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INTRODUCTION  

 

Aquaculture is considered as one of the fastest-growing agricultural 

activities, and it is distributed in many countries (FAO, 2020). The feed 

ingredients cost have been duplicated many times; thus, there is a need to 

decrease the cost and keep the quality. Therefore, natural additives have become 
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To assess the impact of Chlorella vulgaris on the performance of the 

Nile tilapia, fish specimens with body weight 53.26 g ± 0.64 were fed on diets 

supplemented with 0, 5, 10, 15 and 20g of C. vulgaris for 60 days at a daily 

rate of 3% of body weight. The growth performance, feed conversion ratio, 

final weight, weight gain and daily weight gain were enhanced with 

supplemented levels up to 15g of C. vulgaris; while higher addition 

insignificantly differed with the other groups. Supplemented fish were well-

nourished, and their health status was improved. Blood parameters {RBCs, 

WBCs, hemoglobin (Hg) and hematocrit (PCV)} were significantly higher 

than the control. Serum total protein and liver enzymes were significantly 

increased in supplemented fish; however, the levels of the liver enzymes 

revealed no adverse impact on liver health. C. vulgaris could stimulate the 

activities of antioxidants (catalase and total antioxidant capacity) and pro-

inflammatory cytokines (interleukin-1β and tumor necrosis factor-α), 

improving the immune status. Fish that received C. vulgaris- supplemented 

diets had a higher survival rate against Aeromonas hydrophila infection, while 

the relative protection level (RPL) of florfenicol treatment was significantly 

improved compared to the control group.  It was obvious from the obtained 

results that the Nile tilapia could be fed up to 15g of C. vulgaris /kg fish feed 

without compromising the health status; it also enhanced the response of fish 

to florfenicol treatment raising the relative protection level to 42.86%. 
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a well-choice to improve the growth performance and fish health while feed 

preserve its quality (NRC, 1993; Sherif et al., 2022a).  

Infectious diseases result in high losses in the aquatic sector counted by 

billions of dollars threatening world economy and aquaculture industry, 

Aeromonas hydrophila is one the ubiquitous and virulent bacteria in freshwater 

fishes worldwide (Hossain et al., 2014; Peterman & Posadas, 2019; 

Abdelsalam et al., 2022; Sherif & AbuLeila, 2022; Sherif & Kassab, 2023).  

Antibiotics are still the keystone in bacterial treatment in aquaculture, 

raising the probability of emerging the multidrug-resistant bacteria, especially 

with the haphazard uses by fish farmers (Patil et al., 2016; Stratev & Odeyemi, 

2016; Sherif et al., 2021a). Consequently, the European Union has outlawed 

their applications in fish production (Heuer et al., 2009). To face such hazards 

and minimize antibiotics uses, new approaches were developed, non-chemical 

compounds such as acidifiers (organic acid salts), essential oils in addition to 

probiotics have been used to improve growth performance and health status at a 

low cost (Koh, 2008; Hoseinifar et al., 2016; Hoelzer et al., 2018; Sherif et 

al., 2022a, b). 

Microalgae are single-cell organisms presented in the base of the food 

chain of the aquatic animals as a protein source (50%–70%); for fish, they are 

efficiently consumed and could replace fish meal and soybean protein in aqua-

feeds (Han et al., 2019; Zhang et al., 2019; Sherif et al., 2022c). They have a 

growth promoting effect (Kousoulaki et al., 2016). Many studies reported that 

incorporation of C. vulgaris is safe and it promotes the growth of some fishes 

such as rainbow trout (Oncorhynchus mykiss) (Gouveia et al., 1998), gilthead 

seabream (Sparus aurata) (Gouveia et al., 2002), sterlet (Acipenser ruthenus) 

(Sergejevova & Masojidek, 2012), the Nile tilapia (Oreochromis niloticus) 

(Teuling et al., 2017) and zebrafish (Danio rerio) (Carneiro et al., 2020).  

The C. vulgaris has natural bioactive ingredients for growth factors such 

as available protein, vitamins, minerals, fiber, antioxidants, and feeding 

attractants as well as unknown growth promoting factors (Nakagawa et al., 

2000). The C. vulgaris could enhance the antioxidant status of fish through their 

contents of phytochemicals having antioxidant activities, including carotenoids, 

chlorophylls, tocopherols, ubiquinone, flavonoids and polyphenols (Coulombier 

et al., 2021). Moreover, C. vulgais possesses antimicrobial activity (Natrah et 

al., 2014) that could mitigate chemical medication in aquaculture.  

The goal of this study was to assess the effect of dietary C. vulgaris on the 

Nile tilapia via determining the growth performance, hematological and serum 

biochemical markers as well as resistance against bacterial infection. 
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MATERIALS AND METHODS  

 

1. Fish collection and acclimatization 

Apparently healthy (showed no clinical symptoms) fingerlings of the Nile tilapia 

Oreochromis niloticus were obtained from a private fish farm located at the village of 

Tolompate 7 in Kafrelsheikh Governorate. Fish count was 450 with an average body 

weight of 53.26 ± 0.64g. Fish specimens were transported alive (2 h) to the wet-

laboratory of Animal Health Research Institute (AHRI) according to methods of Sherif et 

al. (2022d) and Eldessouki et al. (2023). Fish were stocked and acclimatized in the 

fiberglass tank (3 m
3
 volume) for two weeks while feeding on a basal diet provided 

without any feed additives. Fish were randomly distributed into 15 glass aquaria 

(90×60×40 cm), filled with dechlorinated tap water (30 fish/aquarium). During the 

acclimatization and experimental period, water temperature and dissolved oxygen levels 

were maintained at 25±1 °C and 5.9±0.5, respectively. To maintain constant and suitable 

water parameters, the water at the bottom of aquaria was daily drained, and 30% of 

aquaria water was replaced with clean dechlorinated water. 

2. The experimental design 

The experimental Nile tilapia specimens were distributed into five groups G1–5 in 

triplicate (Table 1), fish feed was formulated and given twice a day (at 8:00 a.m. and 5:00 

p.m.) at a rate of 3% b.w. The amount of food was modified every week according to the 

National Research Council (NRC, 2011). After 60 days, blood and serum samples were 

collected, and fish were challenged against A. hydrophila then treated with antibiotic of 

choice. 

Table 1. The distribution of fish in the experimental groups 

Group Supplementation C. vulgaris No. of fish Time  

G 1 Control (basal diet) 30/replicate 8 weeks 

G 2 5 g/kg of fish feed 30/replicate 8 weeks 

G 3 10 g/kg of fish feed 30/replicate 8 weeks 

G 4 15 g/kg of fish feed 30/replicate 8 weeks 

G 5 20 g/kg of fish feed 30/replicate 8 weeks 

In Table (1), the algal C. vulgaris was added to the diet by mixing it with gelatin 

(Canal, Egypt) at a concentration of 5% w/w. A dried powder of C. vulgaris was obtained 

from the Institute of National Research Center, Cairo, Egypt. The ingredients (Table 2) 

used in fish feed formulation were calculated and weighed then thoroughly mixed, 
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moistened with warm water (400 ml/kg) and then cold pressed and extruded to produce 2 

mm pellets, which were dried using an air convection oven at 45°C. After drying and 

cooling, the formulated feeds were chemically analyzed (Table 2) before storing in 

airtight bags.  

Table 2. Fish feed ingredients and chemical analysis  

Ingredient % Chemical composition % 

Corn  36.65 Moisture  10.35 

Soya (44%) 37 CP 31.1 

Fish meal 9 Ether extract 3.57 

Wheat bran 1.5 Ash 6.06 

Corn gluten 11 Crude fiber 4.22 

Soya oil 4 NFE
3
 44.85 

Carboxy methyl 

cellulose   

0.2 Calcium/phosphorus 0.74/0.6 

Salt  0.2 DE Kcal/kg 3200.5 

DL. Methionine  0.15   

Mineral premix
1
 0.15   

Vitamin premix
2
 0.15   

1. Mineral premix: each one kg contain Manganese 60g, Copper 4 g, Zinc 50g, Iodine 1g, iron 80g, Cobalt 

0.1g, Selenium 0.1g, Calcium carbonate (CaCO3) carrier to 1000g.  

2. Vitamin premix: each one Kg contains vitamin A 12000000 IU, vitamin D3 2200000 IU, vitamin E 10 g, 

vitamin K3 2 g, vitamin B1 1 g, vitamin B2 5 g, vitamin B6 1.5 g, vitamin B12 0.01 g, vitamin C 250 g, 

Niacin 30 g, Biotin 0.050 g, Folic acid 1 g and Pantothenic acid 10 g and carrier to 1000 g.  

3. NFE= Nitrogen free extract. 

4. DE Kcal/kg = Digestible energy (DE) was calculated using formula based on chemical composition of 

feed stuffs nutrients according to NRC (2011). 

3. Growth performance 

 Fish samples were weekly counted and weighed to assess growth performance, 

weight gain (WG) and feed conversion ratio (FCR) that were calculated using the 

following formulas: 

Weight gain (WG) = final body weight (g) – initial body weight (g) 

Feed conversion ratio (FCR) = feed intake (g) / weight gain (g) 

4. Hematological and serum biochemical parameters 

After 60 days, five fish were randomly collected from each aquarium to drain blood 

samples, which were divided into two portions: 

 The first blood portions (whole blood samples) were collected and mixed with the 

anticoagulant 10% ethylene diamine tetra acetate (EDTA); they were used to determine 
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the red blood counts (RBCs), total count of white blood cells (WBCs) hemoglobin (Hb), 

and hematocrit (PCV) following the standard methods of Rawling et al. (2009).  

The second blood portions )serum samples) were allowed to coagulate at 4°C and 

centrifuged at 3000 rpm for 10 minutes to collect serum, which was preserved at −20°C. 

The levels of serum aspartate aminotransferase (AST) and alanine aminotransferase 

(ALT) were determined according to the method of Reitman and Frankel (1957). Serum 

total protein (TP) and albumin (ALB) were measured following the methods of Henry 

(1964) and Wotton and Freeman (1982), respectively. However, according to Coles 

(1974), globulin (GLO) was measured by subtracting albumin from total protein. 

5. Antioxidant enzyme activity and cytokines in the experimental fish 

After 60 days, for fish fed on C. vulgaris-diets, the total antioxidant capacity TAC 

and catalase CAT (EC 1.11.1.6) activities were measured in the hepatic tissues using 

ELISA. Serum interleukin 1β (IL-1 β), interleukin 10 (IL-10) and tumor necrosis factor 

TNF-α were measured by ELISA using a solid phase sandwich ELISA test kit obtained 

from My BioSource Co., San Diego, California, USA. The procedures were performed 

according to the manufacturer's protocol.  

7. Challenge test 

After 60 days, twenty fish from each aquarium were intraperitoneally injected with 

0.1ml pathogenic A. hydrophila according to the method of Schaperclaus et al. (1992). 

In addition, pure saline solution (0.65 %) was injected in a similar way into 5 fish as 

negative controls (Boijink et al., 2001). Bacterial strain A. hydrophila was previously 

isolated and identified as AHRAS2, the accession numbers in GenBank were under 

MW092007 and the LD50 of 2.4× 10
5
 CFU/ml, in addition it was highly susceptible to 

florfenicol (Sherif & AbuLeila, 2022). After 3 days of bacterial injection, only ten fish 

were treated with florfenicol 10mg/ kg b.w. for ten days in separate aquarium. For two 

weeks, infected fish were observed for clinical symptoms, postmortem lesions and daily 

mortalities. Pathogenic bacterial strains were re-isolated from the liver, kidney and the 

gut of deceased fish. The injected fish were observed for 14 days to record the mortality 

rate (MR) as follows:  

MR % = no. of deaths in a specific period x 100 / total population during that period 

Meanwhile, the relative protection level (RPL) was verified among the challenged fish 

according to Ruangroupan et al. (1986) as follows: 

RPL (%) = {1–(% mortality in treated group/% mortality in the control group)}*×100 

8. Statistical analysis 

After 60 days of feeding trial, the obtained data were analyzed to assess the impacts 

of C. vulgaris supplementation on the performance of the Nile tilapia. To analyze the 

significance of differences, the analysis of variance (ANOVA) was determined using 
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Duncan’s test (Duncan, 1955) among the means of the different treatment groups at a 

significance level of 0.05 using SPSS (SPSS, 2004). 

9. Biosafety considerations 

This study followed the biosafety measures outlined on the pathogen safety data 

sheets entitled infectious substances A. hydrophila, Pathogen Regulation Directorate 

(Public Health Agency of Canada, 2010).  

RESULTS  

 

1. Growth performance 

In Table (3), the experimental Nile tilapia specimens received dietary-C. vulgaris at 

degraded levels of 0, 5, 10, 15 and 20g/ kg fish feed. Growth parameters were 

significantly higher for FW, WG and DWG (95.7 g, 45.4 g, and 0.79), respectively, in 

group (G4), which was fed on 15g of C. vulgaris-diets, compared to the control and the 

other groups. No further improvements were recorded in growth performance with higher 

level of C. vulgaris (G5). The value of FCR was gradually decreased with increasing the 

supplementation level from G2 up to G4, ranging between 2.37 and 1.18 vulgaris, 

whereas G5 was 1.35.  

Table 3. The growth performance parameters of different experimental groups 

Group 

Growth performance parameters 

IW (g) FW (g) FI (g) WG (g) DWG (g) FCR 

G1 53
A
±0.58 78.2

C
±1.1 69.56

AB
±4.42 25.2

C
±0.7 0.42

C
±0.01 2.77

A
±0.2 

G2 54.7
A
±2.03 87.07

B
±1.38 76.9

A
±4.58 32.4

B
±1.25 0.54

B
±0.02 2.37

A
±0.05 

G3 54.3
A
±1.2 90.73

AB
±1.34 58.8

BC
±6.6 36.4

B
±0.53 0.61

B
±0.01 1.62

B
±0.18 

G4 50.3
A
±0.6 95.7

A
±2.03 53.5

CD
±2.08 45.4

A
±1.78 0.76

A
±0.03 1.18

C
±0.04 

G5 54
A
±2.6 86

B
±3.79 43.05

D
±2.7 32

B
±2.6 0.53

B
±0.04 1.35

BC
±0.03 

IW: initial weight; FW: final weight; FI: feed intake; WG: weight gain; DWG: daily weight gain; FCR: food 

conversion rate. 

2. Blood and serum analyses 

In Table (4), blood indices of RBCs, Hg, PCV and WBCs were improved with C. 

vulgaris supplementation, and G4 scored significantly higher values with 3.38×10
6
, 10.6 

g/dl, 37.6%, and 6.03×10
3
, respectively, compared to the other groups. Serum analyses 

for TP, ALB, GLO, ALT and AST showed enhanced health status after feeding on C. 

vulgaris supplemented-feed. Higher TP was recorded in G3 and G4, with values of 5.59 

and 5.48 g/dl, respectively. Additionally, GLO had the same trend, whereas no significant 
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alterations were recorded in serum ALB. Liver enzymes (ALT and AST) were slightly 

increased in all C. vulgaris- supplemented groups, compared to the control, while 

creatinine significantly raised with high supplementations levels in G4 and G5, compared 

to the other groups.  

Table 4. Blood and serum analyses of the experimental Nile tilapia 

Group 

Blood parameters Serum parameters 

RBCs 

×10
6
 

Hg 

g/dl 

PCV 

% 

WBCs 

×10
3
 

TP 

g/dl 

ALB 

g/dl 

GLO 

g/dl 

ALT 

IU/l 

AST 

IU/l 

Creat 

mg/dl 

G1 

2.73
C
 

±0.12 

8.58
C
 

±0.38 

30.39
C
 

±1.34 

4.21
E
 

±0.08 

4.78
C
 

±0.07 

2.56
A
 

±0.02 

2.21
C
 

±0.06 

23
B
 

±0.6 

31.97
D
 

±1.3 

0.94
B
 

±0.01 

G2 

3.2
AB

 

0.05± 

10.02
AB

 

±0.16 

35.5
AB

 

±0.157 

4.66
D
 

±0.1 

5.23
B
 

±0.04 

2.6
A
 

±0.01 

2.63
B
 

±0.06 

26.17
A
 

±0.7 

33.63
CD

 

±0.09 

1.06
AB

 

±0.05 

G3 

3.02
B
 

±0.08 

9.49
B
 

±0.26 

33.6
B
 

±0.94 

5.68
B
 

±0.07 

5.59
A
 

±0.05 

2.56
A
 

±0.02 

3.03
A
 

±0.04 

26.7
A
 

±0.5 

34.87
C
 

±0.4 

1.02
AB

 

±0.04 

G4 

3.38
A
 

±0.04 

10.6
A
 

±0.14 

37.6
A
 

±0.5 

6.03
A
 

±0.09 

5.48
AB

 

±0.1 

2.42
A
 

±0.02 

3.05
A
 

±0.11 

27.53
A
 

±0.47 

40.73
A
 

±0.6 

1.21
A
 

±0.15 

G5 

3.03
B
 

±0.04 

9.5
B
 

±0.11 

33.64
B
 

±0.4 

5.24
C
 

±0.09 

5.21
B
 

±0.12 

2.53
A
 

±0.04 

2.68
B
 

±0.08 

27.5
A
 

±0.6 

38.23
B
 

±0.8 

1.27
A
 

±0.06 

RBCs: red blood cells; WBCs: white blood cells; Hg: hemoglobin; PCV: packed cell volume; TP: total 

protein; ALB: albumin; GLO: globulin; ALT: alanine amino transferase; AST: aspartate transaminase; 

Creat: creatinine. 

3. Antioxidants enzymes and cytokines determination 

Hepatic antioxidant CAT and TAC levels had significantly improved with C. 

vulgaris supplementation till the 15g, while supplementation with 20g (G5) was 

insignificant for G2 and G3 (Fig. 1). The serum cytokine IL-10 was insignificantly 

different with C. vulgaris supplementation except in G4 (3.3), while IL-1β and TNF-α 

were gradually elevated till the 15g supplementation for G5 (20g/ kg fish feed 

supplementation), showing insignificant difference in G1-3 (Fig. 2).    
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Fig. 1. Antioxidant enzymes in the hepatic tissues of the experimental Nile tilapia 

 CAT: catalase; TAC: total antioxidant capacity 

 

 

Fig. 2. Serum cytokines levels of the experimental Nile tilapia 

 IL: interleukin; TNF: tumor necrosis factor 

4. Bacterial challenge and antibiotic treatment 

Fish were challenged against A. hydrophila LD50 and treated with FLO, and the 

response to treatment was measured via RPL% and bacterial re-isolation. Over all, fish 

fed on C. vulgaris -supplemented diets had significantly low MR% and FLO, exhibiting 

significantly higher RPL%, compared to the control group. The higher RLP% (42.86%) 

was achieved by fish in G3 and G4, which fed C. vulgaris at a rate of 10 and 15g/ kg of 

fish feed, respectively (Table 5). 
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Table 5. Experimental Nile tilapia challenged against A. hydrophila and treated with 

florfenicol 

Group 
Fish no. 

(Un/FLO) 

Un-treated FLO-treated 

RPL% 

Dead % Dead % 

G1 20 (10/10) 7 70 5 50 28.57 

G2 20 (10/10) 6 60 5 50 28.57 

G3 20 (10/10) 6 60 4 40 42.86 

G4 20 (10/10) 4 40 4 40 42.86 

G5 20 (10/10) 6 60 5 50 28.57 

Note: Un= untreated fish, FLO= fish treated with florfenicol, RPL%: relative protection level. 

DISCUSSION 

 

In our results, C. vulgaris-diets enhanced the growth performance of the Nile tilapia 

as they showed significant higher FW, WG and DWG for mainly those fed on 15g/ kg 

fish feed. The FCR was gradually improved with C. vulgaris addition. Similarly, Chen et 

al. (2022) reported that, upon feeding juvenile rainbow trout with a dietary C. 

sorokiniana (5%) for ninety days, FI and WG were significantly increased by 19.3% and 

17.3%, respectively. Additionally, the Nile tilapia recorded an enhanced growth 

performance when fish meal was partially exchanged with chlorella spp. at rates of 10%, 

25%, 50% and 75% (Badwy et al., 2008), and a replacement up to 1.2% in Gibel carps-

diet with Chlorella had improved the growth parameters (Xu et al., 2014). Accordingly, 

WG, DWG, and FCR were promoted in common carp fingerlings, which were fed on 7.5 

g of C. vulgaris /kg fish feed for 105 days (Abdulrahman et al., 2018); while, Abdel-

Tawwab et al. (2022) observed a dose-dependent increase in FI and WG of the Nile 

tilapia fingerlings (16.3 g b.w.) after seventy days of C. vulgaris. Meanwhile, the survival 

rate SR% was not affected by supplementation compared to the control. These 

improvements achieved by dietary C. vulgaris-supplementation could be due to high 

contents of proteins, lipids, polysaccharides, vitamins such as vitamin A, K and B-

complex vitamins (vitamin B1, B3, B2, B12 and B6), some minerals (such as Cu, Ca, 

Mn, Mg, Zn and Fe), pigments (chlorophyll a, b and carotenoids) among other bioactive 

compounds in addition to β-glucan, which could stimulate immunity and growth 

performance of fish (Mohan et al., 2019; Prabakaran et al., 2019).  

In the current findings, the supplementation of C. vulgaris was insignificantly 

different with lower supplementation levels. Moreover, the excessive supplementation of 

chlorella meal led to high dietary carbohydrate (28.85%) (crude fiber-free), which was 
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not efficiently utilized by fish (Xi et al., 2022). In addition, the high dietary starch levels 

(24 to 36%) could cause significant adverse effects on largemouth bass (Zhang et al., 

2019). 

Upon using C. vulgaris-diets supplementation, blood indices of RBCs, WBCs, Hg, 

and PCV revealed that fish were well-nourished and immune-promoted. Similarly, the 

Nile tilapia which received a dietary- C. vulgaris had significant raise in the WBCs, 

compared to the control fish (Aly et al., (2022). This finding could be due to the presence 

of lipopolysaccharide (LPS)-like molecule in the cell wall of C. vulgaris (Armstrong et 

al., 2002) in addition to the richness of the cell wall in glucans, which stimulates the 

elevation of WBCs of Cyprinus carpio (Chen et al., 2015). Whereas, no significant 

differences were detected in the blood parameters tested for the Korean rockfish 

(Sebastes schlegeli) at a level of 4% C. Vulgaris (Bai et al., 2001). Additionally, 

Abdelhamid et al. (2020) claimed that dietary C. Vulgaris did not significantly affect 

blood parameters of the Nile tilapia. These differences confirm the safety of C. vulgaris 

supplementation, and could be due to differences of addition level and experimental 

periods.  

Serum TP, ALB and GLO showed elevated values indicating that dietary-C. 

vulgaris (5-20 g/kg fish feed) could promote the immune status of the Nile tilapia and 

keep the liver healthy. Similarly, Abdel-Tawwab et al. (2022) observed that the Nile 

tilapia that received 10– 20g of C. vulgaris/ kg in their diets showed marked elevation of 

serum TP and GLO. It is well-known that the elevation of TP, ALB and GLO levels is an 

indicator for the enhancements of the immune responses (Harikrishnan et al., 2021). 

To assess the extent of liver dysfunction, some enzymes such as AST and ALT are 

considered as a reliable diagnostic tool; they are crucial metabolic enzymes playing a 

fundamental role in nitrogen metabolism, oxidation of amino acids and gluconeogenesis 

(Murray et al., 2003; Sherif et al., 2021b, c). The Nile tilapia received C. vulgaris-diets 

for eight weeks, their liver was not impacted since the liver enzymes of ALT and AST 

differed slightly, compared to the control group; no significant alteration was detected 

among the levels of supplementation. In addition, the creatinine level had the same 

pattern of the liver enzymes. These alterations resulted from feeding and metabolism that 

could be overcome by high values of vitamin C and E concentrations that were 

determined in the hepato-pancreas and muscle tissues of M. rosenbergi, which fed on 

dietary-C. vulgaris, that possesses antioxidant properties to maintain the integrity of the 

hepatic cells (Radhakrishnan et al., 2014). Furthermore, lower levels of C. vulgaris 

supplementations had antioxidant and hepatoprotective properties (Goiris et al., 2012). 

Close to our findings, Mahmoud et al. (2020) postulated that, dietary-C. vulgaris kept 

the levels of ALT and AST in the serum of the Nile tilapia. Whereas, supplementing the 

diets with C. vulgaris insignificantly affected the activities of ALT, AST and ALP, 

compared to the control diet for Cyprinus carpio (Khani et al., 2017) and the Nile tilapia 

serum (Abdel-Tawwab et al., 2022). Accordingly, the Nile tilapia fish that received a 

dietary- C. vulgaris at a rate of 5% and10% recorded an improvement in their kidney 



Chlorella vulgaris Mitigating Aeromonas hydrophila Infection 

 

737 

bioactivity against renal damage, showing renal protective property (Zahran et al., 

2020). 

Dietary-C. vulgaris showed antioxidant properties as serum antioxidant CAT and 

TAC levels had significantly improved in the Nile tilapia, regardless of the 

supplementation levels. These findings could be attributed to high pigment content, 

which includes carotenoids in C. vulgaris (Markou & Nerantzis, 2013), which could 

scavenge the generated free radicals (Gammone et al., 2015), protecting the host cells 

from oxidative damage. Similarly, microalga upregulated CAT and GPX levels in Korean 

rockfish (Sebastes schlegeli) fed diets supplemented with 0.5% chlorella powder (Bai et 

al., 2001), the Nile tilapia fed on 5% C. vulgaris (Zahran et al., 2020) and gibel carp 

(Carassius auratus gibelio) fed diets containing 0.8%–2.0% (Chen et al., 2022).  

Previous studies have proved the effectiveness of Chlorella in counteracting the oxidative 

stress for the Nile tilapia (Abdelhamid et al., 2020). 

Here, the immune related IL-1β, IL-10, and TNF-α were gradually and effectively 

elevated in serum for fish fed up to 15g C. vulgaris /kg. Accordingly, the gene expression 

of these cytokines mRNA of splenic and hepatic tissues were significantly elevated by 

feeding on dietary-C. vulgaris for the Nile tilapia. Additionally, the transcription of 

hepatic growth hormone, insulin-like growth factor 1, IL-1β and TNF-α genes were 

upregulated in fish receiving C. vulgaris at 15 – 20 g/kg diet, compared to the control fish 

(Galal et al., 2018; Mahmoud et al., 2020). On C. vulgaris-supplementation, the Nile 

tilapia had low MR%, and RPL% of FLO was significantly improved. In this regard, 

dietary- C. vulgaris has antibacterial activities against A. hydrophila in Staphylococcus 

aureus (Dineshkumar et al., 2017), M. rosenbergii post larvae (Maliwat et al., 2017) 

and A. salmonicida in juvenile rainbow trout (Oncorhynchus mykiss) (Chen et al., 2022).  

These findings could be due to the fact that C. vulgaris produces a diverse range of active 

substances with antimicrobial, immunostimulant, cytotoxic and antioxidant activity that 

improve health and increase disease resistance (Dinev et al., 2021). Additionally, 

microalgae secrete bioactive compounds that prevent the growth of pathogenic bacteria 

(Guedes et al., 2015; Ibrahim et al., 2015). Among these compounds, hot-water-soluble 

polysaccharides (Hsu et al., 2010), chlorellin (Mostafa, 2012), water-soluble α-glucans 

(Tabarsa et al., 2015) and D-Lactic acid (Lee et al., 2020) are considered.  

CONCLUSION 

 

From previous results, the health status of the Nile tilapia was improved after being 

fed with the dietary C. vulgaris at levels up to 20g/ kg fish feed, while at the level 15g/ kg 

fish feed, fish showed higher blood indices indicating well-nourished status. No impacts 

were detected on fish liver since liver enzymes and serum protein were within the normal 

values, compared to the control. Antioxidant enzymes and proinflammatory cytokines 

were raised in fish that received dietary C. vulgaris. Fish under study could resist A. 
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hydrophila infection with a healthy liver which could withstand the stress of florfenicol 

treatment. Feeding on C. vulgaris at rates of 10 and 15g/ kg fish feed plus florfenicol 

provided a 42.86% relative protection level. Thus, the addition of C. vulgaris to fish feed 

at a level of 15g/ kg is recommended. 
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