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INTRODUCTION  

 

Chitin, a linear polysaccharide composed of N-acetylglucosamine units, 

represents one of the most abundant biopolymers on Earth, constituting a major structural 

component of fungal cell walls, crustacean exoskeletons, and insect cuticles (Kobayashi 

et al., 2006; Yeul & Rayalu, 2013; Abo Elsoud & El Kady, 2019; Hisham et al., 2023; 

Utama et al., 2023). The enzymatic breakdown of chitin by chitinase is of a paramount 

importance for nutrient recycling and ecosystem dynamics. In natural environments, 

chitinase-producing microorganisms, such as bacteria, fungi, and marine organisms, 
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This study aimed to isolate and comprehensively characterize 

chitinase-producing bacterial isolates collected from diverse aquatic stations 

in the Red Sea. Out of twenty nine isolates, chitinase-producing marine 

Enterococcus hirae (OR064172) and Enterococcus faecalis (OR053873) 

were biochemically and genetically identified. The two isolates have 

primary specific activity of 10.7 and 11.5U/ mg for E. hirae and E. faecalis, 

respectively. To enhance the purity of the chitinase enzymes, ammonium 

sulfate precipitation was employed, yielding 12.9 and 13.47U/ mg for 70% 

fractions of E. hirae and E. faecalis, respectively. Afterward, DEAE-

cellulose chromatography was utilized for the purification process, resulting 

in two peaks for E. hirae and one peak for E. faecalis. The results of 

chitinase characterization indicated optimal conditions with a temperature of 

37°C, a pH of 6.5, and a salt tolerance of up to 1% for both strains. The in-

depth kinetic chitinase analysis unveiled the optimum Km (0.03 and 0.07) 

and Vmax (0.124 and 0.0003) conditions for chitinase activity for both E. 

hirae and E. faecalis, respectively. The application of the previous strains at 

the economic level involves the production of chitinase using marine shrimp 

waste in an attempt to extract beneficial products. The solid state 

fermentation process of this waste for both isolates was also tested, with 

results indicating that the specific activity of the produced enzyme was 8.48 

and 11.38U/ mg, respectively, achieving the highest production after 48 

hours. This study adeptly accomplished the isolation and identification of 

chitinase-producing marine bacterial isolates. The rigorous purification and 

comprehensive characterization of chitinase enzymes offer valuable insights 

into their production, refinement, and utilization across diverse industries, 

particularly within aquaculture and waste management. 
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contribute to the decomposition of chitin-containing materials. This process not only 

releases essential nutrients like nitrogen and carbon back into the ecosystem but also 

influences the structure and composition of microbial communities in aquatic and 

terrestrial environments (Zhang et al., 2023). Among the myriad of organisms capable of 

chitin degradation, chitinase-producing bacteria stand out as key players in chitin 

utilization and mineralization processes (Dwyer et al., 2021; Pal et al., 2021). 

Harnessing the potential of chitinase-producing bacteria holds promise for diverse 

applications, ranging from aquaculture to waste management. 

Chitinase-producing bacteria have garnered significant attention due to their 

potential applications across several industries (Golgeri et al., 2022). In agriculture, 

chitinase-producing microorganisms have been explored for their role in pest control, as 

chitin is a major component of insect exoskeletons (Banerjee & Mandal, 2019). In 

aquaculture, chitinase enzymes have been investigated for their ability to control fish 

diseases caused by chitin-containing pathogens (Hirano et al., 2019). Additionally, 

chitinase has applications in biotechnology, including bioconversion processes and the 

production of chitin-derived products such as chitosan, with numerous industrial uses 

(Kumari et al., 2023). By reducing the need for chemical inputs and promoting eco-

friendly approaches, they align with the principles of sustainable development. 

Ammonium sulfate precipitation serves as a crucial technique in the field of 

biochemical purification, particularly in the isolation and partial purification of chitinase 

enzymes from bacterial sources. This method capitalizes on the selective salting-out 

properties of ammonium sulfate, effectively separating proteins based on their solubility 

characteristics (Dikbaş et al., 2021). The choice of the appropriate ammonium sulfate 

concentration is critical in achieving the desired level of purification. Typically, a 

saturation level between 40 and 80% ammonium sulfate is used, depending on the 

specific requirements of the purification process. Chitinase enzymes exhibit varying 

solubility characteristics, and the optimal ammonium sulfate concentration for their 

precipitation may differ from one bacterial isolate to another (Ullah et al., 2022). 

Chitinase purification using DEAE-cellulose chromatography represents a critical 

step in the quest to isolate and refine chitinase enzymes, which play a fundamental role in 

breaking down chitin, a complex polysaccharide found in the exoskeletons of arthropods 

and fungal cell walls. This purification method leverages the principles of ion exchange 

chromatography to selectively separate proteins based on their charge properties (Singh 

et al., 2021). DEAE-cellulose, or diethylaminoethyl cellulose, is a chromatography resin 

with positively charged diethylaminoethyl (DEAE) groups. These positively charged 

groups can interact with negatively charged proteins through ionic interactions. In the 

context of chitinase purification, DEAE-cellulose provides an ideal medium for 

separating chitinase enzymes from other proteins present in the sample (Sheehan & 

FitzGerald, 1996). 
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The utilization of shrimp peels as a common marine waste product for chitinase 

production employing Enterobacter spp. have a promising idea for waste treatment. 

Shrimp peels are a readily available marine waste product. Their conversion into valuable 

enzymes like chitinase contributes to the sustainable utilization of marine resources and 

reduces waste. This can reduce the environmental impact with industrial chitinase 

applications and achieving economic feasibility. Enterobacter sp. has been identified as a 

promising microorganism for chitinase production due to its enzymatic capabilities and 

efficiency in utilizing chitin-rich substrates (Taokaew & Kriangkrai, 2023). 

 This study consisted of several key steps. Initially, bacterial isolates were 

collected from different stations, with specific geographical coordinates from the Red 

Sea.  Among these isolates, the two most potent ones were identified using API 20 kits 

and through genetic analysis. Subsequently, ammonium sulfate precipitation was 

employed to partially purify the chitinase enzymes produced by these isolates. The 

purification process was further refined using DEAE-cellulose chromatography. Finally, 

the study involved various characterizations of the purified chitinase enzymes, providing 

a comprehensive analysis of their properties and potential applications. 

 

MATERIALS AND METHODS  

 

1. Isolation of bacterial isolates with screening for chitinase production 

Nine samples were collected from various locations in the Red Sea, with their 

longitude and latitude coordinates listed in Table (1). To screen for chitinase-producing 

bacteria, we utilized luria broth containing colloidal chitin, focusing on colonies 

exhibiting a clear zone. These selected colonies were then subjected to further detailed 

study. The preparation of colloidal chitin involved purchasing powdered chitin from 

Sigma-Aldrich and making slight modifications to the method described by Shahbaz and 

Yu (2020). Chitin was prepared using the HCl method described by Beltagy et al. (2018). 

 

Table 1. Collection sites with longitude and latitude degrees 

No. Station Longitude Latitude Time of sample collection 

1 OyounMoussa 29°46'19.1"N 32°39'43.6"E 73:21Pm 

2 RasSedr 29°35'20.9"N 32°42'41.2"E 3:22Pm 

3 Pharaonic Baths 29°11'56.3"N 32°57'17.3"E 2::1Pm 

4 Abo-Zenema 29°01'22.1"N 33°09'14.4"E 8:25PM 

5 Belayim Petroleum 28°48'15.9"N 33°12'76.6"E 2:23PM 

6 El-tour 28°12'24.8"N 33°37'34.9"E 7:85Pm 

7 El-tour-desalination 28°14'12.7"N 33°36'03.9"E 2:23Pm 

8 Al-Kanayes 27°55'56.7"N 33°53'36.8"E 5:88Am 

9 El-tour reef 27°55'27.9"N 33°53'55.1"E 72:73Am 

For bacterial screening, LB (Luria broth) served as the standard medium with 

some modification for screening chitinase-producing bacteria. The selective medium 

composition included KH2PO4 (14g/ L), K2HPO4 (6g/ L), (NH4)2SO4 (2g/ L), Na3C6H5O7 
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(1g/ L), MgSO4 (0.12g/ L), Agar (15g/ L), and 1% (w/v) colloidal chitin, adjusted to pH 

7. Incubation occurred at temperatures ranging from 37°C, and the formation of clearance 

zones and specific activity resulting from chitin hydrolysis were recorded for up to 8 

days. Based on these records, two of the most promising samples were selected for 

further analysis. The specific activity of all isolates was determined using the method of 

Lowry (1951) for protein measurement and Miller (1951) for activity assay, following 

the methods outlined by Al-Agamy et al. (2021). 

2. Biochemical identification using API 20E kits 

Trypticase soy broth was employed to enrich the selected isolates, and the cultures 

were incubated for 18 hours, allowing them to reach a concentration of 0.5 McFarland 

units. Using either a sterile inoculation loop or swab, we selected purified colonies and 

transferred them into tubes containing sterile saline solution, adjusting the turbidity to a 

concentration of 0.5 McFarland units. Inoculation the API kit well with the standardized 

bacterial suspension was performed meticulously to prevent cross-contamination, 

followed by incubation at 37°C for 18- 24 hours. Following this incubation period, results 

were assessed by observing color changes in each well. These results were then compared 

to the reference chart or database provided by the API kit manufacturer to identify the 

bacterial isolate and obtain numerical codes (Türe & Alp, 2016). 

3. Genetic identification 

The potent isolates were characterized through the analysis of the 16S rRNA (16S 

rDNA) gene sequences. To amplify nearly the entire length of the 16S rRNA gene from 

each strain, we employed primer PS3 - 353F and 809R (Forward: 

'GCAGTGGGGAATATTGCA' – Reverse: 'AAGGGCACAACCTCCAA‘), as outlined 

in the work of Resendiz-Nava et al. (2021). The experiment began with the preparation 

of bacterial samples. Colonies from each strain were cultured on TSA medium and then 

lysed using a mixture of NaOH and SDS, followed by boiling. After centrifugation, a 

portion of the lysate was used for PCR amplification. PCR reactions included various 

components detailed in a previous study. Amplification was conducted using specific 

equipment. The resulting products were purified through gel electrophoresis and 

extraction. Nucleotide sequences were determined using a specific sequencing kit, and 

analysis was carried out using various software programs, including BLASTN and 

FASTA for sequence identity and Clustal X for alignment (Sint et al., 2011). 

4- Partial purification using ammonium sulfate and DEAE- cellulose 

Chitinase was purified from E. hirae OR064172 and E. faecalis OR053873 

through a series of steps. The initial purification involved protein precipitation using 

ammonium sulfate at various saturation percentages: 25, 50, 75, and 90%. Subsequently, 

the precipitated sample was dialyzed overnight against water and barium chloride, as 

described by Senol et al. (2014). The final purification step was conducted using DEAE-

cellulose column chromatography with dimensions of 2:6×20cm. To determine the 

molecular weight of the purified enzyme, sodium dodecyl sulfate-polyacrylamide gel 
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electrophoresis (SDS-PAGE) was employed, following the method outlined by Loni et 

al. (2014). 

5. Characterization of purified chitinase 

Effects of temperature, pH, salt concentration (NaCl), and reaction time on enzyme 

activity 

The impact of pH on enzyme activity was assessed by conducting activity assays 

(Miller, 1951) at various pH levels, utilizing different buffer compounds. This 

examination aimed to evaluate chitinase activity across a pH range spanning from 3 to 10. 

To investigate the influence of temperature on chitinase activity, enzyme assays were 

carried out over a temperature range extending from 25 to 49°C. The assessment of 

thermal stability with respect to chitinase activity was designed to expose the enzyme to 

temperatures of 55, 65, and 70°C for durations ranging from 0 to 100 minutes. To explore 

the effect of salinity on enzyme activity, assays were conducted under varying saline 

conditions, ranging from 0.2 to 1.8%. Chitinase activity was quantified and expressed as 

units per milliliter (unit/ ml). 

Determination of Km and Vmax  

The Km and Vmax for the purified chitinase were calculated using colloidal chitin 

as a substrate. The substrate with a final concentration ranging from 0.1 to 1.2% was 

employed. Subsequently, the residual activity was determined using the standard 

protocol. The values of Km were obtained graphically with the assistance of the software 

"Sigma Plot version 10" (Rajendran et al., 2024) using the following equation: 

v = Vmax / (1 + (Km/[S])) 

6. Application using shrimp waste 

In the preceding phases of the research, chitin sourced from Sigma-Aldrich was 

employed to generate chitinase enzymes using Enterobacter hirae and Enterobacter 

faecalis strains. To harness the chitinase enzyme's potential in marine waste treatment, 

shrimp shells were utilized as a chitin source, which was processed and purified as an 

alternative to the previously employed chitin, following the approach outlined by Wang 

et al. (2023). Additionally, a solid-state fermentation technique was employed as another 

practical method to assess the ability of the extracted enzymes to degrade the chitin 

present in shrimp shells. The experiments were conducted in 250-mL Erlenmeyer flasks 

containing 50g of shrimp shell powder mixed with 10mL of basal medium (pH 7.0). The 

basal medium consisted of 0.2% (w/v) (NH4)2SO4, 0.1% (w/v) yeast extract, 0.028% 

(w/v) KH2PO4, 0.025% (w/v) MgSO4.7H2O, and 0.007% (w/v) CaCl2.2H2O. 

Following sterilization, the solid medium had a moisture content of 70% and was 

inoculated with 300µL of a bacterial suspension (10
8
CFU/ mL). The inoculated medium 

was then incubated at 37°C in a rotary shaker at 150rpm for duration of 4 days. 

Subsequently, the culture was extracted using 100mL of 0.1M phosphate buffer (pH 7.0) 

by stirring for 1 hour in an ice bath, followed by centrifugation at 8,000x g (4°C) for 15 

minutes. Samples were collected at 12-hour intervals from the fermentation flasks. The 
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supernatant was filtered through a 0.25µM filter paper to eliminate bacterial cells, and it 

was utilized for enzyme activity determination, as described by Baldoni et al. (2020). 

RESULTS  

 

1. Isolation of bacterial isolates with screening for chitinase production 

The study focused on bacterial isolates collected from different Red Sea sites and 

tested for their activities on chitin agar plates. Moreover, various bacterial samples were 

analyzed for their chitinase production activity, protein concentration, and specific 

activity (SA). Among these isolates, two bacterial strains stood out as the most potent 

based on their chitinase production capabilities. Isolate 15 and 28, both identified as 

Gram-positive bacilli, exhibited the highest chitinase activity among all the tested 

isolates. Both isolates demonstrated their potential as robust chitinase producers, with 

isolate 28 showing slightly higher specific activity by 11.5U/ mg (Table 2). 

Table 2. Chitinase activity and specific activity of different marine bacterial isolates 

S. No. Gram stain A (U/l) P(mg/l) SP(U/mg) 

1  (G+vecocci) 114.3 90.5 1.3 

2  (G+ve bacilli) 0 0 0 

3  (G+vecocci) 103.6 84.32 1.23 

4  (G+vecocci) 0 0 0 

5  (G+vecocci) 0 0 0 

6  (G+vecocci) 145.4 96.25 1.5 

7  (G-vecocci) 135.9 92.14 1.48 

8  (G+vecocci) 167.5 103.47 1.62 

9  (G-vecocci) 0 0 0 

10  (G+ve bacilli) 0 0 0 

11  (G-ve bacilli) 0 0 0 

12  (G-ve bacilli) 0 0 0 

13  (G+ve bacilli) 225.7 109.45 2.1 

14  (G-vecocci) 278 121.32 2.3 

15                      (G+ve bacilli) 1198.4 112.35 10.7 

16  (G+vebacilli) 165.3 112.98 1.5 

17  (G-vecocci) 193.6 111.26 1.8 

18  (G-vecocci) 211.7 98.65 2.15 

19  (G+vecocci) 0 0 0 

20  (G+ve bacilli) 0 0 0 

21  (G+vecocci) 0 0 0 

22  (G+ve bacilli) 359.7 122.54 3.94 

23  (G+ve bacilli) 0 0 0 

24  (G+ve bacilli) 65.75 89.2 0.74 

25  (G+vecocci) 258.6 96.34 2.7 

26 (G-vecocci) 344.4 110.5 3.12 

27  (G+ve bacilli) 918.8 107.6 8.5 

28 (G+ve bacilli) 1264 110.04 11.5 

29 (G+vecocci) 634.8 110.48 5.75 

Note: A (U/l): Activity (Unit per liter); P (mg/l): Protein (milligram per liter); SP(U/mg): Specific activity 

(Unit per milligram). 
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2- Biochemical identification of most potent isolate using API 20E kits 

The biochemical identification of the most potent isolate was performed using 

API 20 Strep kits. Based on the results, both No. 15 and No. 28 isolates were identified as 

belonging to the Enterococcus genus. Specific API 20 Strep codes for both strains were 

20100 and 20160, respectively.  

3- Genetic identification of most potent isolate 

In the pursuit of a comprehensive characterization of the most potent isolate, 

genetic identification was conducted. The following results were obtained: Isolate No. 15: 

Enterococcus hirae with Accession Number: OR064172. While Isolate No. 28: 

Enterococcus faecalis with Accession Number: OR053873 

4- Partial purification using ammonium sulphate  

The chitinase activity, protein concentration, and specific activity (sp) at various 

ammonium sulfate precipitation levels for two isolates, E. hirae OR064172 and E. 

faecalis OR053873 are shown in Table (3). Both isolates displayed chitinase activity, 

with variations in specific activity at different levels of ammonium sulfate 

precipitationchitinase fractions. The specific activity provides insights into the enzyme's 

efficiency at each fraction, with the 70% fraction demonstrating the highest specific 

activity for both isolates (Table 3). 

 

Table 3. Chitinase fractions of ammonium sulphate for E. hirae OR064172 and E. 

faecalis OR053873 

 E. hirae OR064172  E. faecalis OR053873 

 Activity (U/l) Protein (mg/l) SP (U/mg)  Activity (U/l) Protein (U/mg) SP (U/mg) 

Crude E. 1198.4 112.35 10.7  1264 110.04 11.49 

20% 780.35 138.54 5.63  963.63 107.85 8.93 

35% 1325.65 152.36 8.7  1450.36 156.65 9.26 

50% 2021.75 192.3 10.51  2146.54 198.74 10.8 

70% 2650.2 205.36 12.9  2860.6 212.32 13.47 

90% 1720.65 215.36 7.98  1964.82 228.87 8.58 

The ammonium sulfate fractions of chitinase precipitation by E. hirae and E. 

faecalis show that the specific activity of chitinase was the highest in the 70% ammonium 

sulfate fraction for both E. hirae and E. faecalis. The specific activity decreased in the 50 

and 35% ammonium sulfate fractions, and was the at its lowest level in the 20% 

ammonium sulfate fraction. The protein concentration was at its lowest in the 20% 

ammonium sulfate fraction for both strains. The protein concentration increased in the 35, 

50, and 70% ammonium sulfate fractions (Fig. 1). 
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5. Chitinase purification using DEAE-cellulose 

Fig. (2A) includes purification of chitinase using DEAE-cellulose data for E. 

hirae. Two lines in the chart "Activity" and "Specific activity" show the activity of 

chitinase in each of these fractions, varying across the different fractions with ranges 

from as low as 52.63 to as high as 279.85U/ l. The specific activity values in the column 

purification vary from 5 to 30U/ mg. Higher specific activities indicate that more of the 

total protein in the fraction is chitinase, suggesting greater purification. For E. hirae, 

fraction 17 has the highest chitinase activity, but its specific activity is relatively low. 

Moreover, fraction 17 has the highest specific activity, suggesting that it is the most 

purified fraction.  
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Fig. 1. Specific activity (U/ mg) and protein conc. (mg/ l) of amm. sulphate fraction of 

chitinase produced by (A) E. hirae and (B) E. faecalis  

On the other hand, DEAE purification for E. faecalis shows variations in fractions' 

activities. Fractions 1 to 8 have relatively low specific activities. The specific activity 

starts at 7.44U/ mg and gradually increases to 16.53U/ mg. Fractions 9 to 13 show an 

increase in specific activity, indicating that the purification process is becoming more 

effective. This suggests that chitinase is becoming more concentrated in these fractions. 

Fractions 14 to 21 exhibit a decline in specific activity. The highest activity and specific 

activity is observed in fraction 12 by 252.05 and 25.56U/ mg, respectively (Fig. 2B). 
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6. Characterizations of purified chitinase by E. hirae and E. faecalis 

In a series of experiments, the chitinase production capabilities of two bacterial 

strains, E. faecalis and E. hirae, were investigated under varying conditions (Fig. 3A). 

The first set of experiments explored the influence of pH levels on chitinase production. 

Notably, E. hirae consistently outperformed E. faecalis in chitinase production across all 

pH levels, with its highest activity observed at pH 6. This suggests that E. faecalis is an 

inferior chitinase producer compared to E. hirae, which is a valuable information for 

biotechnological applications. 

 

 
Fig. 2. Chitinase activity (U/ mg) and specific activity (mg/ l) of chitinase purified 

fractions produced by (A) E. hirae and (B) E. faecalis  

The second set of experiments examined the effect of temperature on chitinase 

production. E. faecalis exhibited higher chitinase activity than E. hirae across all 

temperature ranges. The peak activity for E. faecalis occurred at 37°C (Fig. 3B). These 

findings reinforce the notion that E. faecalis is a more effective chitinase producer than E. 

hirae, providing crucial insights for biotechnological applications. 

Moving on to the third set of experiments, the study assessed the impact of 

thermal stability during different exposure time on chitinase production by both bacterial 

strains. Both E. faecalis and E. hirae showed increased chitinase production over time, 

with E. faecalis consistently surpassing E. hirae in chitinase activity (Fig. 3C). This 
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underscores the superiority of E. faecalis as a chitinase producer, which is an essential 

information for researchers interested in utilizing chitinase for biotechnological purposes. 

The chitinase production activity of two bacterial strains, E. faecalis and E. hirae, across 

varying salt concentrations was evaluated. The activity production of chitinase is at its 

peak at a concentration of 1g/ l. E. hirae shows the highest activity level. However, E. 

faecalis is low at a concentration of 0.5 g/l, and high at a concentration of 1g/l. Overall, 

Fig. (3D) shows that the activity of chitinase is at its highest at a salt concentration of 1g/ 

l. 

Lastly, the study delved into the Michaelis-Menten constants (Km) and maximum 

velocities (Vmax) of chitinase production by both bacterial strains. These constants 

provide insights into substrate concentration and reaction rates. E. faecalis displayed a Km 

of 0.0003mg/ ml and a Vmax of 0.7mg/ mL (Fig. 3E), which varied among different 

strains. Similarly, E. hirae displayed a Km of 0.124mg/ mL and a Vmax of 34.5mg/ mL 

(Fig. 3F), indicating genetic variability in its chitinase production capabilities. 
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Fig. 3. Effect of some physiological characterization on chitinase production: (A) pH, (B) temperature, (C) 

Thermal stability, (D) Salinity, (E) Kinetic for E. faecalis, and (F) Kinetic for E. hirae   

 

7. Chitinase application 

In the study, the usage of E. faecalis and E. hirae for the degradation of shrimp 

peels was investigated. Table (4) presents data on the enzymatic activity, protein 

concentration, and specific activity of chitinase produced by E. faecalis and E. hirae 

when applied for the degradation of shrimp peels. These results showed that both E. 

faecalis and E. hirae have the potential to contribute to the degradation of shrimp peels, 

with E. hirae exhibiting a higher specific activity, indicating its greater efficiency in 

breaking down chitinaceous components within the shrimp peels. 

 

Table 4. Application of E. faecalis and E. hirae for degradation of shrimp peels chitinase 

Isolate 
Shrimp peels (U/l)  

Activity (U/l) Protein (mg/l) Sp (U/mg) 

E. faecalis 1440.5 169.9 8.48 

E. hirae 1814.5 159.47 11.38 

 

The solid-state fermentation of shrimp peels using two different bacteria, E. 

faecalis and E. hirae showed that E. hirae produced more chitinase than E. faecalis 

during all fermentation hours tested. The highest activity of chitinase production by E. 

faecalis was at 48 hours, followed by 36, 24, and 60 hours. The lowest activity of 

chitinase production by E. faecalis was at 96 hours. While E. hirae produced the highest 

chitinase than E. faecalis at all fermentation hours tested, except the 96 hours. The 

highest activity of chitinase production by E. hirae was at 60 hours, followed by 48, 36, 

and 24 hours. The lowest activity of amylase production by E. hirae was at 96 hours (Fig. 

4). 
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Fig. 4. Solid state fermentation of shrimp peels using E. faecalis and E. hirae 

 

DISCUSSION 

 

Chitinase-producing bacteria have recently gained significant attention for their 

role in chitin degradation and their potential applications across various industries 

(Bhattacharya et al., 2007; Jahromi & Barzkar 2018; Thakur et al., 2023). In this 

study, we undertook the successful isolation and characterization of chitinase-producing 

bacterial isolates from the Red Sea, revealing Enterococcus hirae (OR064172) and 

Enterococcus faecalis (OR053873) as robust chitinase producers. Chitinase activity is a 

crucial parameter in evaluating the efficiency of these isolates in breaking down chitin, a 

major component of the exoskeletons of various organisms (Kotb et al., 2023). Our 

research encompassed the purification process, including ammonium sulfate precipitation 

and DEAE-cellulose chromatography, which facilitated the identification of optimal 

conditions for chitinase activity. Additionally, we delved into understanding the impact of 

various factors on chitinase activity, such as pH, temperature, salt concentration, and 

reaction time, shedding light on how these enzymes behave in diverse environmental 

conditions. 

Accurate genetic identification of our isolates as E. hirae (OR064172) and E. 

faecalis (OR053873) was achieved through the development of PCR assays, building 

upon the work of Knijff et al. (2001). This genetic data not only strengthens the 

credibility of our findings but also lays a solid foundation for future research aimed at 

unraveling the genetic mechanisms governing chitinase production in these isolates. 

These findings provide crucial genetic information about the isolates, enabling a deeper 

understanding of their taxonomic classification and potentially shedding light on their 

functional characteristics. The genetic identification, along with the biochemical data 

presented earlier, contributes to a more comprehensive profile of these isolates, which is 
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essential for further research and potential applications in aquaculture and related fields 

(Liang, 2014). 

Chitinase enzyme purification often requires a multi-step approach to separate it 

from complex cellular components. Two common purification methods are partial 

precipitation with ammonium sulfate and subsequent chromatography using DEAE-

cellulose. Ammonium sulfate selectively precipitates proteins based on their solubility, 

size, and charge, concentrating the enzyme and partially removing impurities. This 

method efficiently concentrates chitinase and simplifies the sample. It serves as a cost-

effective initial purification step, as demonstrated in this study.  

After ammonium sulfate precipitation, DEAE-cellulose chromatography is 

employed for further purification of chitinase that separates proteins based on their 

charge by negatively charge resins bind with positive charge of protein containing 

chitinase. As mentioned in the result, the highest specific activity is mentioned in fraction 

17 of E. hirae and fraction 12 of E. faecalis. The specific activity should increase 

indicating that the chitinase enzyme is being concentrated and purified. The fractions of 

purification step are important for elution profile progress. The fractions with the highest 

chitinase activity represent the most purified enzyme as achieved in E. hirae and E. 

faecalis. The high-purity and high-activity chitinase enzymes in various industrial and 

commercial fields have been steadily growing. While crude chitinolytic enzymes from 

bacteria have been used for chitin degradation (Ali et al., 2020), purified enzymes open 

up broader possibilities for their application. Several notable examples of purified 

bacterial chitinase enzymes include those from Serratia marcescens (Wang et al., 2014), 

Salinivibrio sp. (Le & Yang, 2018), and Aeromonas hydrophila (Stumpf et al., 2019). 

Our comprehensive characterization of the purified chitinase enzymes provided 

valuable insights into their behavior under various conditions. Notably, E. faecalis and E. 

hirae recorded valuable chitinase production across different pH levels and temperatures, 

highlighting its potential as a robust chitinase producer. Furthermore, the enzymes 

exhibited impressive thermal stability, which holds significance for industrial 

applications requiring enzymatic processes at elevated temperatures. Our investigation 

into the effects of salt concentration on chitinase activity indicated that both strains 

exhibited increased activity with higher salt concentrations, making them adaptable for 

use in diverse saline environments. For instance, Serratia marcescens DSM 30121T 

displayed the highest chitinase activity (0.556U/ ml) when cultured in a medium 

containing 1% colloidal chitin concentration at 30°C and pH 6 (Lamine et al., 2012). 

Bacillus thuringiensis isolate CMBL-Bt4 exhibited superior chitinase activity (0.23U/ ml) 

compared to 12 other Bacillus thuringiensis strains after 4 days of incubation at 37°C, 

with a pH of 7 for the culture medium (Saleem et al., 2014). Additionally, Streptomyces 

sp. S242 demonstrated the highest chitinase activity (0.162U/ ml) after 4 days of 

incubation at 30°C, with a pH of 7 for the culture medium (Saadoun et al., 2009). 

Aeromonas sp. CQNU6-2's crude chitinase activity was active over a broad pH range 



Kelany et al., 2024 102 

from 3 to 10, with the maximum activity observed at pH 6, showing potential in the 

biological control of pests and diseases (Ajayi et al., 2016). Moreover, the enzyme 

exhibited chitin hydrolysis capability across a wide temperature range of 10 to 90°C. Its 

optimal activity, reaching 67.2%; this was noted at a low temperature of 10°C. 

Remarkably, even at the high temperature extreme of 90°C, it retained a substantial 

portion of its activity, specifically 41.9%. 

The two isolated strains displayed differences in both Km and Vmax. In E. faecalis, 

the Km value was low compared to E. hirae strain, indicating that the first isolate has a 

high affinity for substrate, achieving higher productivity in the presence of small 

quantities of substrate, unlike the other isolate which had a high Km, meaning it produces 

a higher amount of the enzyme in the presence of larger quantities of substrate. As for 

Vmax, which represents the maximum rates of the enzyme's ability to convert substrate 

into the final product which required that, the substrate concentration is much higher than 

Km in order for the enzyme to be working at its maximal capacity. The Vmax for E. hirae 

was higher than that of the other strain. The Vmax for the chitinase enzyme extracted from 

Aspergillus flavus was higher than that mentioned in this study. Furthermore, the Vmax for 

the Streptomyces chilikensis RC1830 falls within the range referred to in our research 

(Beltagy et al., 2018; Ray et al., 2019). 

The application of E. faecalis and E. hirae in the degradation of shrimp peels 

showcased their potential for eco-friendly waste management in the seafood industry. E. 

hirae, in particular, displayed higher specific activity in breaking down chitinaceous 

components within shrimp peels, indicating its superior efficiency in this process. Our 

solid-state fermentation results further supported the potential of these bacteria in 

degrading chitin-containing waste, with E. faecalis demonstrating a higher chitinase 

production. 

Considering the challenges associated with chitin degradation and the substantial 

amount of shrimp waste generated in the shellfish industry, the utilization of chitin 

resources has become crucial for maintaining a proper carbon-nitrogen balance 

(Bhattacharya et al., 2016). Compared to physical and chemical methods, biological 

approaches offer several advantages for chitin decomposition, including higher yield and 

environmental friendliness (Liu et al., 2019). Consequently, there has been a growing 

focus on screening and utilizing novel chitinase-producing organisms (Kumar et al., 

2017; Stumpf et al., 2019; Cardozo et al., 2023). Historically, shrimp shells and crab 

shells have been traditional resources for the production of commercialized chitin (Doan 

et al., 2019). Leveraging these resources not only addresses environmental pollution 

resulting from shrimp shell waste but also provides an effective solution for waste 

management. 
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CONCLUSION 

It could be concluded that, the study of chitinase-producing bacteria has gained 

significant attention due to their role in chitin degradation and their potential applications 

in various industries. This research successfully isolated and characterized chitinase-

producing bacteria from the Red Sea, identifying E. hirae (OR064172) and E. faecalis 

(OR053873) as robust chitinase producers. 
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