Evaluation of Calcium and Phosphorus content in Scallop Shells (Placuna placenta) and Blood Cockle Shells (Anadara granosa) from Banyuasin Waters, South Sumatra

Rozirwan1,*, Salsyabilah Ramadani1, Wike Ayu Eka Putri1, Fauziyah1, Nadila Nur Khotimah2, Redho Yoga Nugroho2

1Department of Marine Science, Faculty of Mathematics and Natural Science, Sriwijaya University, Jalan Palembang Prabumulih KM 32, Indralaya, South Sumatera 30862, Indonesia
2Environmental Management Study Program, Graduate Program, Sriwijaya University, Jalan Padang Selasa 524, Palembang, South Sumatera 30139, Indonesia

*Corresponding Author: rozirwan@unsri.ac.id

ARTICLE INFO
Article History:
Received: July 15, 2022
Accepted: May 17, 2023
Online: June 30, 2023

Keywords:
Anadara granosa, Bivalvia, Calcium, Phosphorus, Placuna placenta

ABSTRACT
Bivalvia is a class in the phylum Mollusca, including blood cockle shell (Anadara granosa) and scallop shell (Placuna placenta). Both species have become food commodities that are consumed leaving their shells as unused waste. Based on this, research that examines other benefits of shell waste is urgently needed so that shell waste can be optimally explored. In this study, the samples were obtained from the Banyuasin water, South Sumatra in July 2021. The samples were classified into three size categories: A. granosa A (> 40 g), B (20-30 g) and C (< 20 g), while P. placenta was differentiated into A (> 13 g), B (9-12 g) and C (< 9 g). For the quantitative analysis of the calcium, atomic absorption spectroscopy was used; whereas for phosphorus, UV-Vis spectrophotometry was utilized. The ANOVA, the least significant difference test and the independent sample T-Test were analyzed for statistical analysis. Based on the results, the calcium content in the P. placenta was 41.13%, 38.75%, 35.81%, and phosphorus was 0.00054%, 0.00043%, 0.00014%. The A. granosa contained calcium with percentages of 45.74, 42.17 and 37.11, while phosphorus recorded values of 0.00049%, 0.00035% and 0.00001%. The ANOVA showed significant differences between sample categories in terms of calcium and phosphorus content (P<0.05). LSD results showed that each category differed significantly. The independent sample T-Test for the calcium of A. granosa and P. placenta with a Sig-2 tailed value of 0.007 resulted in a significant average difference, while the phosphorus content with a Sig-2 tailed value of 0.544 indicated no significant average difference. Based on this study, both types of shell minerals should be used as an alternative source of calcium and phosphorus.

INTRODUCTION
The Banyuasin Coast is the center of fishing ground for shellfish such as shrimps, crabs, squids, cuttlefish and bivalvia in South Sumatra (Rozirwan et al., 2019, 2022a, b; Almaniar et al., 2021). The location is known to be very fertile with the presence of...
phytoplankton and other organic nutrients, which play a role in providing food source for the shellfish (Rozirwan et al., 2021, 2022d; Saputra et al., 2021). The bivalvia can be found on soft or rigid substrates (Goelz et al., 2020; Rozirwan et al. 2022c; Rozirwan et al., 2023). Indonesian society has not fully utilized the potential of all bivalvia, usually eating only the meat, while the shells are discarded and become waste in the environment (Mediarman et al., 2021). Bivalvia shell contains a high potential of 98% calcium carbonate, while shrimp shells consist of 75% calcium carbonate of the total weight per individual, which can be used optimally (Asmawati et al., 2018). According to Jeon and Yeom (2009), many home and fishing industries in the coastal throw away shells of various types of shellfish, being not used as raw material for their industry.

The high amount of untreated shell waste leaves an unpleasant odor and visual disturbance to the surroundings (Zain et al., 2022). The utilization of shell waste is an interested alternative because it not only reduces the problems associated with fishery waste but also processes fishery waste into value-added products (Bhattacharjee et al., 2019), one of them is utilizing the mineral content contained in the shell. The shell comprises macro minerals such as calcium carbonate, phosphorus, magnesium and others such as carbon (32.73%), Al₂O₃ (14.13%), CuO (9.22%), CaO (34.68%), ZnO (5.08%) and ZrO₂ (3.03%) and MoO₂ (1.13%) (Mititelu et al., 2021; District, 2022). The mineral content of shells could be used as raw materials in producing value-added compounds, one of which is for food, biomedical, medicines and health supplements (Tertiary et al., 2018).

Bivalvia shell have the highest mineral content in terms of calcium and phosphorus. According to the perceptive of Ferraz et al. (2019), about 60% of the total mass of bivalvia is the shell, and calcium carbonate can reach 95%. Phosphorus is a mineral that is as important as calcium (Karnkowska, 2005). Phosphorus is an essential element for all life, being a structural and functional component of all organisms in bone, cartilage and the exoskeleton (Nystrand et al., 2016). Phosphorus in bivalvia shells is in the form of calcium phosphate (John, 2016). Calcium phosphate is an essential material for ion exchangers, adsorbents, etc...

The waste of blood cockle shells and scallop shells has the potential to be used to make calcium and phosphorus powder. It should be known that the shell powder have a reasonably good taste for food and various benefits for the treatment of osteopenia. The calcium content in A. granosa shell can be considered high compared to P. placenta shell. A. granosa shell contains 98% (Awang-Hazmi et al., 2007). This is supported by the A. granosa shell having high calcium ranging from 98%. P. placenta shells are a type of bivalvia that can grow up to 16cm and can be found in waters between 0.5 & 100m. Bivalvia shells have potential added value since the shells contain high levels of minerals, carbohydrates and vitamins. The calcium content in the shell is 98- 99%. (Aydin & Kalemtas, 2021). Calcium content is classified as good, considering the minerals are
almost the same as those needed for bone and teeth preparation (Suryaputra et al., 2013).

A comparative study of the calcium and phosphorus content of the samples; namely, *P. placenta* shell and *A. granosa* shell, needs to be carried out to analyze the potential benefits of the powder as a substitutional raw material in the future. The relatively high potential of mineral content in bivalvia shells will be followed by an increase in the amount of processing and utilization of shell waste. Based on this, it is necessary to carry out further research related to the high mineral content in bivalvia shells to be provided in the food and health industries.

MATERIALS AND METHODS

1. **Sample description**

The samples were obtained from Sungsang Village, South Sumatera previously collected from the Banyuasin waters. Samples were identified based on morphological characteristics, as seen in Fig. (1) according to the identification book (Carpenter & Niem, 2001).

![Fig. 1. Top morphological view of bivalvia shell, (a) *P. placenta* shell (b) *A. granosa* shell](image)

P. placenta shell lives at the bottom of the water with a sandy to a muddy substrate. This species eats by filtering out tiny particles. *P. placenta* shell was primarily found in the tropics area (Li and Ortiz, 2013). The *A. granosa* shell is white covered with periostracum with a yellow to blackish brown color; it is transparent, round, and brownish white (Yaqin & Fachruddin, 2018). *P. placenta* shell has a flat, thin shape with a width of up to 8cm. The outer surface of shell is smooth and slippery, while on the inside, there are radial serrations along the edge of the shell (Li & Ortiz, 2013).

Identification of shells referred to in the book of FAO entitled “The Living Marine Resources of Western Central Pacific” (Carpenter & Niem, 2001). The sample of
shellfish with as much as 1,000g was then grouped into three categories based on size. Each category contained three individuals, so there were nine individuals for each type of shellfish. The size categories in this study were *P. placenta* shell A (> 40 g), B (20-30 g), and C (< 20 g), and *A. granosa* shell A (> 13 g), B (9-12 g) and C (< 9 g).

2. Sample preparation

The categorized shellfish samples were separated from their organs, feces and shells. The following process was boiling the clam shells, which aimed to release the remnants of meat still attached to the shell. The clam body was separated from the shell for 15 minutes at the required temperature of less than 100°C. For the process of hydrolysis, samples were put with 1 N NaOH solution on a hotplate at 50°C for 3- 4h ([Suryawanshi et al., 2019](#)) to remove organic matter in the clam shells. Shell powder was dried in an oven for 6– 8h at a temperature of 60°C. The sample was placed in aluminum foil, and then the drying process was carried out in an oven at 121°C for 1- 2h, after which the sample was mashed to obtain shell powder.

3. Sample destruction

Destruction of clam shells for testing calcium content used the wet destruction method with 1g of shell powder sample, and then 5mL of HNO₃ was added and left to stand for 1- 2h. Furthermore, the outcome was put on a hot plate stirrer for 4h at a low temperature and deposited for one night. Then, 0.4 mL of H₂SO₄ was added and stirred again for one hour. A mixture of 2- 3 drops of HClO₄: HNO₃ in a ratio of (2: 1) was marked by a light yellow color change. The sample was transferred and added to 2mL of distilled water and 0.6mL of HCl. The sample was filtered for 15 minutes using Whatman No. 42 filter paper in a 100mL volumetric flask. The digested samples were analyzed by an atomic absorbance spectrophotometer (AAS) at a wavelength of 422.7nm with the Shimadzu AA-7000 series ([Untailawan & Wijaya, 2021](#)).

Destruction of shells for calcium content analysis used P Bray 1 destruction, where the sample was weighed as much as 2g and put into an Erlenmeyer. 1 N ammonium fluoride solution was prepared by dissolving 3.7g of NH₄F with H₂O in 100mL, then 5 N HCL solution was prepared by dissolving 20.2mL of HCl and H₂O into 500mL. Bray 1 solution dissolved 30mL of 1 N NH₄F solution, and 5mL of 5 N HCl was added to H₂O. Furthermore, a solution of 5 N sulfuric acids was prepared with 140mL of concentrated H₂SO₄ BD 1.84 kg/L and H₂O until the volume reached 1000mL. 12 g (NH₄)6Mo7O24.4H₂O plus 250 mL H₂O. After that, 1.298 g KsboC₆H₄O₆ was added to 100mL of H₂O. For the preparation of phosphate reagent, all the steps were mixed with H₂O to a volume of 2L, adding 1g of ascorbic acid to 200mL ([Friedlein et al., 2019](#)), UV-Vis Spectrophotometer wavelength 380 – 780 with the 752AP model was used to analyze the samples.
4. Statistical analysis

4.1 determination of yield value data

The clam shell samples were then calculated to compare the clamshell powder with the intact shells. The result value was calculated based on the following formula of Indriani and Wardhani (2022):

\[\text{Yield value} = \frac{W_t}{W_0} \times 100\% \]

Information:
- \(W_t \) = The final weight of clam shell powder (g)
- \(W_0 \) = The initial weight of the clam shell (g)

4.2 Determination of calcium and phosphorus content

The calcium content was measured by atomic absorption spectrophotometry (AAS), which was then calculated based on the following formula (Hasibuan et al., 2019):

\[\text{Concentration mg/kg} = \frac{C \times V}{W} \times F_p \]

Information:
- \(C \) = Sample concentration (mg.L\(^{-1}\))
- \(V \) = Sample volume (L)
- \(F_p \) = Dilution factor
- \(W \) = Weight sample (kg)

Calculation of the phosphorus content in the previous shellfish sample was performed in ppm units using the conversion in % form with the following formula (Morris et al., 2019):

\[\text{P2O5 content} = \text{curve} \times \frac{\text{extract (ml) sample (g)}}{\frac{142}{190} \times Abs} \]

Information:
- \(F_p \) = Dilution factor
- \(\frac{142}{190} \) = PO\(_4\) to P\(_2\)O form conversion factor
- \(Abs \) = Absorbance reading

The statistical data analysis used in this study was one-way ANOVA. The one-way ANOVA was analyzed using XLSTAT 2022 (Fitria et al., 2023). If the results obtained were significantly different, it would be continued by the least significant difference test. The independent sample t-test of the IBM SPSS v.26 programs was used in this study (Hasibuan et al., 2019).
RESULTS

1. Yield value

The yield value is one of the essential parameters to determine the economic value and effectiveness of a process that is carried out. The *P. placenta* and *A. granosa* shell yield data in this study are presented in Fig. (2).

![Fig. 2. Average of yield value](image)

Based on Fig. (2), for the yield value obtained in category A, *A. granosa* shell was around 95.68 %, category B was 86.82 %, and category C was around 82.97 %. In addition, the yield of *P. placenta* shell with the average percentage of yield value for category A was around 91.08 %, category B was 89.53 %, and category C was 88.26 %.

2. Calcium content of *P. placenta* shell and *A. granosa* shell

Analysis of the calcium content of the two samples was obtained from atomic absorption spectrophotometry (AAS) readings with the flame method. The average calcium content in *A. granosa* shell and *P. placenta* shell with categories A, B, and C in this study is presented in Fig. (3).

![Fig. 3. The calcium content of clam shell](image)
The study's results on the calcium content of *P. placenta* shell based on Fig. 3 showed that sample category A was around 41.13%, category B was around 38.75%, and category C was 35.81%. While, the *A. granosa* shell in category A was 45.74%, category B was 42.17%, and category C was around 37.11%. Overall, it was found that the highest calcium content was recorded in category A for the two types of shellfish.

3. Phosphorus content of *P. placenta* shell and *A. granosa* shell

The analysis of phosphorus content for two shellfish samples was obtained from the readings of UV-Vis spectrophotometry. Phosphorus content in *P. placenta* shell and *A. granosa* shell with categories A, B, and C can be seen in Fig. (4).

![Phosphorus content of clam shell](image)

Based on Fig. (4), the phosphorus content of *P. placenta* shell in sample A reached 0.00054%, category B was 0.00043%, and category C was 0.00014%. Meanwhile, the phosphorus content of *A. granosa* shell in category A was 0.00049%, category B was 0.0035%, and category C was 0.00011%. Based on the overall results obtained, the phosphorus content in this study was classified as very low, ranging from 0.00014-0.00054%.

4. Comparison of calcium and phosphorus content

A comparison of calcium and phosphorus in *P. placenta* shell and *A. granosa* shell was tested to determine the significant difference in the size of the shells on the calcium and phosphorus content produced. The ANOVA test results are presented in Table (1). The results of the ANOVA test showed a significant effect between the size of the *P. placenta* shell with calcium and phosphorus content. The LSD test was conducted to find of the differences in each category of samples, as presented in Table (2).

Table 1. ANOVA test of calcium and phosphorus content of *P. placenta* shell and *A. granosa* shell

<table>
<thead>
<tr>
<th>Shell type</th>
<th>Test parameters</th>
<th>F Count</th>
<th>F Table 5%</th>
<th>F Table 1%</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. placenta</td>
<td>Calcium</td>
<td>18.01524</td>
<td>5.14</td>
<td>10.92</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Phosphorus</td>
<td>253.021</td>
<td>5.14</td>
<td>10.92</td>
<td>**</td>
</tr>
<tr>
<td>A. granosa</td>
<td>Calcium</td>
<td>24.03264</td>
<td>5.14</td>
<td>10.92</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Phosphorus</td>
<td>1273.88</td>
<td>5.14</td>
<td>10.92</td>
<td>**</td>
</tr>
</tbody>
</table>

Note: *Real effect, ** Influence is very real.

Table 2. LSD test results of calcium and phosphorus content of *P. placenta* shells and *A. granosa* shell

<table>
<thead>
<tr>
<th>Category</th>
<th>P. placenta</th>
<th>A. granosa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calcium</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>A</td>
<td>41.13 ± 1.86</td>
<td>0.00049 ± 0</td>
</tr>
<tr>
<td>B</td>
<td>38.75 ± 0.06</td>
<td>0.00035 ± 0</td>
</tr>
<tr>
<td>C</td>
<td>35.81 ± 1.66</td>
<td>0.00011 ± 0</td>
</tr>
</tbody>
</table>

The results of the LSD test in Table (2) show the average value in each category of *P. placenta* shell samples and *A. granosa* shell. Significant differences were detected between categories A, B and C, as indicated by different letter notations. This could be caused by the size of the sample affecting the amount of calcium and phosphorus content. The group A category produced a high calcium content in *P. placenta* shell ranging from 41.13% and *A. granosa* shell at 45.74%. In comparison, phosphorus was classified as low in *P. placenta* shell at 0.00049% and *A. granosa* shell at 0.000054%.

Based on the independent sample T-Test, *P > 0.05* was obtained in both cases, and the data were distributed in a distinctive and homogeneous manner. Significant differences in calcium and phosphorus content in the two samples are presented in Table (3).

Table 3. Independent sample t-test of calcium and phosphorus content average of *P. Placenta* shell and *A. granosa* shell

<table>
<thead>
<tr>
<th>No.</th>
<th>Variances</th>
<th>Sig. (2-tailed)</th>
<th>Mean difference</th>
<th>Std. error difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Calcium</td>
<td>Equal assumed</td>
<td>0.007</td>
<td>-3.11111</td>
</tr>
<tr>
<td>2</td>
<td>Phosphorus</td>
<td>Equal assumed</td>
<td>0.544</td>
<td>-0.0005111</td>
</tr>
</tbody>
</table>
Table (3) shows no significant differences in average calcium content between *P. placenta* shell and *A. granosa* shell. This was evidenced with the sig (2-tailed) value; it was obtained at 0.007. The value was smaller than 0.05. In addition, this could be shown from the mean difference -3.11111% in the calcium content of the two shell samples.

DISCUSSION

A. granosa samples were classified as filter feeders, living on sandy mud substrates at depths of 10 to 20m (*Theerachat et al., 2020*). The *A. granosa* shells are round, thick and jagged based on morphological observations. *A. granosa* shell can grow reaching a length of 35mm in less than 2 years (*Harith et al., 2016*). According to *Hendra et al. (2020)*, *A. granosa* shell has a white color covered with periostracum with a yellow to blackish brown color. The growth lines on the outer shell represent annual and seasonal patterns (*Mirzaei et al., 2014*). The age of the shell can be seen from the hardness and ring shape (*Richardson, 1987*).

Based on the results obtained, the yield value of *P. placenta* shell and *A. granosa* shell in this study was relatively high compared to previous studies, such as freshwater clam shells at a length of 13–14 centimeters (56.25%) (*Rahayu et al., 2015*). The yield value of *A. pleuronectes* shells obtained in the Brebes area was 62.30% (*Agustini et al., 2011*). The difference in results obtained for each type and size of the shell is assumed to affect the amount of calcium content; the higher the calcium, the heavier, longer and thicker the shell. Biominerals such as calcium carbonate were found in the shells of mollusks (*Huang et al., 2018*). These shells are made of crystals of calcite and aragonite (*Ramanath et al., 2018*). The shells have high potential sources of minerals such as calcium (*Fitriyana et al., 2019*). Biologically, the mineral content of mollusca shells is influenced by environmental factors, such as temperature, pH, and food availability (*Grenier et al., 2020*). The high calcium carbonate content in bivalvia shells can be seen in the hardness (*Akbar et al., 2019*). The more complicated the shell, the higher the calcium carbonate content. The length of the shells, which ranges from 7-8cm requires a lot of minerals in the water for their growth period, thus the calcium content in the shells is high (*Rahayu et al., 2015*).

The phosphorus content in the shells produced by each category is different. In addition, the sample size of each shell affects dramatically the amount of mineral content contained in shellfish, such as calcium and phosphorus. The phosphorus content in the *P. placenta* shell and *A. granosa* shell is higher than calcium content. This is supported by other studies on freshwater clam shells of 0.081% phosphorus (*Nurjanah & Wardhani, 2010*). The presence of mineral elements in water such as phosphorus is very important for shellfish (*Khan et al., 2020*). Phosphorus in the bivalvia shell is phosphorus in the form of phosphate with a low content of about 1-2 %. The phosphorus content in the shells is calcium phosphate (*Kalesaran et al., 2018*). Shell contains 12 macro and microelements, such as calcium (Ca), carbon (C), magnesium (Mg), sodium (Na),
phosphorus (P), potassium (K), ferrum (Fe), copper (Cu), nickel (Ni), zinc (Zn), boron (B) and silica (Si) (Awang-Hazmi et al., 2007). Based on the measurement results of the phosphorus content of the two samples, the phosphorus value was smaller than the calcium content in the shells.

The difference between calcium and phosphorus content in each size category in the two types of shell was based on the ANOVA (Park, 2009). Based on the data obtained in testing, the data distribution is expected and homogeneous. These data mean a very substantial difference between calcium and phosphorus content in P. placenta shell and A. granosa shell with different weight categories.

Based on the negative mean difference in calcium content results, the average calcium content in A. granosa shell has a higher value than in P. placenta shell. The more negative the value, the higher the calcium content of the P. placenta shell. If the mean difference is positive, then the calcium content of P. placenta shell is higher than that of A. granosa shell.

The results of phosphorus content showed that there was no significant difference in the average phosphorus content between P. placenta shell and A. granosa shell. It was known from the value (sig 2-tailed) that the value obtained was 0.544, which was greater than the value of 0.05. There was no significant difference in the average phosphorus content of the two samples. The difference in the average of each of the contents in the two samples was detected. The results of calcium analysis were qualitative data, where the percentage of the resulting calcium content value is not absolute. This is because the analysis carried out is an analysis that only describes the composition of bivalvia shells based on estimates (Hermita et al., 2017).

The shell is the largest constituent of the shell composition with a coverage of 60–76% of the total weight. The size of the shell depends on the type and size of the body itself and is influenced by the living habitat of the bivalvia. Shell is a mineral source material coming usually from marine animals in the form of shells that have been milled and have significant carbonates. Bivalvia shell calcium is around 38%. The protein content of shellfish flour is 2–3%, and the calcium content is 30–40%. The clamshell contains several layers made of calcium carbonate that was formed by the deposition of crystals of this salt on the organic matrix of the protein conchiolin (Khaing et al., 2019).

Calcium and phosphorus were two elements related to each other in shells. Based on the study's results, it was demonstrated that, both P. placenta shell and A. granosa shell could be used as an alternative source of calcium and phosphorus, which has a high enough calcium content for plastics, building materials, and etc. (Silva et al., 2019). Calcium carbonate in shells is used in polymer applications (Hamester et al., 2012). Besides reducing wastewater pollution, the rest of the shells can help the economy of the surrounding community.
CONCLUSION

A. granosa shell shells have an average calcium and phosphorus content greater than _P. placenta_ shell. This is due to differences in habitat and the quality of the shells used, but both can be used as natural sources of calcium and phosphorus. Comparing the calcium content of _P. placenta_ shell and _A. granosa_ shell, a significant average difference was determined. Meanwhile, the phosphorus content of the two samples did not have a significant average difference.

ACKNOWLEDGEMENT

The research of this article was funded by DIPA of Public Service Agency of Universitas Sriwijaya 2023, Nomor SP DIPA-023.17.2.677515/2023 on the 30th of November 2022. In accordance with the Rector’s Decree Number: 0188/UN9.3.1/SK/2023 on the 18th of April 2023.

REFERENCES

Grenier, C.; Román, R.; Duarte, C.; Navarro, J.M.; Rodriguez-Navarro, A.B. and

