 

and 8-22% of total crustaceans and total mesozooplankton respectively. Copepods 
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represented the second predominant group, accounting for 35.3% and 29.9% of the 

total crustaceans and the total mesozooplankton respectively over the whole study 

area.  

 
Table 2: Species list in the study area which is ranked according to SIMPER analysis. Abbrev.= 

Species abbreviation, Cont.% = the percentage of species contribution to the total 

mesozooplankton abundance. 

Name Classification Abbrev. Cont. % 

Bosmina longirostris (O.F. Müller, 1785) Cladocera Boslo 8.4 

Ceriodaphnia reticulata (Jurine, 1820) Cladocera Cerre 5.4 

Moina micrura (Kurz, 1875) Cladocera Momi 6 

Acanthocyclops americanus (Marsh, 1893) Copepoda-Cyclopoida Acam 3.9 

Brachionus calyciflorus (Pallas, 1766) Rotifera Brca 4 

Copepodites Copepoda Copd 3.7 

Candona subgibba (G. O. Sars, 1926) Ostracoda Casu 5.4 

Chydorus sphaericus (O.F. Müller, 1776) Cladocera Chsp 3.1 

Brachionus quadridentatus (Hermann, 1783) Rotifera Brqu 3.2 

Ephippium of Cladocera Cladocera Ephcl 2.9 

Trichocerca sp. Rotifera Trsp 2.5 

Nauplii larvae Copepoda Naup 2.7 

Synchaeta sp. Rotifera Sysp 1.2 

Alona rectangula (G.O. Sars, 1862) Cladocera Alre 2.9 

Mesocyclops leuckarti (Claus, 1857) Copepoda-Cyclopoida Mele 2.9 

Brachionus plicatilis (Müller, 1786) Rotifera Brpli 2.6 

Halicyclops magniceps (Lilljeborg, 1853) Copepoda-Cyclopoida Hama 3.1 

Eothinia elongata (Ehrenberg, 1832) Rotifera Eoel 2.5 

Asplanchna  priodonta (Gosse, 1850) Rotifera Aspr 2.3 

Eucyclops speratus (Lilljeborg, 1901) Copepoda Cyclopoida Eusp 2.7 

Diaphanosoma excisum (G.O. Sars, 1885) Cladocera Diexc 1.9 

Proales similis (de Beauchamp, 1907) Rotifera Prsi 1.9 

Potamocypris variegata (Brady & Norman, 1889) Ostracoda Pova 4.4 

Oithna sp. Copepoda-Cyclopoida Oisp 1.9 

Onychocamptus mohammed  (Blanchard & Richard, 

1891) 

Copepoda Harpacticoida Onmo 3 

Monostyla bulla (Gosse 1886) Rotifera Mobu 0.3 

Cypria pellucida (G. O.Sars, 1901) Ostracoda Cypel 2.1 

Colurella sp. Rotifera Cosp 1.5 

Lecane depressa (Bryce, 1891) Rotifera Lede 1.5 

Insect larvae Hexapoda Inla 1.8 

Macrothrix hirsuticornis (Norman & Brady 1867) Cladocera Mahir 1.7 

Limnocythere inopinata (Baird, 1843) Ostracoda Liino 1.5 

Platyias quadricornis (Ehrenberg, 1832) Rotifera Plqu 0.3 

Cypria obesa (Sharpe, 1897) Ostracoda Cyobe 1.1 

Diacyclops bicuspidatus odessanus (Schmankevitsch, 

1875) 

Copepoda-Cyclopoida Dibi 1 

Oxyurella longicaudis (Birge, 1910) Cladocera Oxlo 0.8 

Nitokra  lacustris (Shmankevich, 1875) Copepoda- Harpacticoida Nila 0.7 

Diaptomus minutus (Lilljeborg & Richard, 1889) Copepoda-Calanoida Dimi 0.4 

Dorylaimus  sp. Nematoda Dosp 0.7 
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Copepods reported their greatest role in autumn at stations V, VI, and VII, in 

summer at station III. According to SIMPER analysis; Acanthocyclops americanus, 

Mesocyclops leuckartii, and Halicyclops magniceps were the most important species, 

contributing on average 8, 3.4 and 2 % to the total crustacea community respectively, 

and 1.7-6.7 % to the total mesozooplankton. Ostracodes accounted for 13.2% of the 

total mesozooplankton and 15.55% of total crustaceans. They reported their 

maximum role in spring at station IV, in winter at station VII (Fig. 3). Candona 

subgibba and Potamocypris variegata were numerically abundant among the 

ostracodes, and on average they contributed 8.2 and 3.2% of the total 

mesozooplankton abundance respectively. Although, the high diversity of rotifers (13 

taxa), they contributed only 14.8% of the total abundance. According to SIMPER 

analysis (Table 2), Brachionus calyciflorus, B. quadridentatus, and Trichocerca sp. 

were the most abundant species, contributing on average 29.6, 17, and 6.4% of the 

total rotifers abundance respectively, and 4, 2.5 and 1.9% of the total 

mesozooplankton abundance respectively. Other taxa encompassed only the 

nematode Dorylaimus sp. in addition to the meroplanktonic insect larvae (Table 3), 

contributed collectively < 1% of the total abundance. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Seasonal relative abundance of the major zooplankton groups at the sampled stations. 

 

Table 3: The relative richness and abundance of the main mesozooplankton groups. 

Category  Species Mean Abundance 

  Number % Ind.m
-3

 % 

Rotifera  12 33.3 137.9 14.8 

Nematoda  1 2.8 1.5 0.2 

 

Crustacea 

Crustacea 

Cladocera 8 22.2 387.4 41.6 

Ostracoda  5 13.9 122.6 13.2 

Copepod  10 27.8 278.4 29.9 

Insect Larvae  - - 3.6 0.4 

Total  

Zooplankton 

 36  931.7  
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ROT: CLA: COP ratio 

The ROT:CLA:COP ratio in the study area, which constituted 0.16:0.52:0.32 in 

the Winter, achieved 0.19:0.49:0.31 in the Spring during the eutrophication 

development and changed to be 0.17:0.45:0.39 and 0.17:0.46:0.37 in summer and 

autumn respectively. These ratios are suggesting an increase in the eutrophication 

with increasing temperature values from spring to autumn. Also, the ratios indicated 

a relative decrease in the density of rotifers when compared with that of copepods or 

cladocerans.  

The TWINSPAN analysis 
A data set of 84 samples that contains zooplankton species in the study area 

was analyzed using two-way indicator species analysis (TWINSPAN). The results 

classify mesozooplankton samples to four groups or clusters labeled A-D (Fig. 4). 

Each group includes a set of samples with higher similarity of species as compared to 

other groups. Each cluster is characterized by indicator species identified by 

TWINSPAN at each level of hierarchical classification. In the following description, 

the groups are characterized in terms of their indicator species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: TWINSPAN dendrogram of 84 samples based on the density of zooplankton species in the 

study area. Indicator species are shown at each level of classification. Four groups (A-D) are 

shown at level 2. 

 

Group A: including 25 samples from stations II and VI; the group is characterised by 

Asplanchna priodonta, Bosmina longirostris, Eothinia elongate, and 

Monostyla bulla as indicator species.  

Group B: comprises 13 samples mostly from the station I and indicated by 

Acanthocyclops americanus, Chydorus sphaericus, and Synchaeta sp..  
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Groups C and D: 46 samples including the sample units from stations III, IV, V, and 

VII with Halicyclops magniceps, Moina micrura, and Mesocyclops leuckartii 

as indicator species.  

As shown in Table 4, group A is associated with the highest values of 

temperature, alkalinity, phytoplankton biomass, and the lowest phosphate values, 

while group B was associated with the highest values of pH, dissolved oxygen, and 

the lowest values of temperature and phytoplankton biomass. On the other hand, 

groups C and D appeared to be in accordance with relatively higher values of 

nutrients and chlorophyll-a.  

 
Table 4: Means of 13 environmental parameters recorded in different TWINSPAN groups. Mean of 

the variables have the Latin letters of the groups which are significantly different according to 

the Tuckey’s-b test. 

 TWINSPAN groups ANOVA 

 A B C D F p 

Temperature 34.3
I
 21

 III
 26.5

 II
 28.2

 II
 29.8 <0.001 

Transparency 269.6 195 166.3 132.1 1.7 0.177 

pH 8.1
 II

 8.6
 I
 8.2

 II
 8.0

 II
 5.5 0.002 

DO 7.5
 II

 9
 I
 8.2

 I
 7.5

 II
 6.21 0.001 

Alkalinity (ALK) 976.7
 I
 747.9

 II
 817.9

 I
 757.7

 II
 4.42 0.006 

EC 902.4 648.2 759.6 866.8 1.2 0.344 

TDS 461.5 403.7 383.2 454.5 1.7 0.18 

Cl‾ 162.2 176.5 162.3 160.6 1.14 0.34 

NO2‾ 37.7 51.7 35.6 40.5 0.6 0.6 

NO3‾ 71.2
 II

 79.3
II
 129.9

 I
 132.4

I
 2.84 0.04 

NH4
+
 156.7 226.8 259.0 256.4 1.8 0.1 

PO4
3−

 3.9
 III

 44.7
 I
 18.4

 II
 24.3

 II
 2.61 0.05 

Chlorophyll-a 14.5
 I
 5.2

 II
 10.8

 I
 12.0

 I
 10.26 <0.001 

 

The multivariate analysis 

The DCA results showed that the maximum length of gradients was 2.66, 

suggesting a linear or unimodal relationship between zooplankton species and 

environmental parameters. Therefore, both Redundancy analysis (RDA) and 

Canonical Correspondence analysis (CCA) were performed. The CCA was chosen 

because it explains more variance in the species distribution than the RDA in the first 

four axes (RDA: 12.5 %, CCA: 15.1%). The results of CCA indicated that the 

environmental parameters had a significant influence on mesozooplankton 

distribution (F-ratio = 3.02, P-value = 0.005), explaining 56.7% of the total variance. 

By using the Monte Carlo permutations test, six environmental parameters had 

significant influences on the species distribution, among them temperature, 

conductivity, nitrate, and pH were the most powerful (Table 5). The ordination 

diagram produced by CCA shows the distribution pattern of mesozooplankton 

species along the environmental gradients. As shown in figure 5, more than 65% of 

rotifers and cladocerans were found in the right half of the ordination diagram where 

the gradients of temperature and phytoplankton biomass in opposition with the 

vectors of dissolved oxygen, pH, and nutrients, especially at stations II and VI. On 

the other hand, at the other stations, ostracodes and 90% of copepods were associated 

mainly with the gradients of pH, dissolved oxygen, TDS, and nutrients opposite to 

the vectors of temperature and phytoplankton biomass. The cladocerans Bosmina 

longirostris and Ceriodaphnia reticulate, and the rotifers Asplanchna priodonta and 

Brachionus plicatilis were associated with gradients of temperature and 

phytoplankton biomass, especially at stations II and VI. The vectors of chloride and 

conductivity found mostly between the sample units from station VII. The rotifer 
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Brachionus calyciflorus, the ostracod Cypria pellucida, the harpacticoide 

Onychocamptus mohammed, and the cladoceran Diaphanosoma excisum were 

associated with these vectors (Figure 5). The cladocerans Alona rectangula and 

Chydorus sphaericus, the copepods Acanthocyclops americanus, Nitokra lacustris, 

and the rotifer Synchaeta sp. were associated with the highest values of pH and 

dissolved oxygen at station I. The genera which close to the point of diagram origin 

(0-0) as Candona subgibba, Trichocerca Sp, the copepod nauplii and copepodites 

indicated the homogonus distribution of these species at all sampled stations.The 

other species as Lecane depressa, Halicyclops magniceps, Mesocyclops leuckartii, 

Diaptomus minutus, Moina micrura, and Limnocythere inopinata were associated 

with the vectors phosphate and opposite to the vectors of temperature transparency at 

stations IV and V (Figure 5).  

 
Table 5: Results of forwarding selection and Monte Carlo permutation tests from CCA.  

Variables Lambda-A F-ratio P-value 

Temperature 0.15 3.02 0.005 

EC 0.1 2.06 0.005 

NO3‾      0.08 1.79 0.015 

pH 0.08 1.75 0.04 

Cl‾ 0.08 1.74 0.02 

PO4
3−

 0.07 1.38 0.04 

Alkalinity  0.06 1.32 0.159 

NH4
+
 0.05 1.14 0.328 

Transparency 0.05 1.09 0.323 

NO2‾ 0.05 1.03 0.388 

DO       0.04 0.99 0.493 

TDS      0.04 0.93 0.547 

Chlorophyll-a 0.04 0.82 0.711 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: (A) Ordination diagram by CCA 

analysis of zooplankton species as a 

function of environmental variables (See 

Table 2 for abbreviations). (B) Systematic 

classification of species as a function of 

environmental variables. (C) Distribution 

of sampling units along the vectors of 

environmental variables. Temp 

(temperature), Tran (water transparency), 

Cond (Electric conductivity), Alka 

(Alkalinity), Cl (Chlorides), Amm (NH4), 

Nit (NO2), Nat (NO3), Phos (PO4), and 

Chla (chlorophyll-a). 

 



Mesozooplankton of the Damietta Branch, River Nile , Egypt 327 

DISCUSSION 

 

The available data existing in the literature on the Nile River Damietta Branch 

zooplankton community structure were provided by Helal (1981; 2006). However, 

the present study is limited by the large mesh size used (180 µm). The recorded 

pattern of zooplankton in this study reflects the use of coarse mesh size. This coarse 

mesh net causes the undersampling of small zooplankton specimens such as rotifers 

and small copepods, which probably lead to an underestimation of the total 

zooplankton abundances (Chisholm and Roff, 1990). Accordingly, zooplankton 

abundances in the present study were significantly lower than those found in other 

areas along the Egyptian part of Nile River, such as upper Egypt (El-Bassat, 1995; 

El-Otify and Iskaros, 2015; Rzoska, 1976), Rosetta Branch (Abdel-Halim et al., 

2013; El-Shabrawy and Khalifa, 2002; Hegab, 2010), and that studied previously in 

Damietta Branch by Helal (1981; 2006). On the other hand, most of the standard 

sampling protocols for zooplankton in the Egyptian waters are restricted only to 

mesh sizes < 60 μm. This reduction in mesh size may be inappropriate for 

mesozooplankton collection with the loss of many species through the filtration 

process (Tseng et al., 2011). According to Sosnovsky and others (2016), the 

mesozooplankton community comprises mostly copepods and cladocerans. In the 

1981 study (Helal, 1981), cladocerans were represented by six different species 

decreased to four species in 2006 study (Helal, 2006), whereas in the present study 

the group was represented by eight species. The copepods were represented by ten 

species in the current investigation, against eight species in 1981 study. Also, Abdel-

Halim and others (2013) recorded only six different species of copepods in the 

Rosetta Branch. The significant increase in the number of mesozooplankton species, 

especially among copepods and cladocerans, is indicative of the advantages of coarse 

mesh in the collection of mesozooplankton.  

The CCA ordination analysis revealed that the considerable variations in 

different mesozooplankton groups among sampling stations were significantly 

correlated with the variations of temperature, conductivity, and nitrate 

concentrations. This confirms with the observations in other areas, where the water 

temperature was a keystone element in the seasonal dynamics of mesozooplankton 

(Jerling and Weerts, 2018; Nakajima et al., 2017), and may regulate most ecological 

mechanisms in temperate areas (Sellami et al., 2010). As mentioned by El-Tohamy 

(2018a), the study area receives relatively high anthropogenic disturbance, directly or 

indirectly resulting in high values of nutrients and conductivity. According to Dorak 

(2014), the conductivity variation may regulate the structure of zooplankton 

assemblages, especially the spatial changes in species diversity and abundance. 

The particular thermal and trophic conditions are shaping the occurrence and 

the spatial distribution of zooplankton in the study area. This is related to the quantity 

and quality of the post-cooling waters that discharged into the river system which 

resulted in the decrease in abundance and diversity of mesozooplankton particularly 

at stations II and VI in comparison to other stations. The impact of the discharge of 

thermal power generation plant post-cooling waters on zooplankton diversity, spatial 

distribution, and abundance have been stated in many studies (Gromova and 

Protasov, 2017; Hillbricht-Ilkowska and Zdanowski, 1989; Kulakov et al., 2018; 

Tunowski, 2009; Zdanowski, 1988). According to Zdanowski and Prusik (1994), the 

changes in thermal regimes and chemical composition of waters have significant 

impacts on the metabolism of planktonic organisms.  
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Although the CCA ordination was explaining 56.7% of the total variations of 

the mesozooplankton community of Damietta Branch-Nile River, a significant 

amount of the total variations remains unexplained. Some portion of the unexplained 

variation in the recorded zooplankton data may be associated with the primary 

productivity (opposing the merely using of chlorophyll-a as a proxy for 

phytoplankton standing crop). According to Emerson and other (2015), the variations 

in chlorophyll-a concentrations were not strong explanatory of the zooplankton 

community, indicating the need for an effective way for the primary production 

determination. Other unexplained factors that may need future study include 

zooplankton predation by fishes and invertebrates and competition between 

zooplankton taxa.  

TWINSPAN analysis demonstrated the tight relationship between the spatial 

distribution of zooplankton and the environmental characteristics in the study area. 

The analysis grouped the sampling points that are sufficiently similar into two main 

clusters. The first cluster (warm-water community of stations II and VI) seemed to be 

clearly separated from the other cluster groups (Fig. 4). The indicator species of each 

TWINSPAN group differed in relation to the prevalence of different environmental 

conditions. For example, the cladocerans Bosmina longirostris is a polythermal 

species (Di Genaro et al., 2015) and their population growth usually increases at a 

temperature above 22 °C, which supports their rapid rise to dominance particularly at 

stations II and VI. Also, the distribution pattern of other indicator species found in 

the present study was clearly influenced by the combination of the influences of post-

cooling waters and other environmental factors. In the first cluster, there were some 

warm-water species, such as the rotifers Asplanchna sp. and Monostyla sp., whereas 

there were some cold-water rotifer species indicated the second cluster such as 

Keratella quadrata and Synchaeta sp.. This is in agreement with Yin et al. (2018), 

who reported that the rotifers Asplanchna sp. and Monostyla sp. preferred the warm-

water habitat, whereas Keratella quadrata and Synchaeta sp. preferred cold-water. 

The CCA biplot also showed that the abundance of Bosmina longirostris, 

Asplanchna sp. and Monostyla sp., were significantly correlated with temperature. 

The ROT:CLA:COP ratio was applied to detect how the eutrophication process 

changes the contribution of rotifers, cladocerans, and copepods communities to the 

total zooplankton abundance (Adamczuk et al., 2015). In the present study, we 

observed that Cladocera and Copepoda were contributed largely than Rotatoria in the 

process of eutrophication all year round. Also, the ratio of calanoid copepods to 

cladocerans and cyclopoids frequently used as a good indicator of trophic conditions 

in freshwater ecosystems (Gannon and Stemberger, 1978; Jeppesen et al., 2011; 

Montagud et al., 2019). Calanoids are more adapted to oligotrophic conditions while 

cyclopoids and cladocerans are usually more abundant with increasing eutrophication 

(Adamczuk et al., 2015). That statement was confirmed by similar observations in 

the study area, the significantly decreased ratio of calanoid copepods (represented 

only by Diaptomus minutus) to cladocerans and cycloids copepods indicated the 

eutrophication process. 

 

CONCLUSION 

 

This study represented a comprehensive investigation of the 

mesozooplankton community of this poorly studied area in the Nile River. The main 

factor influencing the abundance and distribution of the mesozooplankton 

assemblages was the water temperature. The low species richness and density 
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obtained at stations II and VI that are directly exposed to the discharge of heated 

waters. Lastly, but not less important, the present work identified that the studying of 

the mesozooplankton role in aquatic habitat could be better with relatively coarser 

nets, enabling us to avoid many factors that could affect sampling efficiency such as 

avoidance, escape and clogging. 
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