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INTRODUCTION  

 

Lake Edku is the third largest northern Egyptian coastal lake in the Nile Delta in the 

Beheira Governorate and one of the most threatened aquatic environments in Egypt due 

to anthropogenic activities and pollution (Emam et al., 2021). Lake Edku suffers from 

numerous pollutant sources, represented in point and non-point sources due to 

anthropogenic activities such as agricultural and municipal wastewater, which may 

represent a significant threat to the aquatic environment (Radwan et al., 2019).  
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Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) 

have the ability to bioaccumulate in food chains and bodies.  For Lake Edku, 

hexachlorocyclohexane (HCH) was isometrically arranged as β > γ > α during 

both seasons and seasonally arranged as spring> summer. The β-HCH was the 

most dominant isomer that can be attributed to the biodegradation of α-HCH 

and γ-HCH to β-HCH. Total Cyclodienes were arranged as Aldrin> Dieldrin> 

Endrin, and seasonally as spring> summer. The average contributions of DDT 

congeners mixture detected in Edku Lake waters were in the order of o,p′-

DDD> o,p′-DDT> o,p′-DDE>  p,p′-DDE>p,p′-DDT > p,p′-DDD during spring 

and o,p′-DDT> o,p′-DDE> o,p′-DDD>  p,p′-DDE and p,p′-DDT > p,p′-DDD  

during summer; total DDTs recorded higher values during the summer 

compared to spring. Seasonal distribution is referred to the fact that PCB 28> 

52>138> 101> 118> 153> 180 during both seasons. α-HCH/γ-HCH indicated 

the dominance of lindane.  β-/(α+γ)-HCH ratio suggested the recent HCH input 

for station VI and past input for most stations. DDE/DDD ratios indicate 

anaerobic and aerobic degradation. (DDE + DDD)/∑DDTs ratios suggesting 

past input for DDT for most stations during both seasons. o,p′-DDT/p,p′-DDT 

ratio indicates that stations  (I and  VIII),  as well as station VIII during spring 

and summer, respectively, recorded technical grade DDT, while the rest of the 

stations recorded dicofol-type DDT. While, the risk quotient recorded very high 

risk, except for α-HCH which recorded a moderated risk at some stations. Upon 

comparing the results of the current study with water quality standards, it was 

noted that some OCPs and PCBs recorded values higher than the criteria 

continuous concentration (CCC), while others were higher than the criteria 

maximum concentration (CMC) during spring and summer. 
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Organochlorines are also called chlorinated hydrocarbons, chlorinated insecticides, 

chlorinated synthetics and chlorinated organics (Ramamoorthy & Ramamoorthy, 

1997). On the other hand, hexchlorocyclohexane (HCH) contains five isomers: alpha (α), 

beta (β), gamma (γ), delta (Δ) and epsilon (E). HCH has a strong flavor and odor, which 

can be transported and accumulated in crops and animal products and subsequently 

humans. HCH is still used and manufactured in many developing countries due to its low 

cost (Karabelas et al., 2009). Organochlorine pesticides (α-HCH, β-HCH, γ-HCH, 

aldrin, dieldrin, endrin, o,p′-DDE,  p,p′-DDE, o,p′-DDD, p,p′-DDD, o,p′-DDT, and p,p′-

DDT),  organochlorine pesticides (OCPs), particularly DDT and HCH, are of major 

international concern due to their persistent properties and wide reach, especially in 

developing countries. Agricultural runoff, domestic and industrial wastewater, and 

atmospheric deposition is the most source of Organochlorine pesticides in the water 

environment. The danger of organochlorine pesticides lies in their high potential for 

bioaccumulation, which poses a real threat to humans and the environment (Zhu et al., 

2005; Syed et al., 2013). OCPs can bioaccumulate ( enter of OCPs into the tissues of 

organisms)  in organisms due to their lipophilic nature (Sparling, 2016), causing 

dizziness, headache, vomiting, convulsions, tremors, muscle weakness, salivation, and 

confusion symptoms may occur in the short term, while the long-term exposure can cause 

deleterious effects on kidneys, liver, thyroid gland and nervous system. In addition, it can 

cause cancer in humans and can impact the reproductive organs of humans by inhibiting 

T stimulated by Leydig cells, and hence the effect would penetrate to the human placenta. 

Furthermore, experiments have proven its effect on the testicles and sperm formation 

through impacting the testicular steroidogenesis (Chatterjee & Agarwal, 1988; Wango 

et al., 1997). OCPs and PCBs have four critical characteristics: persistence, high toxicity, 

migration and bioaccumulation. Remarkably, persistence has the ability to resist 

photolysis processes, biodegradation and chemical decomposition. Whereas, 

bioaccumulation is characterized by low water solubility, and high lipid solubility, 

making them trend to bioaccumulation in food chains and bodies. For migration, it can 

travel long distances by several methods such as air (wind) and water (water currents) 

without degradation. On the other hand, high toxicity can cause endocrine disruptors, 

inhibit the immune system, fatty liver and reduce virus resistance (Liu, 2021).   
 

MATERIALS AND METHODS  

 

Study area and sampling 

Lake Edku is the third most important lake in northern Egypt, which is located in the 

Beheira Governorate, 30km from Alexandria Governorate, especially from Abu Qir 

coast. There are four drains (Idku, Al-Busaili, Al-Khairi and Al-Baraziq) representing the 

most important sources of the lake's supply of sewage and agricultural wastewater. 

Moreover, the lake is connected to the Mediterranean Sea through the Ma'adiyah inlet. 

Eight main points representing sampling stations were identified. These stations cover the 

whole lake, as shown in Fig. (1). Stations I, II, and III were selected to cover the southern 

and middle part of the lake; stations IV, V, VI and VII  were chosen to cover the northern 

part of the lake, and station VIII covers the point where the sea is connected to the lake.  

Via using an 5- liter amber glass bottle, the surface water samples were collected. Before 

sampling, nitric acid (10%) was used to wash the bottle, followed by diluted and 

deionized water; bottles were finally rinsed with water samples before collection to 
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prevent cross-contamination during the process (Salaudeen et al., 2018; Ambade et al., 

2021). Samples were preserved and kept in the icebox and transferred to the laboratory; 

water samples were stored in the refrigerator at – 3°C for further analysis of OCPs, and 

PCBs. During the present study, organochlorine pesticides (OCPs) 

hexachlorocyclohexane or benzene hexachloride (α-HCH, β-HCH, γ-HCH), Cyclodienes 

organochlorine (aldrin, dieldrin, and endrin), dichlorodiphenyltrichloroethane (o,p-DDE,  

p,p′-DDE, o,p-DDD, p,p′-DDD, o,p-DDT, and p,p′-DDT) and  polychlorinated biphenyls 

PCBs (PCB  28, 52, 101, 118, 138,153, and 180) were determined for analysis. 

 

 
 

                          Fig. 1. Map of sampling stations at Lake Edku, Egypt 

 

Extraction of dissolved OCPs and PCBs in water samples 

 Water samples were extracted through liquid-liquid extraction, followed by gas 

chromatographic analysis according to USEPA (1980) and Gómez-Gutiérrez et al. 

(2007).  Samples were filtered through GF/F 45mm- filter paper. One liter of each filtered 

water sample was mixed with 200mL of dichloromethane (DCM) and shacked vigorously 

for 5min in a 5L- conical flask, and then separated in a separating funnel. The lower layer 

of the organic solvent containing pollutants was collected on anhydrous Na2SO4 while 

adding pentachlorobenzene as an internal standard for organic chlorinate. The extract was 

concentrated by rotary evaporation to 2ml, and then to 1ml under a gentle stream of pure 

N2, and then it was transferred to 10ml- glass tubes while adding few amounts of n-

hexane. 

 

OCPs and PCBs Instrumental analysis  

For the quantification of OCPs and PCBs in water samples, Hewlett Packard was used 

having 5890 series II GC gas chromatograph equipped and connected with an electron 

capture detector (ECD), and fused-silica capillary (30× 0.32 mm× 0.52 μm) column was 

used. GC was programmed as follows: (1) initial temperature from 70 to 280°C with a 

rate of 5°C min
-1

 and then kept at 280°C for 20min. (2) Temperatures detector and 

injector were maintained at 300 and 270°C, respectively. (3) Carrier gas (Helium) of 

1.5ml min
-1

, with nitrogen gas at a following rate of 60ml min
-1

, was used as make-up (El 

Nemr et al., 2012). 
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RESULTS AND DISCUSSION 

 

Hexachlorocyclohexane (HCHs) or benzenehexachloride (BHC) 

Hexachlorocyclohexane (HCH) is a widespread contaminant that entered different 

environments during manufacture, and it is used as a pesticide and waste incineration 

(Van Birgelen, 1998). During the present study, as illustrated in Tables (1, 2) and Fig. 

(2), the total hexachlorocyclohexane (HCH) varied between a minimum value (1.07- 

2.96) µg/L at station (VIII-I) and a maximum value (6.53-5.11) µg/L at station (IV), with 

an average recorded (3.77±199 & 4.30±0.93μg/ L) during spring and summer, 

respectively. α-HCH varied between the lowest value (0.07- 0.09) µg/L at station III and 

the highest value (1.02- 1.22) µg/L at stations II & I, with an average (0.36± 0.3- 0.1± 

0.38μg/ L); β-HCH ranged between a minimum value (0.10- 0.53) µg/L at stations VIII& 

V and a maximum value (5.33- 3.34) µg/L at station IV, with an average recorded value 

(2.04±1.62- 1.86±0.87μg/ L). Whereas, γ -HCH fluctuated between a minimum (0. 69-

0.75) µg/L at stations IV & I and a maximum (3.15- 2.54) µg/L at stations II & VIII, with 

an average recorded value (1.37± 0.86 & 1.73± 0.60 μg/L) during spring and summer, 

respectively, which is considered the most dominated HCHs with insecticidal properties 

(lindane); however, HCH does not occur as a natural substance. Eminently, γ-HCH can 

be introduced to the water body via ―down-the-drain‖ resulting from wash-off bodies that 

use products containing γ-HCH, which is used for lice and scabies treatments; or via 

surface runoff ( dissolved or absorbed) or by deposition from air (Battaglin & Fairchild, 

2002). HCHs were isometrically arranged as β > γ > α during both seasons, while they 

were regionally assessed as III> II> V> VIII> VII> I> IV> VI during spring, and VIII> 

IV> VII> II> VI> III> V> I seasonally for spring> summer. HCHs are considered one of 

the less persistent organochlorine pesticides (POPs). HCH is a moderately stable 

compound that only decomposes under alkaline to yield trichlorobenzene (Said et 

al.,2015).   

 

Chlorinated cyclodienes (Aldrin, Dieldrin and Endrin) 

Total cyclodienes (TC) containing Aldrin, Dieldrin and Endrin form a strong soil 

insecticide due to their relative stability thus being used as termites’ control (Burkhard 

et al., 2023).  Toxicity of cyclodienes increases with increasing ambient temperature. 

Cyclodienes can cause nervous disorders followed by tremors and convulsions (Costa, 

2015). As illustrated in Tables (1, 2), Aldrin recorded values ranging from 0.46μg/ L at 

station VIII to 5.12μg/ L at station V, with an average of 2.38 ±1.76μg/ L during spring, 

while values from 0.32 at station VIII to 7.36μg/ L at station IV were recorded with an 

average of 3.18±2.73μg/ L during summer. Aldrin is less resistant to oxidation compared 

to aromatic compounds. In the ecosystem, Aldrin converts to Dieldrin in the environment 

(Said et al., 2015). Dieldrin recorded values ranging from 0.46μg/ L at station IV to 

4.26μg/ L at station III, with an average of 2.34±1.20μg/ L during spring, and from 

0.35μg/ L at station VIII to 7.18μg/ L at station III, with an average of 2.61±2.27μg/ L 

during summer. On the other hand during spring,  Endrin fluctuated between 0.79μg/ L at 

station VI and 7.12μg/ L for station II, with an average of 3.31±2.08μg/ L. While, during 

summer, it fluctuated between 0.86μg/ L at station VIII and 4.34μg/ L at station II, with 

an average of 2.48 ±1.22μg/ L. Total cyclodienes recorded a minimum value of 4.90μg/ L 

at station VIII and a maximum value of 14.64μg/ L, with an average of 8.04±2.99μg/ L 

during spring. During summer, the recorded values fluctuated between 1.53 and 14.13 
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μg/L with an average of 8.28±5.03μg/ L, as shown in Fig. (2).  Sites close to agricultural 

drains and fish farms (II, III, V & VI) recorded the highest concentrations, which 

indicates that they are the main source of these compounds. Total cyclodienes were 

arranged as Aldrin> Dieldrin> Endrin, seasonally as spring> summer, and regionally as 

II> III> V> I> IV> VII> VI> VIII during spring, and III> V> IV> I> II> VII> VI> VIII 

during summer. 

 

Diphenyl aliphatic (DDE, DDD, and DDT): 

Total diphenyl aliphatic (∑DDTs) concentration ranged from 1.75-1.14μg/ L at station 

VIII and 10.50- 17.43μg/L at station I, with an average of 7.39±3.13μg/ L & 9.63 ±5.59 

μg/L) during spring and summer, respectively, as shown in Table (1,  2) and Fig. (2). 

o,p′-DDE and p,p′-DDE recorded minimum values  (0.32- 0.09) μg/L at stations V & VIII 

and maximum values (3.44- 2.99) μg/L at stations ( I & III), with an average of 1.84 

±1.24 μg/L & 1.64 ±1.09 μg/L, respectively, during summer. While, during spring, it 

ranged between a minimum value (0.13- 0.24)μg/L at stations V & VI and a maximum 

value (4.22- 3.36)μg/L at stations IV & II, with an average value (1.30 ±1.47-1.23 

±1.05)μg/L. o,p′-DDD and p,p′-DDD concentrations recorded minimum values (055–

0.70) μg/L at stations I  & VI and maximum values (4.26–0.35) μg/L at stations III & II, 

with an average of 1.97±1.22 & 0.17±0.10μg/ L, respectively, during spring. On the other 

hand,  during summer it ranged from 0.27- 0.03μg/ L at the same station (VIII) to 4.03- 

3.02μg/ L at station I, with average values of 1.84 ±1.40 & 1.57 ±1.03μg/ L, respectively. 

o,p′-DDT and p,p′-DDT ranged between a minimum value (0.05-0.09) μg/L at stations 

VIII & II and a maximum value (5.12-7.05) μg/L at stations VI & I, with an average 

(1.64 ±1.89-1.08 ±2.42) during spring. During summer, it ranged between 0.09 & 0.34 

μg/L at station VIII and a maximum value (3.30-2.21) μg/L at stations I & VII, with an 

average of 1.52 ±1.06 & 1.24 ±0.62μg/ L, respectively, as shown in Table (1, 2). p,p’-

DDT is considered the main component of insecticides containing DDT which it contains 

(65–80%) as an active ingredient (Battaglin & Fairchild, 2002). The high concentrations 

of total DDTs might result from the discharge of untreated effluents from the main drains 

that flow into the lake, or that release from the agricultural areas located upstream in the 

drains (Bousaly, Edku, Berseek and El-Khairy) could be transported and deposited. The 

average contributions of DDT congeners mixture detected in the water samples were in 

the order of: o,p′-DDD> o,p′-DDT> o,p′-DDE>  p,p′-DDE>p,p′-DDT > p,p′-DDD during 

spring and o,p′-DDT> o,p′-DDE> o,p′-DDD>  p,p′-DDE and p,p′-DDT > p,p′-DDD  

during summer (Tables 1, 2). DDE and DDD resulting from DDT break down, DDE, 

DDD and DDT do not dissolve easily in water and take a long time (2:15 year) to 

degradation by Microorganisms (ATSDR, 2022). swallowing large amounts of DDT can 

lead to headaches, nausea and seizures and can cause Type II diabetes mellitus; scientific 

experiments revealed that exposure of animals to large quantities of DDT may lead to 

nervous system, liver and reproductive system disorders (Peter & Cherian, 2000; 

Bernardes et al., 2015).  The increase in DDT concentration, especially p,p-DDT is due 

to being the most prevalent. Solar radiation and metabolism of aquatic organisms are 

considered the most important reasons for DDT degradation  (Sudharshan et al., 2012). 

 

Polychlorinated biphenyls (PCBs) 

Regional and seasonal distribution of PCBs (28, 52, 101, 118, 138, 153 and 180) in Lake 

Edku water samples is illustrated in Table (1, 2) and Fig. (2). PCB congener 28 was 
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predominant with concentration values ranging between 0.70 at station VIII and 12.35𝜇g/ 

L at station II, with an average of 4.35±4.13𝜇g/ L−1during spring; and from 0.09 𝜇g/L at 

station VIII and 7.01 𝜇g/L at station III, with an average of 3.33±2.38 𝜇g/L−1 during 

summer. Other PCBs ranged from 0.06 at station VII to 11.2 at station II, with an average 

of  2.75 ±3.60𝜇g/ L, and from 0.51 at station V to 3.65 at station IV, with an average of 

2.07 ±1.15𝜇g/ L, and from 0.95 at station II to 2.33 at station VI, with an average of 1.48 

±0.52𝜇g/ L. While, it fluctuated from 0.89 at station VII to 5.15 at station V, with an 

average of 2.46 ±1.56𝜇g/ L),  and from 0.09 at station I to 2.01 at station VII, with an 

average of 0.70 ±0.67𝜇g/ L. On the other hand,  values varied from 0.01 at station V to 

1.25 at station II, with an average of 0.52 ±0.47 for PCBs ( 52, 101, 118, 138, 153, and 

180), respectively, during spring. Additionally, during summer, the range was from 0.23 

at station VIII to 6.23 at station III, with an average of 2.63 ±2.00𝜇g/ L, and from 0.32 at 

station VIII to 4.02 at station I, with an average of 2.35 ±1.31𝜇g/ L, while values ranged 

from 0.11 at station VIII to 6.79 at station III, with an average of 2.32 ±2.32𝜇g/ L,  and 

differed from 0.09 at station VI to 6.12 at station V, with an average of 2.60 ±2.44𝜇g/ L.   

Other values were recorded (from 0.11  at station VIII and 3.22 at station II with an 

average 1.62 ±1.13 𝜇g/L), (from 0.02 at station VIII and 2.14 at station III with an 

average 1.37 ±0.69 𝜇g/L) for PCBs ( 52, 101, 118, 138, 153 and 180), respectively. 

Seasonal distribution is referred to the fact that, PCB 28> 52>138> 101> 118> 153> 180 

during both seasons, regional distribution referred to that the station II> III> IV> VII> 

VI> I> V> VIII during spring, and station III> II> I> V> IV> VIII> VI> VIII, 

respectively, during summer. The presence of high concentrations in their station (III) in 

both seasons is an indication that the source of the PCBs in the lake originates from 

agricultural drainage or human activities. The presence of some high concentrations in 

some different areas is an indication of the transport of PCBs (Weiss et al., 2000).  The 

outer areas of the lake are gradual to the center of the lake, then the lowest levels are in 

the area where the lake is connected to the sea, which may be a result of the volume of 

water flowing in that area. PCBs are considered stable and semi volatile compounds, thus 

they can move long distances (Mansour, 2009). The PCBs concentration near drains 

effluents is higher than the areas near the Bogaz (inlet), whose characteristics are 

considered the main reason for PCBs distribution, especially for high-molecular-weight 

PCB (Motelay-Massei et al., 2004). The finding of the current study agrees with that of 

Khadhar et al., (2018) who elucidated that, the downstream stations contain high levels 

of higher molecular PCB, predominantly indicating anthropogenic sources. 
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Table 1. Levels (μg/L) of OPCs and PCBs in water samples collected from Lake Edku 

during spring 2022 

 
I II III IV V VI VII VIII Min. Max. Aver. SD. 

α-HCH 0.42 1.02 0.07 0.51 0.12 0.25 0.33 0.15 0.07 1.02 0.36 0.31 

β-HCH 1.56 2.33 2.48 5.33 0.25 1.88 2.39 0.10 0.10 5.33 2.04 1.62 

γ-HCH 2.16 3.15 1.25 0.69 1.26 0.90 0.76 0.83 0.69 3.15 1.37 0.86 

HCHs 4.13 6.51 3.80 6.53 1.63 3.03 3.47 1.07 1.07 6.53 3.77 1.99 

Aldrin 0.96 4.26 1.55 2.24 5.12 3.70 0.78 0.46 0.46 5.12 2.38 1.76 

Dieldrin 2.41 3.26 4.26 0.46 2.35 1.35 3.03 1.63 0.46 4.26 2.34 1.20 

Endrin 4.56 7.12 3.13 4.53 0.98 0.79 2.56 2.81 0.79 7.12 3.31 2.08 

TC 7.94 14.64 8.93 7.22 8.46 5.83 6.37 4.90 4.90 14.64 8.04 2.99 

o,p-DDE 0.54 2.35 2.16 4.22 0.13 0.24 0.36 0.37 0.13 4.22 1.30 1.47 

p,p-DDE 1.01 3.36 2.06 1.35 0.55 0.24 1.03 0.26 0.24 3.36 1.23 1.05 

o,p-DDD 0.55 2.36 4.26 2.65 1.35 2.48 1.37 0.75 0.55 4.26 1.97 1.22 

p,p-DDD 0.23 0.35 0.14 0.26 0.09 0.07 0.12 0.13 0.07 0.35 0.17 0.10 

o,p-DDT 1.13 1.12 0.15 0.33 1.26 5.12 4.01 0.05 0.05 5.12 1.64 1.89 

p,p-DDT 7.05 0.09 0.25 0.36 0.15 0.31 0.22 0.18 0.09 7.05 1.08 2.42 

DDTs 10.50 9.64 9.01 9.17 3.52 8.44 7.10 1.75 1.75 10.50 7.39 3.13 

PCB 28 0.70 12.35 8.26 5.41 1.26 0.98 3.25 2.55 0.70 12.35 4.35 4.13 

PCB 52 2.36 11.32 2.04 3.11 0.69 1.36 0.06 1.06 0.06 11.32 2.75 3.60 

PCB 101 2.06 1.26 2.54 3.65 0.51 3.25 2.54 0.72 0.51 3.65 2.07 1.15 

PCB 118 1.56 0.95 2.14 1.35 1.02 2.33 1.45 1.03 0.95 2.33 1.48 0.52 

PCB 138 1.06 2.37 3.02 2.01 5.15 1.06 0.89 4.13 0.89 5.15 2.46 1.56 

PCB 153 1.02 0.15 0.32 0.14 0.75 1.13 2.01 0.09 0.09 2.01 0.70 0.67 

PCB 180 0.22 1.25 1.09 0.85 0.01 0.15 0.36 0.22 0.01 1.25 0.52 0.47 

TP 22.57 30.79 21.74 22.91 13.60 17.31 16.95 7.72 7.72 30.79 19.20 6.95 

PCBs 8.97 29.65 19.42 16.53 9.38 10.26 10.56 9.79 8.97 29.65 14.32 7.27 
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Table 2. Levels (μg/L) of OPCs and PCBs in water samples collected from Lake Edku 

during summer 2022 

 

I II III IV V VI VII VIII Min. Max. Aver. SD. 

α-HCH 1.22 1.03 0.09 0.66 0.65 1.02 0.71 0.31 0.09 1.22 0.71 0.38 

β-HCH 0.98 1.88 1.95 3.34 0.53 1.55 2.38 2.25 0.53 3.34 1.86 0.87 

γ-HCH   0.75 2.02 1.36 1.10 2.04 2.07 1.93 2.54 0.75 2.54 1.73 0.60 

HCHs          2.96 4.93 3.40 5.10 3.21 4.64 5.02 5.11 2.96 5.11 4.30 0.93 

Aldrin 4.42 0.99 3.97 7.36 6.38 1.03 1.02 0.32 0.32 7.36 3.18 2.73 

Dieldrin 3.66 2.67 7.18 1.85 3.73 0.89 0.58 0.35 0.35 7.18 2.61 2.27 

Endrin 1.99 4.34 2.99 3.63 2.99 1.03 2.03 0.86 0.86 4.34 2.48 1.22 

TC  10.07 8.01 14.13 12.83 13.10 2.94 3.63 1.53 1.53 14.13 8.28 5.03 

o,p-DDE 3.06 1.99 3.02 3.44 1.43 0.34 1.08 0.32 0.32 3.44 1.84 1.24 

p,p-DDE 2.96 2.01 2.99 2.35 0.76 0.92 0.99 0.09 0.09 2.99 1.64 1.09 

o,p-DDD 4.03 3.05 3.04 1.99 0.98 0.52 0.81 0.27 0.27 4.03 1.84 1.40 

p,p-DDD 3.02 1.11 2.34 2.21 2.22 1.02 0.57 0.03 0.03 3.02 1.57 1.03 

o,p-DDT 3.30 1.35 2.59 1.30 2.02 0.62 0.88 0.09 0.09 3.30 1.52 1.06 

p,p-DDT 1.07 0.99 1.33 2.07 1.05 0.88 2.21 0.34 0.34 2.21 1.24 0.62 

DDTs 17.43 10.50 15.31 13.36 8.46 4.30 6.55 1.14 1.14 17.43 9.63 5.59 

PCB 28 5.53 4.99 7.01 3.65 2.33 1.04 2.02 0.09 0.09 7.01 3.33 2.38 

PCB 52 3.33 4.21 6.23 2.94 1.32 0.55 2.21 0.23 0.23 6.23 2.63 2.00 

PCB 101 4.02 3.55 3.55 2.32 2.10 0.94 1.98 0.32 0.32 4.02 2.35 1.31 

PCB 118 3.92 3.00 6.79 0.34 3.02 0.87 0.54 0.11 0.11 6.79 2.32 2.32 

PCB 138 3.06 3.10 6.00 0.65 6.12 0.09 1.65 0.12 0.09 6.12 2.60 2.44 

PCB 153 2.02 3.22 1.01 0.93 3.22 0.91 1.55 0.11 0.11 3.22 1.62 1.13 

PCB 180 1.92 2.02 2.14 1.12 1.32 1.04 1.38 0.02 0.02 2.14 1.37 0.69 

 PCBs 23.80 24.09 32.73 11.95 19.43 5.44 11.32 1.00 1.00 32.73 16.22 10.64 

TP 30.45 23.44 32.84 31.29 24.77 11.88 15.20 7.78 7.78 32.84 22.21 9.53 
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Fig. 2. Horizontal distribution contours stimulating OCPs and PCBs in Lake Edku during spring and summer 

2022 
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Sources of OCPs and PCBs in surface water 
α-HCH/γ-HCH and β-/(α+γ)-HCH ratios were used to determine the sources of OCPs, 

Moreover, β-/(α+γ)-HCH ratio is another method used to determine the usage history of 

technical HCH and lindane. The ratio of DDD/DDE was used to detect the degradation 

pathways of DDTs; DDT degrades to DDD, and DDE under aerobic and anaerobic 

conditions. Whereas, o,p′-DDT/p,p′-DDT ratio was used to determine the sources of DDTs 

(DDE+DDD)/ ∑DDTs in order to determine possible historical and recent pollution 

sources of DDTs, as illustrated in Table (3). 

 Fig. (3) shows that, the ratio of α-HCH/γ-HCH in all studied stations was below 4, with β-

HCH and γ-HCH as the predominant isomer; β-HCH is considered the most dominant 

isomer persistent found in different environments; α-HCH and γ-HCH can be biodegraded 

to β-HCH in the environment (Willett et al., 1998; Wu et al., 2013). The result suggested 

the use of pure lindane for agricultural purposes (Botwe et al., 2017; Hao et al., 2019; 

Malhat et al., 2021), where agricultural drainage water is considered one of the most 

important sources of water for Lake Edku. The ratio of β-/(α+γ)-HCH varied between 1.88 

and 0.18 during spring, and from 1.91 to 0.20 during summer; stations VI & VIII as well 

as I & II recorded values below 0.5, suggesting that the recent HCH input (Zhou et al., 

2014) occurred in the study area, as illustrated in Fig. (3). It may be assumed that HCHs 

contamination is mainly originated from past usage. During dechlorination and 

dehydrochlorination processes, DDT can be biodegraded into DDE under aerobic 

conditions and DDD under anaerobic conditions in the environment; DDE/DDD ratio if 

greater than 1, then it would indicate the occurrence of aerobic degradation of parent 

DDT; if it is lower than 1, it indicates that the losses of  DDT were predominantly by 

anaerobic degradation (Zhou et al., (2014) (Table 3). As illustrated in Fig (4), the 

DDE/DDD ratios ranged between 0.08 and 10.61during spring and from 0.67 to 1.72 

during summer; the results of ratio values greater than 1 at stations II, III, IV and VIII 

during spring and stations I, II, III and IV during summer are referred to anaerobic 

degradation; on other hand stations I, V, VI and VII and stations V, VI, VII and VIII 

during spring and summer, respectively, showed aerobic degradation. Observation data 

referred to the aerobic and anaerobic degradation processes as the main pathway for DDT 

degradation in the study area during the present study. 

DDE + DDD)/∑DDTs ratio is used to assess the possible modern/recent input past input 

pollution sources of DDT. In the present study, as illustrated in Fig (4), (DDE + 

DDD)/∑DDTs ratios ranged between 0.22 at station I and 0.98 at station II during spring, 

while during summer, a range between 0.52 at station VII and 0.77 at station II was 

recorded. Observed values in all stations during spring and summer > 0.5, except stations 

I, VI and VII during spring that recorded a value > 0.5, suggesting past input for DDT. 

The o,p′-DDT/p,p′-DDT ratio is used to determine the source of origin of DDT, which 

may be technical grade DDT or from dicofol-type DDT. Dicofol is an organochlorine 

pesticide that is synthesized from technical DDT and is commonly used as a miticide 

pesticide, especially against spider mites (Schwarzbach, 1991). During the present study, 

as shown in Fig. (4), the o,p′-DDT/p,p′-DDT ratio fluctuated between 0.15 at station I and 

18.47 at station VII during spring,  and between 0.25 at station VIII and 3.08 at station I 

during summer; stations I  & VIII in addition to station VIII during spring and summer, 

respectively, recorded technical grade DDT, while the remaining stations recorded 

dicofol-type DDT. 
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Fig. 3. Hexachlorocyclohexane ratio (α-HCH/γ-HCH, and β-/(α+γ)-HCH) for water 

samples of Lake Edku during spring and summer 2022 

 

 

Fig. 4. (DDE + DDD)/∑DDTs, o,p′-DDT/p,p′-DDT and DDE/DDT ratio for water 

samples of Lake Edku during spring and summer 2022 
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Toxicity and ecological risk assessment 

Ecological risk assessment was applied to detect the toxicity induced by organochlorine 

pesticides (OCPs) based on two methods (1) RQ, as illustrated in bellow equation:  

RQ=EEC×PNEC 

Where, RQ: risk quotient; EEC  concentration of each OCP (mg/L) from the present 

study, and PNEC: the predicted no-effect concentration for a particular OCPs (mg/L) 

according to Khadhar et al. (2018). 

Predicted No effect concentration (PNEC) values according to Di Lorenzo et al. (2018) 

were assessed as follows: o,p DDD (0.0071), o,p DDE (0.0015), p,p DDE (0.0007),  o,p 

DDT (0.0013), p,p DDT (0.0098), α-HCH (0.1571), β-HCH (0.1571), γ -HCH (0.0163), 

Aldrin (0.0312), Dieldrin (0.0054). Risk quotients ranking as RQ < 0.01 (very low risk), 

0.01 ≤ RQ < 0.1 (low risk), 0.1 ≤ RQ < 1 (moderate risk), 1 ≤ RQ < 10 (high risk), RQ ≥ 10 

(very high risk) (Peng et al., 2014; Yu et al., 2014). 

Second methods by comparing the results with EPA water quality criteria; Criteria 

Maximum Concentration (CMC) and Criterion Continuous Concentration (CCC) for  (γ-

HCH , Aldrin, Dieldrin, Endrin, p,p'-DDT, PCBs) as (0.95, 3, 0.24, 0.086, 1.1, and  0.014 

μg/L) and (0.16, 1.3, 0.56, 0.036, 0.001, and 0.03 μg/L) respectively; WHO for (γ-HCH, 

Dieldrin, and p,p'-DDT) as (2, 0.03, and 2 μg/L) based on (EPA, 2000). 

 As shown in Fig. (5), the RQ of the studied organochlorine pesticides (OCPs) most of 

which are more than 10, demonstrating a very high risk, except for α-HCH that recorded a 

moderated risk at stations  III, V and VIII during spring, and station III during summer. 

Whereas, a very high risk was detected at stations I, II, IV, VI and VII during spring and at 

stations I, II, IV, V, VI, VII and VII during summer.  On the other hand, β-HCH recorded 

a moderated risk at station VIII during spring and recorded a high risk at stations I and 

VIII during spring and stations I, V and VI during summer. Upon comparing the current 

results with water quality standards, it was noted that, γ-HCH during spring and summer 

recorded values higher than criteria continuous concentration (CCC); while during spring, 

stations I, II, III and V recorded values higher than the criteria maximum concentration 

(CMC), and other stations recorded a low value. It is worthy to mention that, during 

summer all stations recorded values higher than the criteria maximum concentration, 

(CMC) excepted for station I. Aldrin in stations II, III, IV and V recorded values higher 

than criteria continuous concentration (CCC) during spring and summer; stations I, III, IV 

and V recorded values higher than the criteria maximum concentration (CMC) during 

spring and summer, respectively. Endrin during spring and summer in all stations recorded 

values higher than the criteria maximum concentration (CMC) and criteria continuous 

concentration (CCC). In the same case for PCBs, all stations recorded values higher than 

criteria maximum concentration (CMC) and criteria continuous concentration (CCC). For 

Dieldrin, almost all stations recorded values higher than criteria maximum concentration 

(CMC) and criteria continuous concentration (CCC), except for station IV during spring 

and station VIII during summer. While for p,p'-DDT, all stations recorded values higher 

than CMC; station (I) during summer and stations IV and VII during summer recorded 

values higher than CCC, as illustrated in Fig. (5). 
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Table 2. Sources of OCPs and PCBs in surface water 

Compound Ratio Indicate Reference 

α-HCH/γ-

HCH 
04:07 

possible source of 

technical HCHs 

(Iwata et al., 1993, 1995; Botwe et al., 2017; 

Hao et al., 2019; Malhat et al., 2021)  

Higher 

than 7 

Atmospheric 

source 

 

lower 

than 4 
lindane dominant 

β-/(α+γ)-

HCH 

lower 

than 0.5 

HCH and/or 

lindane are used 

recently 
(Liu et al., 2012; Sari et al., 2020) 

 

Higher 

than 0.5 
Applied in the past 

 

DDD/DDE 
less than 

one 
aerobic degradation Hidayati et al., (2021) 

 

higher 

than one 

Anaerobic 

degradation  

(DDE+DDD)/ 

∑DDTs 

less than 

0.5 

Modern/recent 

input 
(Neves et al., 2018; Tran et al., 2019) 

 

higher 

than 0.5 
Past input 

 

o,p′-

DDT/p,p′-

DDT 

0.2 to 

0.3 
Technical grade (Qiu et al., 2005; Aamir et al., 2017) 

 

Statistical analysis 

1. Principal component analysis (PCA) 

Principal component analysis (PCA) for OCPs and PCBs pollutants under examination 

were determined using Origin Lab 2019 program; two principal components were 

extracted and illustrated as follows: 

 First component (PCI). This factor represented 41.55% during spring and 57.77% 

during summer of the total variance, as illustrated in Fig. (6). During spring, all stations 

recorded strong positive loading plots reaching 0.34, except for o,p-DDT, p,p-DDT, PCB 

118, PCB 138 and PCB 153, which recorded a negative loading; during summer they 

reached 0.29, except β-HCH and γ-HCH, which recorded a negative loading. The first 

component may be suggested due to anthropogenic activities and sources of pollution 

from POPs including the disposal of industrial chemicals and agrochemicals (Thakur & 

Pathania, 2020). 

 Second component (PCI). The second factor that can suggest that these compounds 

could be transferred to the lake from the drains, and fish farms that are accumulated and 

deposited of it in the lake. The second factor recorded 19.52% and the loading plot 

reached 22.12 during spring; 13.94% and the loading plot reached 0.56 during summer, 

respectively; during spring the following pollutants β-HCH, o,p-DDE, p,p-DDE, o,p-

DDD, o,p-DDT, p,p-DDT, PCB 28, PCB 101, PCB 118, PCB 153; and β-HCH, Aldrin, 

Endrin, o,p-DDE, p,p-DDE, o,p-DDD, p,p-DDD, p,p-DDT, PCB 28, and PCB 52 during 

summer; these compounds can represent the second factor, as illustrated in Fig. 6). 
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Fig. 5. Comparing the results with EPA water quality criteria for OCPs and PCBs toxic 

pollutants 
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Fig. 6. Loading matrix of the first two principal components of POPs (OCPs and PCBs) in 

water samples from Lake Edku during spring and summer 2022 
 

2. Hierarchical cluster analysis (HCA) 

 Single linkages. The results of hierarchical cluster analysis (HCA) during spring and 

summer are illustrated in Fig. (7). Three principal clusters were detected during spring 

recording seven stages as follows: stage (1) with a distance of 5.18 between stations 6 

and VII,  stage (2) with a distance of 5.58 between stations 5 and VIII, stage (3) with a 

distance of 6.57 between stations 5 and VI, stage (4) with a distance of 6.72 between 

stations 3 and IV, stage (5) with a distance of8.23 between stations 3 and V, stage (6) 

with a distance of8.63 between stations 1 and III, and stage (7) with a distance of11.91 

between stations 1 and II. During summer, HCA was noted as follows: stage (1) with a 

distance of 2.83 between stations VI and VIII, stage (2) with a distance of 3.53 between 

stations VI and VII, stage (3) with a distance of 5.89 between stations I and II, stage (4) 

with a distance of 6.76 between stations I and VI, stage (5) with a distance of 6.85 

between stations I and III, stage (6) with a distance of 7.48 between stations I and V, 

stage (7) with a distance of 7.62 between stations I and IV, as illustrated in Fig. (7). 

Station VII recorded the most representative observation, and stations II and III recorded 

the least representative observation during spring and summer respectively. 
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Fig. 7. Hierarchical cluster analysis dendrogram (single linkage) showing the spatial 

distribution of POPs (OCPs and PCBs) among different sampling sites in water from Lake 

Edku during spring and summer 2022 
 

 Complete linkage.  For the complete linkage records,  stage (1) was recorded with a 

distance of 0.79 between α-HCH and p,p-DDD; stage (2) with a distance of 1.29 

betweenα-HCH and PCB 180; stage (3) with a distance of 1.95 between γ-HCH  and p,p-

DDE; stage (4) with a distance of 2.47 between α-HCH and PCB 153; stage (5) with a 

distance of 2.57 between β-HCH and PCB 101; stage (6) with a distance of 3.06 between 

o,p-DDD and PCB 118; stage (7) with a distance of 3.54 between α-HCH and γ-HCH , 

and stage (8) with a distance of 3.59 between β-HCH and o,p-DDD, while stage (9) had  

a distance of 3.84 between β-HCH and o,p-DDE; stage (10) with a distance of 4.76 

between α-HCH and β-HCH; stage (11) with a distance of 5.03 between Dieldrin and 

PCB 138; stage (12) with a distance of 5.44 between Aldrin and Dieldrin; stage (13) with 

a distance of 5.95 between Endrin and PCB 52; stage (14) with a distance of 6.06 

between α-HCH and o,p-DDT; stage (15) with a distance of 6.23 between α-HCH and 

Aldrin; stage (16) with a distance of 7.72 between α-HCH and p,p-DDT; stage (17) with 

a distance of 8.08 between Endrin and PCB 28, and stage (18) with a distance of 10.75 

between α-HCH and Endrin. During summer as illustrated in Fig. (6), the HCA showed 

results as follows: stage (1) with a distance of 1.16 between p,p-DDD and o,p-DDT; 

stage (2) with a distance of 1.44 between o,p-DDE and p,p-DDE; stage (3) with a 

distance of 1.78 between Dieldrin and PCB 118; stage (4) with a distance of 1.85 

between o,p-DDD and PCB 101; stage (5) with a distance of 2.02 between p,p-DDD and 

PCB 180; stage (6) with a distance of 2.17 between o,p-DDE and p,p-DDD; stage (7) 

with a distance of 2.44 between α-HCH and p,p-DDT; stage (8) with a distance of 2.62 

between o,p-DDE and o,p-DDD; stage (9), with a distance of 2.81 between PCB 28 and 

PCB 52; stage (10) with a distance of 2.88 between β-HCH and γ-HCH; stage (11) with a 

distance of 3.39 between α-HCH and β-HCH; stage (12) with a distance of 3.45 between 
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Dieldrin and PCB 138; stage (13) with a distance of 3.50 between o,p-DDE and PCB 

153; stage (14) with a distance of 3.75 between Endrin and o,p-DDE; stage (15) with a 

distance of 4.08 between α-HCH and Endrin; stage (16) with a distance of 4.57 between 

Dieldrin and PCB 28; stage (17) with a distance of 6.16 between α-HCH and Dieldrin, 

and stage (18) with a distance of 7.97 between α-HCH and Aldrin. p,p-DDE recorded the 

most representative observation during both seasons, and PCB 28 and Aldrin recorded 

the least representative observation during spring and summer, respectively, as shown in 

Fig. (8). 

 

Fig. 8. Hierarchical cluster analysis dendrogram (complete linkage) between group for 

POPs (OCPs and PCBs) in water samples from Lake Edku during spring and summer 

2022 
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