The impact of co-infection of sea lice and its concurrent some bacterial diseases with field treatment trials in some marine cultured fishes

Soad S. A. Salama1* and Nesreen S. I. Yousef2

1Fish Microbiological Unit, Fish Diseases Department, Animal Health Research Institute, Egypt.
2Fish Parasitological Unit, Fish Diseases Department, Animal Health Research Institute, Egypt.

*Corresponding Author: Goodweza2009@yahoo.com

INTRODUCTION

The subject of co-infections of aquatic animals by different pathogens has received little attention even though such infections are common in nature. Co-infections are defined as infection of the host by two or more genetically different pathogens where each pathogen has pathogenic effects and causes harm to the host in coincidence with other pathogens (Mohamed et al., 2016). Bacterial infection considered the main cause of high mortalities and economic losses among fish diseases (Eissa et al., 2010). The European sea bass (Dicentrarchus labrax) is the most important commercial fish widely cultured in...
Mediterranean areas and Egypt are the biggest producers (FAO, 2013) and is found to be susceptible to various pathogens of parasitic, bacterial and viral origin (Azad et al., 2006). Salwany et al. (2019) studied growth in aquaculture production is parallel with the increasing number of disease outbreaks, which could be affect the production, gains, and continuity of the global aquaculture industry. Vibrios, one of the most challenging pathogens in mariculture development causing high mortalities between fish farms (Fadel, 2014).

\(V. \) alginolyticus is a halophilic vibrio and is considered the most frequent species living freely in water and sediment. It can survive in seawater even under starvation conditions while maintaining its virulence (Mustapha, et al., 2012). It causes many epizootic outbreaks among the Gilthead sea bream and European sea bass populations, which possess high economic value at marine aquarium (Zorrilla, et al., 2003). In spite of that, antimicrobial chemotherapy has side effects, but it remains vitally important for treating bacterial diseases through appropriate diagnosis, antibiotic selection at suitable administration route and dose (Mahmoud et al., 2018).

Crustacean parasites are considered an important limiting factor in the development of intensified fish culture (Osman et al., 2014). Among crustaceans, copepods are dominant. Sea lice (copepods) have been reported as one of the most critical problems in marine fish culture, causing severe negative effects on stock survival, growth and susceptibility to disease (Maran et al., 2009). The ensuing losses from fish deaths as a direct or indirect consequence of parasitic copepod infestation may be huge (Lafferty et al., 2015). Sea lice moreover, reproduce rapidly and survive in large populations (Tully et al., 1993), which may affect wild fish populations (Costello, 2009). The Caligidae is the most species rich family of the copepod order Siphonostomatoida. Caligus Müller, 1759 is the largest genus of the family, currently containing approximately 250 valid species (Boxshall, 2015). Sea lice can affect the growth, fecundity, and survival of their hosts because their feeding may cause skin lesions leading to osmotic problems and secondary infections and, if untreated, they can reach a level that is highly detrimental to the fish (Bayoumy et al., 2013).

The control of parasitic organisms is a major concern in marine aquaculture. In particular, sea lice cause substantial economic losses on fish farms (Costello, 2009). Due to their economic importance, control of sea lice on fish farms has been named one of the top priorities in aquaculture research by both scientists and aquaculture practitioners (Jones et al., 2014).

Hence, the present study aimed to obtain the effectiveness of different treatment regimens of co-infection of sea lice with bacterial pathogens in the marine fish farm. Firstly, adequate control of sea lice is predicated on the ability to predict future lice levels from current farm and secondly, uses of different regimens to treatment bacterial infection.
MATERIALS AND METHODS

Case history

A private marine fish farm in Ezbt El-borg, Damietta Governorate (Egypt), rearing the sea bass (*Dicentrarchus labrax*) in earthen ponds was suffered from co-infection with cumulative mortality. The naturally infected *D. labrax* showed excess mucus secretion, sluggishness, surface swimming and collected on the surface of water as groups at the water inlet with gulping of air. Moreover, *D. labrax* were rubbing the body against hard objects and sides to get rid of the irritation induced by the parasites.

Fish sampling

A total of 100 moribund, freshly dead and alive adult *D. labrax* (150 ± 10 gm) were collected in ice box. Only alive fish were put in plastic bags pumped with full amount of oxygen and transported under safety condition to the Fish Disease Department Lab in Animal Health Research Institute.

Clinical and Post-mortem examination of fish

Fish samples under investigation were grossly examined for determination of clinical signs and any external parasite. The specimens were examined externally according to Noga (2010). The samples were dissected for detection of any abnormality internal lesions.

Water sampling

Water samples were collected from marine fish farm, according to standard Canadian Council on Animal Care (2005). Water parameters pH, temperature, dissolved oxygen, salinity, Un-ionized ammonia, Nitrate (NO3), Nitrite (NO2) and sulphate were measured.

Bacteriological examination

Loopfuls from (liver, spleen, kidney, gills, ascetic fluid and gall bladder) from examined fish under complete aseptic conditions and streaked onto trypticase soy agar(Oxoid) supplemented with 2% (w/v) sodium chloride, marine agar (Oxoid) and thiosulphate citrate bile salt agar (TCBS) plates then incubated at 25° C for 24-48hr. (Whitman 2004). Pure colonies are examined microscopically and biochemically according to Bergey's Manual of Systematic Bacteriology (Garrity et al. 2001). Furthermore, identity the bacterial strain using API*20* NE (BIO-Merieux, France). Then, sensitivity to 2, 4-diamino-6,7-diisopropypteridin (O/129) disc (150 μg) and the motility of the strain were examined in soft agar. Finally, pure colonies were transferred to glycerol broth 20% at -80°C (Pujalte et al., 2003).
Antibiogram sensitivity discs:

Sensitivity was determined by the agar diffusion method (Quinn et al., 2002) using 6 mm diameter commercial discs (Oxoid) included the following antibiotics: Amoxicillin 25 μg (AX25), Ciprofloxacin 5 μg (CIP 5), Lincomycin 2 μg (L2), Oxolinic acid 2 μg (OA 2), Norfloxacin 30 μg (NOR30), Trimethoprim /Sulfamethoxazole 25ug (SXT25), Oxytetracycline 30 μg (TE30), Tetracycline 30 μg (T 30), Erythromycin 15 μg (E15), Nalidixic Acid 30 μg (NA30) and Gentamycin 10 μg (GN 10). Antibiotic sensitivity was tested on Mueller-Hinton agar supplemented with 1.5% NaCl (for V. alginolyticus isolate), inhibition zones diameters were interpreted as sensitive, intermediate and resistant according to CLSI (2010).

Parasitological preparations:

Gills, skin, fins and branchial chambers were investigated macroscopically using magnified lens to detect crustaceans. The isolated crustaceans were fixed by passage in alcohol-glycerin (30.0%, 50.0% and 70.0%) then the specimens were cleared in pure glycerin and mounted in glycerin-gelatin according to Lucky (1977). Identification of the detected copepod crustaceans were based on morphological features according to Yamaguti (1963).

Trials for treatment:

Experimental fish

The experiment was performed in the private marine fish farm, a number of 250 infected D. labrax with an average body of 150 ± 10 gm. were holding in 4 small earth ponds, it contains almost 200 liter of water from same source as fish farm with 60 fish each. Water quality was the same in all ponds.

Experimental Design:

The experiment was conducted to compare the effect of antibiotic (Ciprofloxacin) and antiparasitic (malathion) by exposure of infected sea bass to either single or combined treatment of two drugs. The total of 250 infected sea bass were divided into 4 groups and randomly screened of 10 fish for the presence of co-infection parasitic (C. minimus) and bacterial (V. alginolyticus), also free from any other pathogens. Treated fish feeding were 3% from fish weight divided twice /day. Group (1), was fed on ration containing Ciprofloxacin (150mg / Kg Body wt.) for 10 days (Chatterjee and Chatterjee, 1992). Group (2), was exposed to a single dose of malathion (organophosphate insecticide) in the concentration 0.1 mg/L used as a short duration bath for 30 min. with possible repeating of treatment after one week from the first dose according to the condition of the infection, according to Burka et al. (1997). Group (3), was exposed to a single dose of Malathion in the concentration 0.1 mg/L for 30 min. and then followed by Ciprofloxacin (150 mg / Kg Body wt.) for ten days. Group (4), was kept as a control group and fed
The impact of sea lice and its concurrent some bacterial diseases on marine cultured fishes

on non-treated ration (Table 4). During the experiment, fish was examined immediately after exposure to treatment. The morbidity and mortalities were recorded and at end of experiment, *D. labrax* were examined for the presence of pathogens to evaluate the efficiency of treatment methods.

RESULTS

Clinical and post-mortem changes:

Grossly, the naturally infected *D. labrax* showed dark skin coloration, excess mucus secretion, detached scales with sever hemorrhage at fins and the operculum, congested gills and slight abdominal distention. The results showed focal hemorrhage, abrasions on the skin, buccal cavity. Other fishes showed sluggish movement and uni or bilateral corneal opacity (Plate (1) A, B and Plate (2) A, B and C).

The most common post-mortem lesions were congestion and hemorrhages of the internal organs with small grossly ascetic fluid in the abdominal cavity. In addition to, paleness of liver and kidney were observed in some cases and discoloration of liver with flabby skeletal muscles (Plate (2) D).

Plate (1): Naturally infected *D. labrax* showing a large number of sea lice (*Caligus minimus*) on head region with excessive mucus and hemorrhage at operculum cover.
Plate (2): (A) Naturally infected *D. labrax* showing a large number of sea lice all over the body especially on head region. (B) *D. labrax* showing corneal opacity. (C) showing focal hemorrhage at abdominal region especially at fins and (D) *D. labrax* showing discoloration of liver with small grossly ascetic fluid in the abdominal cavity.

Water analysis

The physiochemical parameters of water were recorded in Table (1) revealed that all parameters within permissible limit and within the normal ranges for sea bass culture.
Table (1): Water quality of the marine farm containing infected fish.

<table>
<thead>
<tr>
<th>Water parameters</th>
<th>Results</th>
<th>Permissible limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>8.2</td>
<td>7.5 - 8.5</td>
</tr>
<tr>
<td>Tempreature 0C</td>
<td>20+3 0C</td>
<td>---</td>
</tr>
<tr>
<td>Dissolved oxygen</td>
<td>5.5</td>
<td>5 – 6 mg/L</td>
</tr>
<tr>
<td>Salinity PPT</td>
<td>28</td>
<td>28 – 35 ppt for marine farm</td>
</tr>
<tr>
<td>Un ionized ammonia</td>
<td>0.01</td>
<td>0.0 – 0.0125 mg/L</td>
</tr>
<tr>
<td>Nitrate(No3)</td>
<td>8</td>
<td>10 mg/L</td>
</tr>
<tr>
<td>Nitrite(NO2)</td>
<td>0.3</td>
<td>0.0 - 0.3 mg/L</td>
</tr>
<tr>
<td>Sulphate</td>
<td>170</td>
<td><3000 mg/L</td>
</tr>
</tbody>
</table>

Bacteriological examination

After using both Phenotypic and Biochemical characteristics of isolated bacteria by conventional and API®20 NE, the isolates was confirmed to be *V. alginolyticus* (80%). *V. alginolyticus* isolates were circular colony with regular edges, slightly convex on TSA. The bacterial isolates were gram–negative, motile, oxidase, Indole production, gelatine hydrolysis, large yellow coloring (sucrose-fermenting) colonies on TCBS agar (Plate 4) and catalase positive, urease but Simon citrate were negative and finally were sensitive to O/129 (150 μg). *V. alginolyticus* characteristics were summarized in table (2).
Plate (4): (A) *V. alginolyticus* showing circular colony with regular edges, slightly convex on TSA. (B) *V. alginolyticus* showing large yellow coloring (sucrose-fermenting) colonies on TCBS agar.

Table (2): Biochemical characteristics of *V.alginolyticus* by API*20* NE

<table>
<thead>
<tr>
<th>Biochemical tests</th>
<th>V.alginolyticus</th>
<th>Biochemical tests</th>
<th>V.alginolyticus</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO$_3$</td>
<td>Potassium nitrate</td>
<td>+</td>
<td>MAN</td>
</tr>
<tr>
<td>TRP</td>
<td>Tryptophan</td>
<td>+</td>
<td>NAG</td>
</tr>
<tr>
<td></td>
<td>production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td>Glucose</td>
<td>+</td>
<td>MAL</td>
</tr>
<tr>
<td></td>
<td>fermentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADH</td>
<td>Arginine Dihydrolase</td>
<td>-</td>
<td>GNT</td>
</tr>
<tr>
<td>URE</td>
<td>Urease</td>
<td>-</td>
<td>CAP</td>
</tr>
<tr>
<td>ESC</td>
<td>Esculin</td>
<td>+</td>
<td>LDI</td>
</tr>
<tr>
<td>GEL</td>
<td>Gelatin</td>
<td>+</td>
<td>MLT</td>
</tr>
<tr>
<td>PNG</td>
<td>Para Nitrophenyl D Galactopyranosidase B Glucosidase</td>
<td>-</td>
<td>CIT</td>
</tr>
<tr>
<td>GLU</td>
<td>Glucose</td>
<td>V</td>
<td>PAC</td>
</tr>
<tr>
<td>ARA</td>
<td>Arabinose</td>
<td>+</td>
<td>OX</td>
</tr>
<tr>
<td>MNE</td>
<td>Mannose</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
The results of sensitivity to antibiotic revealed that *V. alginolyticus* was sensitive to Ciprofloxacin, Trimethoprim /Sulfamethoxazole while resistance to Lincomycin, Gentamycin, Norfloxacin, Oxytetracycline. Moderate sensitive to Nalidixic Acid, Erythromycin, Tetracycline, Oxolinic acid were recoed in Table (3).

Table (3) Antibiotic sensitivities of *V.alginolyticus*

<table>
<thead>
<tr>
<th>Antibiotics discs</th>
<th>V. alginolyticus</th>
</tr>
</thead>
<tbody>
<tr>
<td>AX(25 μg)</td>
<td>R</td>
</tr>
<tr>
<td>CTP (5(μg)</td>
<td>S</td>
</tr>
<tr>
<td>E (15μg)</td>
<td>I</td>
</tr>
<tr>
<td>L(2 μg)</td>
<td>R</td>
</tr>
<tr>
<td>GN (10 μg)</td>
<td>R</td>
</tr>
<tr>
<td>NOR(30 μg)</td>
<td>R</td>
</tr>
<tr>
<td>NA(30μg)</td>
<td>I</td>
</tr>
<tr>
<td>OA(2 μg)</td>
<td>I</td>
</tr>
<tr>
<td>TE(30μg)</td>
<td>R</td>
</tr>
<tr>
<td>SXA(25μg)</td>
<td>S</td>
</tr>
<tr>
<td>T(30 μg)</td>
<td>I</td>
</tr>
<tr>
<td>O/129(150 μg)</td>
<td>S</td>
</tr>
</tbody>
</table>

Parasitological examination

Parasitological examination in the present study revealed sever infection of sea lice *Caligus minimus* from the sea bass with infestation rates 100%. Identification of the parasites was carried out according to *Yamaguti, (1963)* and their morphometric features as follows:

Order : Siphonostomatoida

Genus : Caligus Müller, 1785

Species : Caligus minimus Otto, 1821

Description: The cephalothorax, the cephalic zone, lateral zones and thoracic zone are clearly identified. The abdomen has posterior tagma, which includes an abdomen and caudal rami, which is greater than the thoracic zone. The thorax is segmented to fourth leg bearing. Male parasite characterized by the first and second antennae of the parasites, can be clearly noticed and separated in frontal plates identified at the mid-dorsal line,
where the lunules are large and the length of the tagma is greater than the thoracic zone as well as the semen glands in both sides of the genital segment. (Plate3).

Plate (3): A- male *Caligus minimus* whole parasite (X 50), B- cephalothorax of *Caligus minimus* (X 400) and C- posterior part of *Caligus minimus* (X 400).

(Ce = cephalothorax , Ap = apron , Gc = genital complex , Ab = abdomin , Cr = caudal rami , L = lunules , Fa = first antenna , M = mouth , Sa = second antenna , Fl = first leg , Sl = second leg , Tl = third leg , Gs = genital segment , S = spines)

Treatment Experiment

In the current study, the trials to treat the infected *Dicentrarchus labrax* by used one or combined drugs were met with success recorded in Table (4). The effective treatment considered when it reduces parasitic infection with decrease the mortality rate. After treatment, the treated groups (1 & 3) recorded less level of re-isolation of *V. alginolyticus* than control group (4). Sea lice (*Caligus minimus*) recorded high decrease in lice infection in group (2 & 3) relatively to the control group (4) but sea lice slightly increase in group (1) and control group (4) while nearly disappear in group (3). In the experiment, used of oral treatment of bacterial infection of sea bass recorded that the best treatment result in case of combined two drugs in group (3). In addition, the mortality rate was 15% in group (3) but increase in other groups and very high in control group. Also, the treated fish group (3) recorded the clinical signs were disappeared and the fish returned to normal state of health.
Table (4): Efficacy of trials treatment of infected *D. labrax*.

<table>
<thead>
<tr>
<th>Fish group</th>
<th>No. of infected D. labrax</th>
<th>Protocol of Treatment with Ciprofloxacin and Malathion</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>No. of fish</td>
</tr>
<tr>
<td>Group (1)</td>
<td>60</td>
<td>fed on ration containing Ciprofloxacin (150 mg/Kg Body wt.) for ten days</td>
<td>24</td>
</tr>
<tr>
<td>Group (2)</td>
<td>60</td>
<td>was exposed to a single dose of Malathion (0.1 mg/L for 30 minutes) as bath treatment.</td>
<td>12</td>
</tr>
<tr>
<td>Group (3)</td>
<td>60</td>
<td>was exposed to a single dose of Malathion (0.1 mg/L for 30 minutes) as bath treatment and then fed ration containing Ciprofloxacin (150 mg /Kg Body wt.) for ten days</td>
<td>9</td>
</tr>
<tr>
<td>Group (4)</td>
<td>60</td>
<td>non-treated</td>
<td>48</td>
</tr>
</tbody>
</table>

DISCUSSION

In the present study, the main clinical signs observed in infested sea bass fish with sea lice were excessive mucus production, sluggishness, collected on the surface of water as groups at the water inlet with gulping of air, rubbing the body against hard objects and sides of to get rid the irritation induced by the parasites. These signs are as a result of the attachment by means of second pair of the antennae which were inserted into the host epidermal tissue which caused the low respired oxygen of destructed gill epithelium of the parasites (Eissa et al., 2012; Smit et al., 2014 and Maather & Heba, 2015). The results showed focal hemorrhage, abrasions on the skin, buccal cavity and mortality was observed. These may be attributed to the parasites penetration of the skin for fed and facilitate the invasion of the opportunistic microorganisms, reported by Noor et al. (2012).

Regarding the postmortem examination, it was revealed congestion and hemorrhages of the internal organs with small grossly ascetic fluid in the abdominal cavity. In addition to, paleness of liver and kidney were observed in some cases and discoloration of liver with flabby skeletal muscles. In the present study, postmortem lesions recorded among infected *D. labrax* were supported by Nahla et al. (2014) and Maather and Heba (2015). In this marine farm we found most of physiochemical parameters of water within the normal ranges as reported by Nahla et al. (2014) except...
water temperature was variable due to sea bass are eurythermic (5-28 °C). In this study found that temperature play a very important role to occur the fish diseases.

Infectious diseases are one of the main bottlenecks for future development of marine aquaculture in Egypt. Knowledge about the epidemiology, etiology, diagnosis and treatment of the main bacterial diseases of marine farmed fish are crucial to prevent severe economic losses. All various bacterial fish pathogens, such as Vibrio, streptococci, photobacteria, tenacibaculosis and viruses with un-control environmental condition are the causes of high rate of morbidity and mortalities in fish farms (Jehan et al., 2019; Nahla et al., 2014). In the present study, affected fish was confirmed to be infected by V. alginolyticus which a more serious bacterial diseases, as like recorded by Moustafa et al. (2010), Abou Okaada (2013) and Dalia, (2017) who isolated V. alginolyticus from sea bream, sea bass and solea fish with the same phenotypic characters. In our study, Ciprofloxacin is more effective to treatment of V. alginolyticus infection. This finding is agreed with Quinn et al. (2002), Ali (2007) and Jehan et al. (2019). Vibrio spp. were able to develop resistance mechanism to resist antibiotics (Abualreesh, 2017) which could be related to highly use of these antibiotics reaching to aquaculture and increase its concentration in water agriculture /municipal wastes (Abdel-Aziz et al., 2013).

Parasitic infections increase the risk of secondary bacterial diseases and can act as a vehicle to transmit bacterial pathogens (Holzer et al., 2006). This synergistic interaction was demonstrated by many experimental studies (Busch et al., 2003), which showed increased mortality rates in parasitized/ bacteria co-infected fish. This synergistic effect caused by parasites reducing the resistance of fish to other secondary bacterial infections (Bowers et al., 2000). In some instances, the parasites harbor the bacteria and deliver it to their host while feeding (Bowers et al., 2000).

Concerning the description and systematic part of sea lice C. minimus this agrees with Tansel et al. (2012) and Noor El-Deen et al. (2013). Regarding the infection of sea lice C.minimus in the sea bass (D. labrax) in the present study agree with Khoa et al. (2018) and Noor El-Deen et al. (2013) who reported that Copepod infestation, especially by C. minimus has been reported in Mediterranean sea bass (D. labrax). The parasites will damage the host’s skin and epidermal layer, leading to stress, osmotic problems and secondary infections (Saraiva et al., 2015 and Khoa et al., 2018). Also, agree with Shinn et al. (2015) who reported that 80% of sea bass farms worldwide have been affected by this parasite, which resulted in a 30 to 50% loss of fish stock. However, the impact of parasitism was limited only to economic and environmental aspects (Heuch et al., 2005). The co-infection of C. minimus with bacteria supported by Xu et al. (2007) who assumed that ectoparasite provides a portal of entry for invasive bacteria through mechanical damage of the fish epithelium.

Malathion, was used for treatment of naturally infested sea bass with sea lice (Caligus sp.) by using a single dose of 0.1 mg/L Malathion as immersion bath for 30 min (short duration bath) with possible repeating of treatment after 1 week from the first
treatment according to the condition of infestation to obtain complete control of sea lice. These findings nearly agree with Eissa et al. (2020) who used Malathion to control the infestation of sea lice (Caligus sp.) among the reared sea bream fish at the pond level by using a single dose of Malathion solution as a bath treatment. The above results agree with Noor El-Deen et al. (2013) who used Malathion in treatment trials of naturally infested sea bass by Caligus sp. in different concentration including 0.1 mg/L Malathion as immersion bath for 30 min. The effectiveness of Malathion was due to its inhibition of many enzymes, especially acetylcholinesterase (AChE) activity in cholinergic nervous systems of the parasite where the function of AChE is to mediate the hydrolysis of the neurotransmitter acetylcholine, which subsequently terminates transmission through the synaptic membrane, resulting in spastic paralysis. These findings agree with Noor El-Deen et al. (2013) and Josip Barisic et al. (2019). In the present study, the effective treatment of the infected D. labrax by used of combined treatment from both drugs (Malathion and Ciprofloxacin) reduces parasitic and bacterial infection with decrease the mortality rate. This findings is agree with many field studies like Shoemaker et al. (2008), El- Hady and El-Khatib (2000) and Nahla et al. (2014). The authors also advised farmers to use hydrogen peroxide as a disinfectant for ponds and oxygen donor and dose should be carefully calculated based on type of aquaculture and fish species.

CONCLUSION

This study resolved field outbreaks problem and dealing with this outbreaks depends on early intervention in the progression of disease. The exact diagnosis of causative agents and not checking any causative agent with best treatment to control all agents causing disease. Co-infections are very common in nature and occur when hosts are infected by two or more different pathogens either by simultaneous or secondary infections. Co-infection (bacterial and parasitic diseases) need further studies to explained this combination and better to clarify co-infection by conducting more experiments in the fish farm and using modern and fast diagnostic methods to control this diseases.

REFERENCES

