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INTRODUCTION  

 

         Pollution is one of the hard challenges that face our societies in the current era. 

Water pollution is specifically a threatening one as it affects the main source of life 

causing damage to humans and the environment. We recall that water pollution is defined 

by the contamination of natural water bodies by chemical, physical, radioactive or 

pathogenic microbial substances. Thus, remediation of pollution of water resources is of 

high demand. A mathematically simple way to model this situation is to use the 

Advection-Dispersion Equation (ADE). The ADE describes the solute transport due to 

the combined effects of dispersion and groundwater flow in porous media (Bear and 

Verruijt, 1987). Also, the ADE is employed in chemical engineering (Bérard et al., 

2020) and in modelling various situations, including radionuclide releases (Esmail et al., 

2020), secondary migration of hydrocarbons (Borazjani et al., 2019), the dispersion of 

air pollutants in a finite media (Sylvain et al., 2021), petroleum contamination (Berlin 

and Suresh, 2019), among many others. It is obvious that a dimensionless solution 

accounting for different cases is of great value. 
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         An analytical solution is obtained for the three-dimensional 

advection-dispersion equation describing temporally dependent flow 

domain through an isotropic semi-infinite homogeneous porous medium by 

using the Laplace transformation technique. Also, a numerical solution is 

obtained by using the explicit finite difference method. The usage of 

dimensionless variables allows this solution to be applicable in a wide 

variety of cases. Impacts of different parameters controlling pollutant 

dispersion are studied with the help of graphs and a table. We discuss how 

to use the fact that the provided solution predicts pollutant concentration 

along the river to help in the decision-making regarding its remediation with 

effective methods. This paper mathematically indicates that releasing clean 

water from a barrage reduces the pollutant concentration in a river. 
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       The analytical solutions of the ADE exist for a wide range of cases as early as the 

1980s. Those are easily found in the literature. We present in this paragraph some of the 

recent developments. (Yadav and Kumar, 2017) obtained analytical solutions for the 2D 

ADE with pulse-type input source. (Olowe and Kumarasamy, 2017) simulated 

ammonia nutrient pollutant transport using the ADE and Hybrid Cell in Series models. 

(Chaudhary et al., 2020) analysed the 1D pollutant transport in semi-infinite 

groundwater reservoir. (Manitcharoen and Pimpunchat, 2020) obtained analytical and 

numerical solutions to the 1D ADE for uniformly and exponentially increasing forms of 

sources. (Yadav and Kumar, 2021) obtained analytical solution of two-dimensional 

conservative solute transport in a heterogeneous porous medium for varying input point 

source. (Saleh et al., 2022) solved the 1D ADE describing exponential variations in 

pollutant concentration numerically and analytically capturing results regarding the 

remediation of pollution. (Hadhouda and Hassan, 2022) solved numerically the coupled 

pair of nonlinear equations modelling pollutant concentration and dissolved oxygen 

concentration obtaining results concerning the unsteady remediation of pollution in a 

river by aeration with the release of clean water. 

        In the present paper, we introduce dimensionless variables and acquire analytical 

and numerical solutions in the dimensionless form for the 3D ADE with temporally 

dependent parameters using the Laplace transform and the explicit finite difference 

scheme respectively. We compare the analytical solution with the respective numerical 

solution. Furthermore, we investigate 3 cases: (i) The effect of releasing water whose 

pollutant concentration is less than the river’s initial pollutant concentration. (ii) The 

effect of releasing water whose pollutant concentration is more than the river’s initial 

pollutant concentration. (iii) The case study of pulse-type input condition. By using the 

table and figures we explain how this simple model can predict pollutant concentration 

values at a given time and place along a river. Resulting in a big control and flexibility 

over different treatment methods (engineering, chemical, biological, …etc) which leads 

to efficient management of water resources. 

 

MATERIALS AND METHODS  

 

1. The Governing Equation: 

        The three-dimensional partial differential equation describing hydrodynamic 

dispersion in adsorbing homogenous, isotropic porous medium can be written as (Bear, 

1972; Leij et al., 1991; Yadav et al., 2010): 
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(day
-1

) is a first-order decay term, each of them is a function of time   (day).   is positive 

downwards, where the origin is taken to be on the surface of the river.  

        The flow domain parameters are considered to be temporally dependent and the 

solute dispersion coefficients are considered to vary proportionally to the respective 

velocity (Singh et al., 2013), so we have: 
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dispersion coefficients.    (day
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) is the first-order decay constant term.   (day
-1

) is a 

constant.    (m) is a constant that depends upon pore geometry of the medium. We 

choose  (  ) such that for     or     we have  (  )    which ensures that the 

nature of the initial condition doesn’t change in the new time domain. Introducing a 

distance variable   (m) and a time variable   (day) defined by (Crank, 1975; Jaiswal et 

al., 2009;  Kumar et al., 2011; Yadav et al., 2011): 
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Equations (2) and (3) transform equation (1) into: 
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Such that     represents the dispersion and   represents the velocity. 

2. Problem description: 

        We assume a point source input at the origin    , with initial concentration along the 

river   . Also, far from the source, it is assumed that there is no pollutant concentration 

exchange with the system. Hence the initial and boundary conditions are: 
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Equation (3) transforms equations (6-8) into: 
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From equations (4), (6), and (7), we see that the pollutant concentration   in the porous 

media depends on the five parameters (              and   ). It is generally more 

convenient to write equations in dimensionless variables. Take    as the time scale,    as 

the velocity scale,    as the concentration scale and use the symbol (*) to denote a 

dimensionless quantity, hence: 
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Equation (12) transforms equations (4) and (9 -11) into: 
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  is the Peclet number. From equations (13-16) it is clear that: 

(I) The parameters controlling    are reduced from five (              and   ) to the three 

(     and   
 ). 

(II) The effect of   
  is opposite to the effect of       on   . 

(III) The effect of    is the same as the effect of    on   . 

To solve equation (13) associated with initial and boundary conditions (14-16), we use 

the following transformation (Kumar et al., 2011) which eliminates the convection term 

and the first order decay term: 
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3. Analytical solution of the problem: 

      Applying Laplace transformation on equations (18, 20 and 21) and using equation (19), then 

we have:  
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where   is the Laplace transformation parameter. The general solution of equation (22) with 

boundary conditions (23) and (24) is given by: 
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Now, applying the inverse of Laplace transformation on equation (25) and using equation 

(17), hence the analytical solution of the ADE (13) associated with the initial and 

boundary conditions (14-16) may be written in terms of (      )  as:  
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where    
     

 
. We confirmed that equation (26) satisfies equations (13-16). 

4. Special Cases: 

4.1 Releasing water whose pollutant concentration is higher than the river’s 

pollutant concentration (i.e.   
    

   ): 

This case is derived from equation (26) as:  
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This equation is equivalent to that obtained by (Genuchten and Alves, 1982) (Problem 

C13, R= μ =1,   =  
 ,     , γ=0). 

4.2 Pulse-type input condition: 

We consider equation (13) with pulse-type input condition: 
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Using dimensionless variables defined in equation (12), then equations (28-30) give: 
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The solution of equation (13) subjected to initial and boundary conditions (31-33) is 

given by (Genuchten and Alves, 1982) (Problem C5, R=μ=1, γ=0) as: 
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5. Numerical solution: 

        It is known that analytical solutions of ADE with limited initial and boundary 

conditions have very few applications and are very lengthy. Numerical methods do not 

have such limitations especially for arbitrary conditions (Savovic and Djordjevich, 

2012). Hence, numerical solutions are also obtained using a two-level explicit finite 

difference scheme in the case of uniform input. Step-size Δ  =0.1 and Δ  =0.002 along 

  -domain and   -domain, are chosen respectively. The explicit finite difference method 

is applied to solve equation (13) with initial and boundary conditions (14-16). The central 

difference scheme was used to represent 
    

         
   

    and a forward difference scheme 

for the term 
   

   , with these substitutions, equation (13) can be written as: 

      
          

         
          

    

where i and j refer to the discrete step lengths Δ  and Δ   for the coordinates   and    

respectively, and    
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The stability criterion:   ,   ,    are chosen to lie between 0.0 and 0.5. Equation (36) 

(34) 

(35) 

(36) 
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represents a formula for       
  at the (     )   mesh point in terms of known values 

along the     time row. The initial and boundary conditions (14-16) may be written in the 

finite difference form as: 

    
    

                                

    
                            

    
        

                           

where     
        is the grid dimension in the   direction and   

  is the distance 

measured from the origin at which 
   

     . 

 

RESULTS AND DISCUSSION 

 

        We set  (  )      (    ).The solutions obtained are illustrated in Table 1 and 

Figs. 1-8. Table 1 shows the values of    for the common values used in Table 1 and 

Figs. 1,2:         (    ),         (    ),         (    ) ,         ( ), 

   ,        (   ),       (   ),   =1.06 and   
 =0.1. Fig. 1 displays the variation 

of    with time    for the values                        , which corresponds to t = 

0.5 and 1.5 (day) respectively,      ( )       ( )    ( )           . From 

Fig. 1 and Table 1 It is clear that    increases as time    increases at any point of the 

domain as expected. This result agrees with that obtained by (Dimian et al., 2013; 

Dimian et al., 2014; Wadi et al., 2014; Ibrahim et al., 2015; Yadav and Kumar, 

2021). 

        Fig. 2 illustrates the variation of    with Peclet number Pe for the values Pe = 2, 

10;      ( )       ( )     ( ), and   =0.15. From Fig. 2  and Table 1 It is 

clear that    decreases with the increase of the Peclet number (Pe) at any point of the 

domain i.e. with the increase of    or the decrease of either    or   . This result agrees 

with that obtained by (Chrysikopoulos et al., 1990). 

       Fig. 3 shows a comparison between the analytical solution (given by equation (26)) 

and the numerical solution of equation (36), for the values                     

        =1.06 and   
 =0.1. Clearly, a complete agreement is found. Also, from the data 

in Table 1 and Fig. 3, for constant values of x, y and increasing values of z, i.e. increasing 

values of   , the values of    decrease and remain constant as      
  which confirms 

the boundary condition 
   

     . 

        Fig. 4  illustrates the variation of    with   
 , for the values   

 = 1.5, 1.75, 2; 

        Pe=8.467,   =1.06 and   =0.15. We observe that: 

1- Near the pumping origin (  =0) where the pollutant concentration of the released 

water (  
   ) is less than the river’s initial pollutant concentration (  

 ), the effect of   
  

is dominant, and as   increases, the effect of   
  decreases and the effect of   

  is 

dominant. 

(37) 

(38) 

(39) 
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2- The pollutant concentration takes an intermediate value between   
  and   

 . This 

confirms that releasing clean water into the river (i.e.   
  <   

 ) decreases the pollutant 

concentration of the river. 

        Figs. 5,6 display the variation of   with    for the pulse-type input case for the 

values         (     )        (     )   Pe=8.467,   =1.06,   
 =0.1 and 

  
 =0.5 and   =0.1, 0.2, 0.3, 0.7, 0.8 and 0.9. It is clear that if      

  and   
    

 , as 

time increases the value of    increases at any given point, and if      
  and   

    
 , 

as time increases the value of    decreases at any given point. Using      , we can 

predict with accuracy the time and the position of the peak of the curve which represents 

the place of accumulation of pollutants in the river, and by doing so we allow for various 

methods (chemical for example) to be very effective in treating pollution in a relatively 

small area of the river at a reasonable time. 

        Fig. 7 shows the variation of    with    for the pulse-type input case at      
  

for the values          Pe=8.467,   
 =0.1>  

 ,   =0.75 and   
 =0.5 where   = 2, 4, 

6 and 8. Since the flux Q of water (i.e. the volume of water crossing a section of area A of 

a river) Q = A   , hence the flux Q increases as    increases. It is clear that as    

increases the maximum value of    decreases. Furthermore, as    increases, the cleaned 

distance measured from the origin (  =0) increases. It is noticed that for high values of 

  , the value   fluctuates before settling for the constant value, this is due to the 

accumulation of pollutants cleaned and transported from the closest points to the barrage. 

        Comparing this figure with the experimental data given by (El Shazely, 2006), we notice 

that: 

In figure (3) in the experimental data, when the volume of released water increases from 

10 to 30 million        i.e. it increased 3 times, the peak of the curve (maximum 

concentration of the pollution) decreases to roughly 50%. Also, in Fig. 7  in this study 

when    increases 3 times (for example from 2 to 6) the corresponding peak is reduced to 

about 50% as well. 

        Fig. 8 shows the variation of    with    for      
  in the pulse-type input case for 

the values                    
 =0.1,   =0.75 and   

 =0.5 where    = 8.467, 24 and 

72. It is clear that    increases as the value of    increases. This result agrees with that 

obtained by (Chrysikopoulos et al., 1990). From Figs. 2,8 we conclude that the variation 

of    with    depends on the relative pollutant concentration between the released water 

(  
 ) and the river’s (  

 ). 
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     = 0.14888 

  = 0.049875 

Figure (1): The variation of    with time    for the values   = 0.049875     0,14888, which corresponds to t = 0.5 and 

1.5 (day) respectively, 0    1( ) ,0    1( ), z = 0(m),    =  8.467. 

  

  

 

Table (1): The variation of    with z(m), t(day), and Pe for the values       

    (   )   =1.06,   
 =0.1. 

x y z t Pe    

0.5 0.5 0 0.5 8.647 0.728701 

0.5 0.5 0 1 8.647 0.84074 

0.5 0.5 0 1.5 8.647 0.884595 

0.5 0.5 0 2.5 8.647 0.919992 

0.5 0.5 0 4 8.647 0.937185 

0.5 0.5 0 0.5 8.647 0.728701 

0.5 0.5 0 0.5 10 0.716583 

0.5 0.5 0 0.5 18 0.665898 

0.5 0.5 0 0.5 25 0.6367001 

0.5 0.5 0 0.5 30 0.6203001 

0.5 0.5 0 0.5 40 0.594175 

0.5 0.5 0 0.5 60 0.556813 

0.5 0.5 0 0.5 8.647 0.728701 

0.5 0.5 1 0.5 8.647 0.595364 

0.5 0.5 5 0.5 8.647 0.207886 

0.5 0.5 10 0.5 8.647 0.0995574 

0.5 0.5 15 0.5 8.647 0.0951682 

0.5 0.5 20 0.5 8.647 0.0951349 

0.5 0.5 21 0.5 8.647 0.0951348 

   

 

 

 

 

 



421               A Simplified 3D Model for Remediation of Pollution in a River 
 

 

 

 

  

 

  

   

x 

Pe=2 

Pe=10 

Figure (2): The variation of    with Peclet number (Pe), for the values Pe = 2, 10 , 0    1( ) ,0    

1( ), z = 0(m),   =1.06,  1
 =0.1 and   =0.15. 

 

 

 

 

 

         Analytical Solution 

… …  Numerical Solution 

   

𝝌  

Figure (3): The comparison between the analytical solution (equation (26)) and the numerical solution 

(equation (36)) for the values 0     1,    = 0.15,   = 8.467,   =1.06 and  1
 =0.1. 
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 1
 =2 

 1
 =1.75 

 1
 =1.5 

𝝌  

Figure (4): The variation of    for the values  1
 = 1.5, 1.75, 2, 0     1, Pe=8.467,   =1.06 and   =0.15. 

 

 

 

 

 

   
  =0.2 

  =0.1 

  =0.3 

Figure (5): The variation of    with    at   <   
0 for the pulse-type input case for the values  0     

1, Pe=8.467,    =1.06,  1
 =0.1 and   

0=0.5 for   =0.1, 0.2 and 0.3 
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Figure (6): shows the variation of    with    at   >   

0 for the pulse-type input case for the values  0     

5, Pe=8.467,    =1.06,  1
 =0.1 and   

0=0.5 for   =0.7, 0.8 and 0.9. 

 

   

𝝌  

  =0.8 

  =0.9 

  =0.7 

 

 

 

 

   

𝝌  

  = 2 

  = 4 

  = 6 

  = 8 

Figure (7): The variation of   with    at   >   
0 for the pulse-type input case for the values 0     8,  

Pe=8.467,  1
 =0.1,   =0.75 and   

0=0.5 where   = 2, 4, 6 and 8. 
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   = 72 

   = 24 

   = 8.467 

Figure (8): The variation of   with    at   >   
0 for the pulse-type input case for the values 0     3,    =

1.06,  1
 =0.1,   =0.75 and   

0=0.5 where    = 8.467, 24 and 72. 
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CONCLUSION 

 

         The analytical solution is obtained for the three-dimensional advection-dispersion 

equation describing temporally dependent flow domain through an isotropic semi-infinite 

homogeneous porous medium by using the Laplace transformation technique. Also, a 

numerical solution is obtained by using the explicit finite difference method. The usage 

of dimensionless variables allows this solution to be applicable in a wide variety of cases. 

When comparing the analytical solution with the numerical solution, we found a very 

good agreement between them so, the explicit finite difference method is effective and 

accurate for solving the advection-diffusion equation. Impacts of different parameters 

controlling the pollutant dispersion have been studied separately with the help of graphs. 

From Fig. 1 and Table 1, we found that    increases as time    increases at any point of 

the domain as expected. From Fig. 2 and Table 1, we found that    decreases with the 

increase of the Peclet number (Pe) at any point of the domain i.e., with the increase of    

or the decrease of either    or   . From Fig. 3 and Table 1, we found that for constant 

values of x, y and increasing values of z, the values of    decrease and remain constant as 

     
 . From Fig. 4, we found that near the pumping origin (  =0) where the pollutant 

concentration of the released water (  
   ) is less than the river’s initial pollutant 

concentration (  
 ), the effect of   

  is dominant, and as   increases, the effect of   
  

decreases and the effect of   
  is dominant. Also, from Fig. 4, it is clear that the pollutant 

concentration takes an intermediate value between   
  and   

 . This confirms that 

releasing clean water into the river (i.e.   
  <   

 ), decreases the pollutant concentration of 

the river. Using Fig. 6, we can predict with accuracy the time and the position of the peak 

of the curve which represents the place of accumulation of pollutants in the river, and by 
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doing so we allow for various methods (chemical for example) to be very effective in 

treating pollution in a relatively small area of the river at a reasonable time. 
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