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Ismailia Canal is considered one of the most important sources of fresh water for a 

large number of citizens, yet it is exposed to many sources of pollution. Water and 

fish samples were collected to study the quality of water as well as the 

concentration of metals in water, fish tissue, and its effect on humans. Several 

indices were used to evaluate the water and fish quality of Ismailia Canal 

water.  Based on the weighted arithmetic water quality index (WAWQI) results, 

the canal water was classified as excellent for drinking, aquatic life and irrigation. 

While the study of Metal Index (MI) showed that the water of the Ismailia Canal 

is polluted for drinking water and aquatic life while it is not polluted for Irrigation 

water, as well as the resultant contamination index (Cd) values ranged between 

low (Cd < 1) to high (Cd > 3) in the station (1) due to the effluent of drainage 

water treatment plants which throwing waste water rich with Aluminum, Iron and 

Manganese. Aquatic Toxicity Index (ATI) results indicate the suitability of the 

canal’s water for different fish species. Hazard Index (HI) and Hazard Quotient 

(HQ) indicate that no risk (HQ < 1) on the other hand (HI) is 1.538. This result 

revealed the moderate risks from the consumption of edible tissue of the Nile 

Tilapia (O. niloticus). For improvement of water quality in Ismailia canal, the 

dumping of pollutants of all kinds, industrial, agricultural and domestic, into the 

waters of the Ismailia Canal must be prohibited and criminalized. 

 

INTRODUCTION 

Environmental pollution problems are one of the most serious national issues that requires great 

efforts at all levels; individual, groups, national and international. This is especially true with respect to 

pollution of rivers because they serve as the recipient of urban and rural wastewater. Water quality 

issues have become of major concern to all agencies dealing with water resources management and 

planning. This requires data collection, analysis and interpretation. One major goal of surface water 

quality data collection may be the estimation of magnitude of changes in the concentration of various 

constituents (Yehia et al., 2011). Water quality state of a water body depends on a large number of 

physical, chemical and biological indicators. An evaluation approach, such as water quality index that 

can be used to indicate the overall water quality condition, is essential (Elshemy & Meon, 2011). 

Water quality index is a mathematical mechanism for summarizing water quality data into simple 

terms (e.g., excellent, good, bad, etc…); it reflects the level of water quality in rivers, streams and 

lakes (Al-Shujairi, 2013). Moreover, the metal quality indices have been applied for assessing the 

drinking water resources with respect to metals (Backman et al., 1997). Recent years have witnessed 

significant attention being paid to the problems of environmental contamination by a wide variety of 

chemical pollutants, including the heavy metal ions. Trace elements may exert beneficial or harmful 

effects on plant, fish and human life, depending on their concentration. In Egypt, the pollution by trace 

metal ions is one of our most serious environmental problems. Effluents resulting from daily domestic 

and industrial activities may induce considerable changes in the physical and chemical properties of 
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the Nile water. These changes may greatly alter the environmental characteristics of river reaches (El 

Sayed, 2011).   

Unlike many organic wastes, heavy metals cannot be degraded biologically into harmless 

products. As a result, heavy metals tended to accumulate in the food chain and environment (Goher, 

2018). Discharge of heavy metals into river or any aquatic environment can change both aquatic 

species diversity and ecosystems due to their toxicity, persistence and accumulative behavior (Al-

Weher, 2008). Fish are one of the most important bio-monitoring devices in aquatic systems for 

estimating the level of mineral contamination (Authman, 2008). They can be accumulated in fish 

tissues by direct consumption of water across permeable membranes of gills and the digestive tract 

(Ribeiro et al., 2005). Which can be transferred to humans through fish ingestion (Imam et al., 2020). 

This leads to serious health problems in humans (Alinnor & Obiji, 2010). Some of the heavy metals 

do not perform essential functions in living organisms. Therefore, these metals are very toxic even at 

very low concentrations for all life forms including human health (Goher et al., 2019). The most 

critical heavy metals are Cd, Hg and Pb from a water pollution viewpoint. Some metals (Cu, Co, Fe, 

Ni, and Zn) are essential trace metals for living organisms but become toxic at higher concentrations 

(Igiri et al., 2018). Field and laboratory studies have shown that the accumulation of heavy metals in 

tissues depends mainly on water concentrations of metals and the period of exposure. Although some 

other environmental factors such as water temperature, oxygen concentration, pH, hardness, salinity, 

alkalinity and dissolved organic carbon may influence and play an important role in mineral 

accumulation and fish toxicity (Linbo et al., 2009). The concentration of heavy metals in fish tissues 

reflects previous exposure via water and/or food. The assessment of heavy metal contamination in the 

aquatic environment is determined by measuring their concentrations in water and living organisms. 

Biological monitoring of heavy metal accumulation in body parts (muscles) is a representative measure 

of exposure (Mustafa & Guluzar, 2003). No one can deny that the Nile is the main source of life in 

Egypt. The Nile River is the soul of Egypt, providing more than 95% of its freshwater demand. 

However, it receives different pollutants discharged into the water body along its stretch from Aswan 

(downstream of the High Dam) to Cairo, which is approximately 950 km (Goher et al., 2021). Ismailia 

Canal is the most vital canal arise from the Egyptian River Nile to supply water for several 

governorates in the east of the Nile Delta. It provides water for irrigation, navigation, and drinking, 

industrial and local purposes to the largest populated eastern governorates of Egypt (Abu-Zaid et al., 

2020). Ismailia Canal is considered as a sink for all contaminants discharged into the River Nile for 

being one of the main distal downstream of the Nile. In addition, the upper part of the Ismailia Canal 

from Al-Mazalat to Bilbeis is threatened from uncontrolled, direct and indirect activities in the 

surrounding area such as petroleum, iron and steel and detergent industries. Besides, agriculture 

effluent and power station, which causes dramatic changes in its water quality is considered (Youssef 

et al., 2010). In addition to the afore- mentioned factors, water treatment plants causing dramatic 

changes in its water quality by throwing wastewater rich with aluminum, iron and manganese is 

another factor (Goher et al., 2014). Therefore, this study aimed to address water quality indices to 

study the possibility of this water for different uses, as well as the concentration of heavy metals in 

water and the accumulation of these elements in the Nile tilapia and the effects of consuming these fish 

on humans. 

MATERIALS AND METHODS 

1. Study area   

 Ismailia Canal extends eastward for about 125km from the Nile River in the Al-Mazalat region 

north of Cairo to the city of Ismailia on the Suez Canal. In Ismailia, it was divided into two branches: 

one in the north to supply the city of Port Said and the second in the south to supply the city of Suez. 
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The upper part of the Ismailia Canal (from Cairo to Abu Zaabal, the western side) receives a large 

amount of pollutants from the industrial zone (Shubra al-Khaimah, Mustrad, Abu Zaabal industrial 

areas), which includes the activities of petroleum and petroleum gas, iron and steel, Abu Zaabal 

Fertilizers Company , Alum (aluminum sulfate), detergent industries and electric power plant as well 

as water treatment plants that have made drastic changes in water quality by dumping wastewater rich 

in aluminum, iron and manganese. In addition to waste disposal, seepage from villages and septic 

tanks, distributed near the canal stream and agricultural effluents. The details of surface water 

sampling from the study sites are presented in Table (1) and Fig. (1). 

 

 

Fig. 1. Sample locations at Ismailia Canal, Egypt during 2021 

 

Table 1. Details of surface water sampling location of Ismailia Canal 

Station No. Station latitude longitude 

1 In front of Al-Amiria drinking water purification station 30 06n 41nn 31 16n 22nn 

2 Mostourd 30 09n 55nn 31 17n 36nn 

3 Ring Road 30 10n 09nn 31 18n 20n 

4 after Abu Zabaal fertilizer Company by 2km 30 16n 46nn 31 23n 06n 

5 Bilbeis 30 24n 57nn 31 34n 33nn 

 

2. Methodology of water parameters evaluation 

The subsurface (about 30 cm) water samples were collected in polyvinyl chloride Van Dorn 

plastic bottles (2 L) from 5 sites on two sampling occasions to provide 10 water samples in total. A 

Ruttner Water Sampler with the capacity of 2L was used to collect the samples which were kept in the 

well-cleaned plastic bottles. The methods of the American Public Health Association (APHA, 2012) 

were used for the determination of most physicochemical parameters, dissolved oxygen (DO), 

biological oxygen demand (BOD), chemical oxygen demand (COD), NO2–N, NO3–N, NH4–N, PO4–P, 

total phosphorus (TP), SiO2, CO3
-2

, HCO3
-
, chloride, sulfate, calcium & magnesium. Water 
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temperature (°C), pH and conductivity (EC, µS cm
−1

) were measured in situ using a Hydrolab model 

(Multi Set 340i WTW, Weilheim, Germany) after previous calibration. Transparency was measured 

using a white/black Secchi disk (25 cm in diameter) and expressed as the Secchi disk depth (SDD). 

Heavy metals were measured after digestion by conc. HNO3 using Atomic Absorption (I.C.P. plasma 

400).  

3. Water quality index (WQI)  

WQI was estimated according to Al- Mohammed and Mutasher (2013). The Weighed Arithmetic 

Water quality index (WAQI) formula of this method is given by 

                                                                              ∑      
    ∑    

                                        (1) 

Where, Qi is the sub quality index of ith parameter (or Qi is the quality rating scale of each parameter);  

Wi = unit weight of each parameter, and  

n = number of parameters. 

4. Aquatic toxicity index (ATI) 

 The index was developed by Wepener et al. (1992) to assess the health of aquatic ecosystems. 

Since an extensive toxicity database is available for fish, toxic effects of varying water quality on fish 

have been employed as health indicators of the aquatic ecosystem. In the case of the ATI, the Solway 

Modified Unweight Additive Aggregation function (Wepener et al., 1992; Sarkar and Abbasi 2006) 

was employed as an aggregation technique, applying the following formula: 

                                                            
 

     
 
 

 
∑    

                                               (2) 

Where, ATI is the final index score; qi is the quality of the ith parameter (a value between 0–100), and n is 

the number of determinants in the indexing system. 

 

Table 2. Water rating according to ATI and WAWQI methods 

ATI WAWQI 

WQI Rating WQI Rating 

60–100 Suitable for all fish species 0–25 Excellent 

51–59 Suitable only for hardy fish species 26–50 Good 

0–50 Totally unsuitable for normal fish life 51–75 Poor 

  76–100 Very poor 

  >100 Unsuitable 

 

5. Metal quality indices 

Three different quality indices were used to determine the metal contamination of Ismailia 

Canal water. 

A. The contamination index (Cd) 

The contamination index measures the relative contamination of different metals separately and 

manifests the combined effects of all metals. It was computed as follows (Backman et al., 1997):                                                                                       

    ∑      
                                                           (3) 

Where, Cfi was calculated as the following equation:      
   

   
   

Cfi is the factor of contamination for ith metal; CAi is the measured value for ith metal, and CNi is the 

upper allowable value of ith metal (N refers to the normative value). The resultant Cd values are 

grouped into three classes:  medium (Cd = 1–3) and low (Cd < 1). CNi is considered as the standard 
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permissible value. 

B. Pollution index (PI) 

It is based on individual metal calculations and categorized to 5 classes according to the following 

equation (Caerio et al., 2005). 

PI = 2

Si

Ci

Si

Ci
2

M i n

2

max 






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


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


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












                                                   (4) 

Ci: the concentration of each element. 

Si: metal level according to national water quality criterion. 

C. Metal index (MI) 

It is based on a total trend evaluation of the present grade. The higher the concentration of a 

metal compared to its respective MAC value, the worse the quality of water. MI value > 1 is a 

threshold of warning (Bakan et al., 2010). According to Tamasi and Cini (2004), the MI is calculated 

by using the following formula: 

MI =  


n

1i i
MAC

Ci

                                                                 (5) 

Ci: the concentration of each element. 

MAC: maximum allowable concentration. 

6. Human health risk 

The human health risk assessment associated with the fish consumption was established using 

Hazard Quotient (HQ) and Hazard Index (HI) developed by the United States Environmental 

Protection Agency using the following equation. 

            
                  

              
                                               (6) 

Where, EF is the exposure frequency (365 days/year); ED is the life time exposure duration (70 years); 

FI is the mass of the fish ingested by person per day (57 mg in Egypt, the per capita consumption of 

fish in Egypt for human food is averaged 20.8 Kg; MCf is the metal concentration in fish (in 

milligrams per kilogram, ww); BW = body weight (A body weight of 70 kg is used as a default value 

for the adult as suggested by USEPA; AT is averaging time for non-carcinogens (365 days/year x 

number of exposure years), and 10
-3

 is the unit conversion factor. It was assumed that cooking has no 

effect on metals toxicity in seafood. 

7. Hazard index (HI) 

The hazard index (HI) was obtained using the following equation:   

    ∑   
 

n
  1                                                                     (7) 

Where, i is the individual heavy metal. 

 

8. Fish samples and measurement of heavy metals in fish muscles  

The samples of O.niloticus fish were collected from all sites during winter and summer 2021. 

The yield of each site was 15 fish, with an average length (23±3 cm) and weight (180± 7g). About 1g 

from previously oven dried muscle tissues was ignited and digested with concentrated HNO3 and HCl 

according to procedures recommended by AOAC (2005). The concentrations of heavy metals in the 

fish muscle were measured via Atomic Absorption (I.C.P. plasma 400). Results were expressed in µg 

/g dry weight of the tissue and as maximum and minimum of the all sites of collection. 
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9. Statistical analysis 

The one-way ANOVA test was used to determine spatial and temporal significant differences 

for the obtained data (Leščešen et al., 2015) using Excel-Stat software. In addition, standard deviation 

and pair coefficients of correlations (r) were calculated. 

 

 
The result of the physicochemical characteristics of water in Ismailia canal is presented in 

Table (3). Temperature ranged between 15.8 & 31°C, with a mean value of 23.38°C, and a highly 

significant difference was recorded between seasons (P < 0.01). The Ismailia Canal water was within 

the best range for fish and aquatic organisms in winter while exceeding the ideal value in summer. 

Temperature is positively correlated with Cr (r= +0.58), Ni (r=+0.66), Cd (r=+0.49) n=21 P <0.01. 

This result agrees with that of Goher et al. (2014) who reported that, the increase of heavy metal in hot 

seasons may be attributed to the liberation of heavy metals from the sediment to the overlying water 

under the effect of both high temperature and organic matter decomposition. On the other hand, 

temperature is high negatively correlated with HCO3
-
 (r=-=0.92), Ca (r=--0.99), n=21 P <0.01, 

confirming that the decrease of water temperature increases the solubility of CO2 and subsequently 

increases bicarbonate ions and Ca
2+

, which exist in water as hydrogen carbonate; this result coincides  

with that of Abdel-Satar et al. (2017) and El Sayed et al. (2020).  

Water transparency ranged between the lowest value (40Cm) during winter and the highest one 

(100Cm) during summer. Transparency is positively correlated with DO (r=+0.48) and pH (r=+0.55). 

While transparency is negatively correlated with TS, COD, NH4
+
, HCO3

-
, Cl, Al, Mn and Cr with r= (-

0.53, -0.82, -0.61, -.49, -0.44,  -0.56, -0.52 and-0.44), respectively. This result  concurs with that of 

Goher et al. (2014) and El Sayed et al. (2020)  who deduced that, water transparency is affected by 

particulate content of river water from suspended matter and floating substances. 

EC recorded the highest value 339-424 μs cm
−1

 in winter due to drought period and the lowest 

value 312-316 μs cm
−1

 in summer due to flood period (dilution effect), with a highly temporal  

significant difference, where EC and the water level are inversely related (Islam et al., 2015). As  

expected, a high positive correlation exists between EC and TDS (r= 0.99), also TS, BOD, COD with 

(r= 0.44, 0.94 and 0.66), as well as nutrient, cation, anions and heavy metals. Whereas, EC negatively 

correlated with DO (r= -0.42). Total dissolved solid has the same manner as EC confirmed by the high 

positive correlation (r= 0.99). TSS and TDS were varied in the range of 44 - 75 mg/l and 206.4 – 275.6 

mg/l, respectively, with a highly temporal significant difference. While, the highest value was recorded 

in front of Al-Amiria drinking water purification station; this may be attributed to effluents discharged 

into the water bodies. According to TSS value, Ismailia Canal water is classified as cloudy. Kidd 

(2011) reported that, water with TSS concentration less than 20 mg/l tends to be clear. Water with TSS 

levels between 40 and 80 mg/l tends to appear cloudy, while water with concentrations over 150 mg/l 

usually appears dirty. 

The pH of the Ismailia Canal lies in the alkaline side, where the lowest value 7.9 recorded at 

the conflicting of Al-Amiria drinking water purification station and the maximum value 8.43 recorded 

at station (3). pH highly positive correlation with DO (r=0.36) conformed the effect of photosynthetic 

activity on the elevation of pH value (Shehata & Badr, 2010) & CO3 (r=0.65), while it is negatively 

correlated with Mn, Cr, Ni, Zn and Cd with (r= -0.67, -0.63, -0.5,-0.45 and -0.47). This approved the 

precipitation of these metals to the bottom sediment with the increase of water pH (Moustafa et al., 

2010). Ismailia Canal water was completely oxygenated within the year with a maximum value of 

7.12mg/ l and minimum value of 5.48mg/ l, the decreases of DO is related to different wastewaters, 

which enter the canal as sewage, urban runoff and industrial (Stahl & Ramadan, 2008). 

RESULTS AND DISCUSSION 
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Table 3. Physical and chemical characteristics of water in the Ismailia Canal in 2021, compared to 

guidelines used in WQI, PI and MI computations 

Seasons winter summer Drinking 

EWQS 

2007 

Irrigatio

n 

FAO** 

Aquatic 

live 

CCME 

2017 

Parameter Range mean±SD Range mean±SD 

Trans (cm) 40-75 62±13.51 50-100 76±19.49  <35 8. - 28. 

temp  (°C) 15.8-16.7 16.22±0.41 30.1-31 30.54±0.35    

EC (μScm-1) 399-424 409 ± 9.97 312-316 315±1.73 2000 3000  

TDS (mg/l) 260.4-275.6 267.05±6.02 206.4-210.4 208.55±1.53 1000 2000 500 

TSS  (mg/l) 44- 75 57.2± 11.43 43-62 50 ± 7.19    

pH 7.98-8.43 8.19±0.16 7.90-8 8.13± 0.13 6.5- 8.5 8.5 6.5 - 9 

DO  (mg/l) 5.48-7.10 6.10±0.67 6.2- 7.12 6.55± 0.34 6  5 

BOD  (mg/l) 2.38-3.80 3.04±0.52 1.93-3.8 2.71± 0.82 3   

COD  (mg/l) 6.32-12.1 8.30±2.31 4.12-7.81 5.56± 1.38 10   

PO4 (μg/l) 15.7-40.0 26.67±11.51 10.27-34.89 16.94±10.25  2000  

NO2 (μg/l) 6.90-8.55 7.71±0.73 1.68-5.57 3.00± 1.50 60  60 

NO3 (μg/l) 60.4-85.7 72.02±9.34 9.17-18.26 14.26± 3.61 10000 10000 2930 

NH4 (μg/l) 129.-234. 167.05±41.93 111.98-353.23 175±101.19 410 5000 1270 - 77 

SiO2  (mg/l) 2.91-3.90 3.44±0.43 0.56-0 0.67± 0.11    

SO4  (mg/l) 21- 28.07 24.7± 2.73 11.00-13.30 12± 1.04 250 960  

CO3  (mg/l) 0-6 1± 2.68 0-0 0± 0.00  30  

HCO3  (mg/l) 143- 157 150± 4.99 133-135 134± 0.89  610  

Mg  (mg/l) 15.7-18.1 16.54±0.98 10.7-10 10.70± 0.00 50 60  

Ca  (mg/l) 29.8-32.2 31.24±0.94 22.4-22 22.44±0.00 75 400  

Cl  (mg/l) 26.9-28.2 27.64±0.55 17.4-18 17.64± 0.45 250 1036 120 

TP(μg/l) 44.5-65.3 54.52+9.45 33.76-56.49 40.88± 9.99 1000   

Al (μg/l) 996.6-3410 1713.96±980.5 282.6-1058.6 648.88±299.7 200 5000 100 

Fe (μg/l) 212.4-541.6 327.12±138.4 208.2-318.2 255.64±53.06 300 5000 300 

Mn (μg/l) 29.4-76.4 54.84±17.99 33.3-41.8 36.3±3.289 100 200 100 

Cr (μg/l) 1-3.4 2.44±0.920 2.6-6.6 3.4 ±1 50 100 10 

N  (μg/l) 0.8-1.8 1.36±0.384 1.6-2.4 1.92±0.334 20 200 25 

Zn (μg/l) 2.6-6.6 4.56±1.532 6-25.2 14.36±7.891 3000 2000 50 

Cd (μg/l) 0-0.2 0.12±0.109 0.2-0.2 0.2 ±0 3 10 1 

Pb (μg/l) 0.2-1 0.64±0.296 0.2-2.2 0.8 ±0.8 10 5000 7 
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These results are confirmed by the highly negative correlation between DO and BOD, COD, 

PO4
-3

, NH4
+
 and NO2

-
 with (r= -0.41,-0.64, -0.51, -0.27 and -0.46, respectively), where the dissolved 

oxygen was consumed by the oxidation of nitrogenous compounds and organic matter (El Sayed et al., 

2020).Concerning the current study, the levels of both BOD and COD in Ismailia Canal water were 

within the international permissible levels, showing narrow variations of BOD and COD values 

between  different seasons and localities. They varied in the ranges of (1.45-3.8) and (4.12- 12.12) 

mg/l, respectively. BOD was highly positive correlation with BOD /COD r= 0.46, BOD / PO4
-3

 r=0.5, 

BOD / NO2
-
 (r= 0.9), BOD /NO3

-
 (r=0.92). 

 The main components of alkalinity of surface water are carbonates and bicarbonates 

(Hassouna et al., 2019). Carbonates concentration depleted completely in all stations, except station 3 

which recorded 6mg/ l in winter, whereas bicarbonates varied in the narrow range from maximum 

value 157.5 mg/l in winter to a minimum value of 133 mg/l in summer, with a highly significant 

difference between seasons. Bicarbonates are highly positive correlated with Mg, Ca, Cl and Al with 

r= 0.93, 0.88, 0.92 and 0.79; this result agrees with the finding of El Sayed (2015) for the same canal. 

Chlorides and sulfates have the same manner, with a clear increase in winter due to drought 

period and a decrease in summer due to dilution effect. Chlorides and sulfates fluctuated in the range 

of 17.44–28.27 and 11– 28.7mg/l, respectively, with a highly temporal significant difference. 

Calcium and magnesium values varied in the range of 22.44–32.27 and 10.7–18.9mg/ l, 

respectively, with a highly significant difference between seasons. The decrease in Ca and Mg 

concentrations in summer seasons may be attributed to the precipitation of CaCO3 resulting from an 

increase in temperature (Goher, 2021). It may be an outcome of the adsorption of MgCO3 onto clay 

minerals and bottom deposition due to water temperature rise as reported in the study of Chiu et al. 

(2010). This result is established by a high negative correlation between temperature with Ca and Mg 

(r= -0.99 and -0.97, respectively). The present result showed low Mg
+2

 concentration compared to 

Ca
+2

; this is due to the behavior of dissolved CO2 in water, which may affect the concentration of 

magnesium ion in solution since CO2 reacts with calcium ion salts more than with magnesium ion, thus 

converting large quantities of calcium into soluble bicarbonate (El-Sayed, 2011). 

Nutrient salts (NO2
- 

, NO3
-
 , NH3 , PO4

-3
 , T.P and SiO2 ) fluctuated in the following range 

(1.98-8.55, 9.17- 85.78, 111.98 – 353.23, 10.27-40.2, 34.2 – 65.32 µg/l and 0.56 – 3.9 mg/l), 

respectively; these values were lower than those recorded in previous studies (Table 4) (Abdo, 1998; 

El-Haddad, 2005; El-Sayed, 2008; Stahl & Ramadan, 2008; Abdo & El-Nasharity, 2010; Abdo et 

al., 2012; Goher et al., 2014; Hamed, 2019)  for the same canal. This is mainly attributed to two 

reasons, the first is high dilution effect in the last years, which renews the water in the canal and the 

second is adjusting some factories to their conditions, which led to the reduction of pollutants such as 

Alum company as well as the degradation of the discharged pollutants by self-purification. On the 

other hand, nitrite value was lower than the corresponding value of nitrate; this may be attributed to 

oxidation of nitrite into nitrate. Nitrite and nitrate concentration was in low value in summer seasons; 

this may be attributed to its utilization by phytoplankton in surface water. Ammonia has no spatial and 

seasonal significant difference. EWQS (2007) has set a limit of 0.41 mg/L of nitrogen as a maximum 

admissible limit for ammonia and highly positive correlation with Mn, Cr, Ni and Zn (r = 0.92, 0.73, 

0.45 and 0.41, respectively). The value of PO4
-3

& TP showed slight increase in winter this may be 

attributed to the increase of the decay of the phytoplankton by microbiological activity during the 

drought period (Singh and Choudharyn, 2013). In different side silicate value showed the minimum 

value in summer seasons and may be attributed to its uptake by diatoms, bacteria and fishes as well as 

the sedimentation of SiO2 - on clay or fine clay to the bottom (El-Sharkawy, 2010), this result is 

confirmed by the high positive correlation Temperature/SiO2  (r=-0.98). 
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The concentrations of Al, Fe, Mn, Cr, Ni, Zn, Cd and Pb in Ismailia Canal water were found in 

the range of (282.6- 3410, 208.2- 548.6, 33.3-76.4, 1-6.6, 0.8 – 2.4, 2.6- 25.2, 0 – 0.2 and 0.2 -2.2 µg/l.  

 

Table (4): Comparison of physicochemical parameter and heavy metals concentrations in 

Ismailia canal water  with previous studies. 

 

The heavy metal concentrations decreased in the sequence during winter and summer as Al> 

Fe>Mn> Zn>Pb>Cr> Ni >Cd in different sites. The result showed that the heavy metals Al, Fe and Mn 

at different sites were higher in winter seasons than in summer as well as Al, Fe and Mn   increase in 

site (1) than all sites. The concentration of Al exceed detection limit in all station in study period 

reached to 17 fold the permissible limits in winter and 5 fold in summer in site (1) this attributed to 

water treatment plants which caused dramatic changes in its water quality by throwing waste water 

rich with Aluminum, Iron and Manganese (El Sayed, 2015) this result confirmed by high positive 

Parameters        

TDS (mg/l)  149.8-231   210–365 293 206.4-275.6 

TSS  (mg/l)  28.7-83.3   39–176 138.7 43-75 

pH 7.4-8.1 8-8.47   7.09–8.46 8.27 7.9-8.43 

DO  (mg/l)  6.4-10 4.9 -8. 9 6 – 10 5.78–9.98 7.37 5.48 -7.12 

BOD  (mg/l) 2.4-5.46 2- 4.92  2.8 – 5.2 0.3–7.18 4.03 1.93-3.8 

COD  (mg/l) 2.8-4.46 6.0 – 19.2 <25 6 – 16) 3.68–15.08 9.17 4.12-12.1 

PO4 (μg/l) 23.7-157.7 11.24-91.96  23 – 165.5 8–399 150 10.27 -40 

NO2 (μg/l) 1.24 - 6.3 2.18-10.24  9 – 18, 2--27 61 1.68 - 8.55 

NO3 (μg/l) 17.6-116.9 10.04-51.21  20 – 52 31–584 354 9.17 -85.7 

NH4 (μg/l) 160-580 240-540  108 –500 88-598 245 111.98-353.2 

SiO2  (mg/l) 1.9-5.4 1.75-5.88  1.44 – 7.70 0.37 -878 6.47 0.56 -2.93 

TP(μg/l) 86-300 82.77-380.41  109 – 1478 38-480 317 33.76-65.3 

Al (μg/l)    100-800 55–45400 3821 282.6-3410 

Fe (μg/l) 400- 6460 110 – 640  190- 300 109–2239 675 208.2-541.6 

Mn (μg/l) 58.9-711.3 40 – 360 60 100- 180 20– 483 229 29.4-76.4 

Cr (μg/l)   1    1- 6.6 

N  (μg/l)   2.5  0.0– 25  0.8-2.4 

Zn (μg/l) 4.2-311 1.8 – 54.8, 100 40 -95 2– 127 39 2.6 -25.2 

Cd (μg/l)   1 15 -29 0– 3 9 0 -0.2 

Pb (μg/l)  7.5 – 35.7 5 1--3 11– 34 24 0.2 -2.2 

References Abdo, 

(1998) 

El-Hadad, 

(2005) 

Stahl and 

Ramadan,  

(2008) 

Abdo and El-

Nasharity, 

(2010) 

Goher et 

al,2014 

Hamed, 

2019 

present study 
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correlation Al/Fe (r= 0.86). Despite the high Al value in this study, it is less than that of Stahl and 

Ramadan (2008) and Goher et al. (2014) for the same canal (Table 4). Fe and Mn concentrations 

along the canal remained nearly constant below (detection limit) ~ 0.3 mg/l and 0.05 mg/ l, 

respectively, except station (1) which exceeds this value in winter seasons. The concentration of Cr, 

Ni, Zn, Cd and Pb were below the detection limit. 

 

Water quality indices 

Water quality index is a mathematical mechanism for summarizing water quality data into 

simple terms (e.g., excellent, good, bad, etc.); it reflects the level of water quality in rivers, streams and 

lakes (Al-Shujairi, 2013). 

Two water quality indices were used to assess the water quality in Ismailia Canal including the (ATI) 

and (WAWQI). The ATI was developed to evaluate the aquatic ecosystem health and determine the 

suitability of aquatic environments for different fish species. Ten water parameters were selected to 

compute the ATI (PO4-
3
, TDS, DO, pH, NH4

+
, Mn, Cr, Zn, Ni, Pb). Table (6) shows the values of ATI, 

the score of which ranged from 60.75 to 62.99, with a mean value of 61.55 for the whole canal. These 

results indicate the suitability of the canal’s water for different fish species. 

Another index used to assess the water quality in Ismailia Canal for different purpose is WAWQI, 

which categorizes water quality according to the degree of purity by using the most measured water 

quality variables. To compute the WAWQI, a total of 21, 20 and 16 variables were selected to assess 

the suitability of water in the Ismailia Canal for drinking, irrigation and aquatic life, respectively, 

according to WAWQI modules. Egyptian standards were used for drinking water assessment. The 

selected parameters for drinking water include TDS, pH, DO, BOD, COD, NH3-N, NO3
-
 -N, TP, Cl, 

SO4
-2

 , Ca
+2

, Mg
+2

 , Al, Cd, Cr, Fe, Mn ,Ni, Pb and Zn,   While, TDS, pH, NH3-N, NO3 -N, NO2
-
-N, 

PO4 
-3

 , CO3
-2

, HCO3
-
 , Cl, SO4 

-2
 , Ca

+2
, Mg

+2
, Al, Cd, Cr, Fe, Mn ,Ni, Pb and Zn were selected for 

irrigation. The selected variables for the aquatic life include TDS, pH, DO, COD, BOD, NH3-N, NO3
-
-

N, Cl Al, Cd, Cr, Fe, Mn, Ni, Pb and Zn. Based on the WAWQI results, the canal water was classified 

as excellent for drinking, aquatic life and irrigation with WQI, 1.85, 1.4 and 0.13, respectively. The 

WAWQI indicated that the water in the Ismailia Canal is suitable for drinking, irrigation and aquatic 

life utilization.  

Table 5. WQI and its categorization of Ismailia Canal water for drinking, irrigation and aquatic life 

utilization 

Station Drinking water Aquatic life water Irrigation water 

1 1.93 Excellent 2.05 Excellent 0.15 Excellent 

2 1.68 Excellent 0.94 Excellent 0.08 Excellent 

3 1.70 Excellent 1.15 Excellent 0.10 Excellent 

4 1.64 Excellent 1.36 Excellent 0.14 Excellent 

5 2.32 Excellent 1.47 Excellent 0.13 Excellent 
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Table 6. ATI and its categorization of Ismailia canal water 

Station Winter Summer 

1 62.99 Suitable 61.20 Suitable 

2 61.76 Suitable 62.13 Suitable 

3 62.00 Suitable 62.10 Suitable 

4 61.89 Suitable 61.73 Suitable 

5 60.75 Suitable 61.68 Suitable 

 

Metal quality indices  

  Different indices were calculated to assess the metal contamination of Ismailia canal water; the 

first one is the Pollution Index (PI), that is dependent on the effect of the individual metal. While the 

other index, Metal index (MI) and Cd based on the effect of the total metals level.  

Pollution index (PI)   

The pollution index (PI) was used in our study to determine the score of trace metals toxicity in 

water samples. It is based on individual metal calculations and categorized to five classes (Table 7) 

according to (Caeiro et al., 2005). The results indicate a various pollution degree of the studied metals 

for aquatic life in Ismailia Canal. Pollution index exhibited that Mn, Cd, Pb, Cr Ni, and Zn have not 

polluted effect for different usage PI ≤ 1. On the other hand, Al showed moderately pollution affected 

(PI >2-3) to seriously affected PI >5 at all station for drinking water. However, Al showed seriously 

affected for aquatic life water and no effect for irrigation water usage. Fe showed slightly pollution 

effect at stations (1) for drinking water and aquatic life water and no effect for irrigation water, (Fig. 

2b).  

 

                                             Table 7. Categories of water pollution index 

 

  

  

 

 

 

 

 

 

 

 

 

 

Class PI value Class 

1 ≤1 no effect 

2 >1-2 slightly affected 

3 >2-3 moderately affected 

4 >3-5 strongly affected 

5 >5 seriously affected 
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Table 8. Pollution index of the measured metals in Ismailia Canal water according to guideline levels 

of drinking, irrigation and aquatic life water 

Station Drinking Effect Aquatic life Effect Irrigation Effect 

Al                              1               8.926 seriously affected                       17.853 seriously affected                 0.357 no effect 

2 3.722 strongly affected 7.443 seriously affected 0.149 no effect 

3 4.511 strongly affected 9.022 seriously affected 0.180 no effect 

4 2.843 moderately affected 5.685 seriously affected 0.114 no effect 

5 3.046 strongly affected 6.093 seriously affected 0.122 no effect 

   Fe                           1 1.047 slightly affected 1.047 slightly affected 0.063 no effect 

                                  2               0.503 no effect                         0.503 no effect                0.030 no effect 

3 0.751 no effect 0.751 no effect 0.045 no effect 

4 0.512 no effect 0.512 no effect 0.031 no effect 

5 0.680 no effect 0.680 no effect 0.041 no effect 

Mn                          1 0.833 no effect 0.833 no effect 0.208 no effect 

2 0.457 no effect 0.457 no effect 0.114 no effect 

                                  3             0.639 no effect                        0.639 no effect                 0.160 no effect 

4 0.760 no effect 0.760 no effect 0.190 no effect 

5 0.638 no effect 0.638 no effect 0.160 no effect 

  Cr                            1 0.074 no effect 0.371 no effect 0.037 no effect 

2 0.047 no effect 0.235 no effect 0.024 no effect 

3 0.040 no effect 0.202 no effect 0.020 no effect 

                                  4               0.040 no effect                       0.198 no effect                  0.020 no effect 

5 0.040 no effect 0.198 no effect 0.020 no effect 

Ni                            1 0.075 no effect 0.060 no effect 0.008 no effect 

2 0.054 no effect 0.043 no effect 0.005 no effect 

3 0.061 no effect 0.049 no effect 0.006 no effect 

4 0.050 no effect 0.040 no effect 0.005 no effect 

                                  5            0.057 no effect                        0.045 no effect                 0.006 no effect 

Zn                            1 0.002 no effect 0.128 no effect 0.003 no effect 

2 0.001 no effect 0.065 no effect 0.002 no effect 

3 0.003 no effect 0.204 no effect 0.005 no effect 

4 0.002 no effect 0.104 no effect 0.003 no effect 

5 0.004 no effect 0.257 no effect 0.006 no effect 

  Cd                           1              0.047 no effect                        0.141 no effect                 0.014 no effect 

2 0.033 no effect 0.100 no effect 0.010 no effect 

3 0.033 no effect 0.100 no effect 0.010 no effect 

4 0.047 no effect 0.141 no effect 0.014 no effect 

5 0.047 no effect 0.141 no effect 0.014 no effect 

Pb                           1 0.042 no effect 0.061 no effect 0.000 no effect 

                                  2              0.014 no effect                        0.017 no effect                0.000 no effect 

3 0.042 no effect 0.052 no effect 0.000 no effect 

4 0.045 no effect 0.061 no effect 0.000 no effect 

5 0.121 no effect 0.131 no effect 0.000 no effect 
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Metal index (MI)   

It is based on a total trend evaluation of the present grade. By increasing the concentration of a 

metal compared to its respective maximum allowable value (MAC), the worse impact of the quality of 

the water appeared. MI value >1 is a threshold of a warning limit (Cude, 2001). Eight heavy metals 

(Al, Cd, Cr, Fe, Mn, Ni, Pb, and Zn) were selected to assess the contamination of water in Ismailia 

Canal with metals, based on the Metal Index (MI). According to MI values, all selected sites in 

Ismailia canal water suffer from seriously metal pollution for the drinking water and aquatic life 

utilization. On the other hand, site 1 is the most polluted (MI = 13.888 & 26.686 for drinking water and 

aquatic life utilization, respectively); this may be attributed to the effluent of drainage water treatment 

plants which caused dramatic changes in its water quality by throwing waste water rich with 

aluminum, iron and manganese.  This result was confirmed in the study of Nour et al. (2022) who 

reported that, the higher levels of metals in some samples might be originated mostly from 

anthropogenic sources related to industrial, agricultural and urbanization activities along the 

investigated canal. Whereas, according to MI, the water in Ismailia Canal is classified as not polluted 

for irrigation water. 

 

Table 9. Pollution index of the measured metals in the Ismailia Canal water during 2021 

Station D water Aq.Water Irr. Water 

1 13.888 polluted 26.686 polluted 0.892    

2 5.798 polluted 10.912 polluted 0.425   

3 8.011 polluted 15.291 polluted 0.576   

4 5.437 polluted 10.611 polluted 0.515   

5 6.063 polluted 11.504 polluted 0.510   

 

The contamination index (Cd) 

The contamination index measures the relative contamination of different metals separately and 

manifests the combined effects of all metals. The resultant Cd values in winter ranged between low 

(Cd < 1) at station 2,4 and 5, medium (Cd = 1–3) at station 3 and high (Cd > 3) in station ( 1) due to 

the effluent of drainage water treatment plants, which throws waste water rich with aluminum, iron and 

manganese. While, low Cd values (Cd < 1) were observed in summer at all stations, as shown in Fig. 

(2).  

 

Fig. 2. Contamination index of the measured metals in the Ismailia Canal water during 2021 
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Fig. 3. Principal component analysis (PCA) (Axis I and II) for measured parameter of the Ismailia 

Canal water 

According to Fig. (3), the principal component analysis (PCA), Al, Fe, Pb and Mn were positive 

significantly correlated with each other. This may be attributed to the same allochthonous sources of 

these metals, which increased during winter season (cold environment) and correlated by increase of 

variables NH4, COD, TSS, TP, PO4
-3

, TDS, Cl, HCO3
-
, SiO2, Mg, EC, Ca, SO4

-2
, NO2

-,
 NO3

-
, BOD, 

CO3
-2

, and pH on other side this element high correlated with decreased of variables temperature, 

dissolved oxygen and transparence. PCA showed that Cr, Ni, Zn and Cd were more positively affected 

by the temperature. The first axis explaining 49.98 % of the variables and it was primarily associated 

with the heavy metals, while axis 2 was explaining 17.26 % of the variance of some physicochemical 

variables.  

Table (10) minimum, Maximum and mean values of heavy metals (µg/g dry wt.) in muscles of O. 

niloticus from Ismailia canal during winter and summer 2021. 

Metals Winter Summer 

minimum max mean S.D. minimum max mean S.D. 

Al-F 17.35 105.60 55.37 32.75 14 34 25 10 

Fe-F 34.80 177.40 91.62 59.25 14 50 32 17 

Mn-F 4.45 11.75 8.28 2.73 2 5 3 2 

Cr-F 1.30 2.05 1.86 0.32 1 1 1 0 

Ni-F 0.60 1.00 0.86 0.15 0 15 4 6 

Zn-F 29.55 46.40 37.36 7.49 32 40 35 3 

Cd-F 0.00 0.05 0.04 0.02 0 0 0 0 

Pb-F 0.30 2.40 0.79 0.90 0 7 2 3 

 

The results of different measured heavy metals were shown in table (10), the results were 

expressed as minimum and maximum for the all five collected sites. In winter season the metal ranged 

as follows: Al (17.35-105.60),Fe (34.80-177.40), Mn (4.45-11.75),Cr (1.30-2.05), Ni (0.60-1.00), Zn 

tranc 
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(29.55-46.40), Cd (0.00-0.05)and Pb (0.30-2.40).The order of distribution for the all metals as shown 

in the mean values were Fe > Al > Zn >Mn> Cr >Pb> Ni >Cd.For summer season, the range of 

different metals were Al (14-34),Fe (14-50), Mn (2-5),Cr (1-1), Ni (0.00-15.00), Zn (32-40), Cd (0.00-

0.00)and Pb (0.00-7.00).So the order of distribution were Zn >Fe > Al  > Ni >Mn>Pb>Cr > Cd(not 

found).According to the maximum permissible limits of FAO (1983) and WHO (1989) which 

was(50,40,1,0.5,0.5 µg/g) for(Fe, Zn, Mn, Cd and Pb),the results revealed that , Mn and Pb exceed the 

permissible limit in both winter and summer seasons. While Fe exceed the limits only in winter season 

and was under the permissible limit in summer season. For Zn and Cd the results were under the limits 

in winter and summer. This study, which we are in agreement with some researchers in this field, such 

as both (Authman et al., 2011), where they found that metals concentration in fish organs exhibited 

seasonal variations and they attribute these variations to the increase or decrease of drainage water 

discharged into the drainage canal. Tekin-Özan and Kir (2008) described that bioavailability of 

metals may influenced by physiological activities of fish during different seasons. Abdel-Khalek 

(2015) in muscle tissues of Nile tilapia at southern part of river Nile at Shoubra El-Khaema. This also 

complies with (Watanabe et al., 2003; Masoud et al., 2007) who mentioned that, bioaccumulation of 

metals in tissues varies from metal to metal. Moreover, Koca et al., (2005) postulated that the 

accumulation patterns of contaminants in fish and other aquatic organisms depend on both uptake and 

elimination rates of contaminants. Jezierska and Witeska (2006) concluded that the difference in the 

amounts of various metal ion accumulation in fish body result from different affinity of metals to fish 

tissues, different uptake, deposition, and excretion rates. Studies related to the bioaccumulation of 

metals in tissues demonstrated the variation of metal accumulations (Younis et al., 2015). Moreover, 

Koca et al. (2005) postulated that the accumulation patterns of contaminants in fish and other aquatic 

organisms depend on both uptake and elimination rates of contaminants. Bioaccumulation of metals 

may lead to high mortality rate or cause many biochemical and histological alterations in the survived 

fish (Soltan et al., 2005). Table (11) shows some previous studies on different places of the Nile River 

and the effect of heavy metals on the muscles of Nile tilapia. 

 

Table (11). Comparison of heavy metals concentrations in muscles of Oreochromis niloticus with 

previous studies in river Nile, Ismailia canal and lakes. 

location Fe Ni Zn Cd Pb references 

Aswan - 0.05 ± 

0.04 

1.31 ± 0.52 0.09 ± 0.9 0.34 ± 0.08 Ahmed et al., 2022 

Abbassa 

region 

- 0.99 ± 

0.05 

2.80 ± 0.30 0.7 ± 0.46 0.53 ± 0.10 Ahmed et al., 2022 

Mariout - 1.41 ± 

0.18 

3.9 ± 0.17 1.17 ± 0.15 2.7 ± 0.25 Ahmed et al., 2022 

Aswan 26.08 ± 6.44 
 

- 41.84 ± 7.62 

 

0.67 ± 0.64 
 

3.99 ± 2.64 
 

Alaa and.  

Osman2012 

El-Zamalek 

district 

5.37±0.5 
 

- 0.90±0.22 
 

0.009±0.002 
 

0.662±0.058 
 

Abeer et al., 2014 

Abu Zaabal 

region 

- - - 1.96±0.18 
1.43±0.17 

 

Mohamed et al., 2011 
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CONCLUSION 

Human health risk 

The health risks resulting from the consumption of O. niloticus from Ismailia canal have been 

estimated based on Hazard Quotient (HQ). The HQ is a ratio of determined dose of a pollutant to a 

reference dose level. The interpretation of the HQ value is binary:  HQ is either ≥ 1 or < 1, where HQ 

> 1 indicates a reason for health concern. 

Figure (4) show the non-carcinogenic (Hazard Quotient) risks of heavy metals through edible 

tissue exposure route using the eight measured metals to calculate the HQ values. According to 

USEPA (2012) no health risk may occur as a result of ingestion of the fish at Hazard Quotient (HQ) or 

total Hazard Index (HI) below one, while the greater the value of (HQ) and (HI) above 1, the greater 

the level of risk associated with the fish consumption. Hence, HI < 1 means no hazard; 1 > HI < 10 

means moderate hazard while greater than 10 means high hazard or risk (Ukoha, 2014). 

The present results indicated that the obtained HQ values was in the order Cr (HQ)=0.842>Pb 

(HQ=0.328)> Zn (HQ = 0.098)> Ni (HQ=0.095)> Fe (HQ =0.072)> Cd (HQ=0.037)>Mn 

(HQ=0.034)> Al (HQ=0.033) which indicate that no demonstrate risk (HQ < 1) associated with 

consumption of 57 g/day of O. niloticusfrom Ismailia Canal. On the other hand the total non-

carcinogenic hazard index (HI) for the analyzed heavy metals is 1.538. This result revealed that the 

risks from consumption of edible tissue of the Nile Tilapia (O. niloticus) 1.5 times higher than the 

threshold value of 1. The human health risk assessment for heavy metal contamination delineated low 

risk in edible tissues. The hazard index value (HI = 1.538) was classified as moderate risk level (10 > 

HI > 1) (Ukoha, 2014). This moderate value based mainly on the HQ values of Cr (HQ = 0.842) and 

Pb (HQ = 0.321).  

 

Figure (4): HQ and HI to human population from metals through O. niloticus from Ismailia canal. 

The Ismailia Canal is considered one of the most important sources of drinking and irrigation 

water in Egypt. Despite this, it is exposed to many sources of pollution, including the activities of 

petroleum and petroleum gas, iron and steel, Abu Zaabal Fertilizers Company , Alum (aluminum 

sulfate), detergent industries and electric power plant as well as water treatment plants that have made 

drastic changes in water quality by dumping wastewater rich in aluminum, iron and manganese. Water 

and fish were collected from 5 different places of the Ismailia Canal from El- Amiriya to Belbeis to 

study the quality of water and fish as well as the concentration of metals in fish tissue. WAWQI was 

studied to study the suitability of this water for drinking, aquatic life and irrigation water while ATI 

was used to study the extent to which this water can be used for fish. The results of WQI showed that 

the water quality of the Ismailia canal is excellent for various uses as a result of severe dilution. While 
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