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INTRODUCTION  

 

In the Mediterranean Sea, the European seabass (D. labrax) represents one of the 

greatest valuable marine aquaculture and fisheries fish species (FAO, 2022). The lack of 

fry is still the barrier hindering aquaculture development (Verhaegen, 2012). Worldwide, 

the use of antibiotics in aquaculture threatens the health of human and farmed animals 

and affected their antimicrobial resistance (AMR) (Okocha et al., 2018; Knipe et al., 
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           A European sea bass [Dicentrarchus (D.) labrax] weaning trial was 

conducted on the 30- 45 day- post-hatching (dph) reared larvae. Enriched 

rotifers and Artemia were offered as feed in the same 2 m
2
 tank from the 

3
rd

 to the 30
th

 dphin NIOF hatchery larval rearing unit. In the present study, 

the total antioxidant capacity (TAC), catalase (CAT) and superoxide 

dismutase (SOD) antioxidant parameters, and some hepatic enzymes at 

early life stages were investigated. Four treatments were conducted in 

triplicates: control mircodiet (G), dietary marine Bacillus subtilis SH1 

probiotic (Mpro), marine chitosan prebiotic (Mpre), and two marine 

synbiotics mixtures (MS1 and MS2) treated microdiets. The impact of the 

five microdiets cofeeding and weaning treatments on the 45
th

 dph early 

weaned D. labrax larvae fed MPro, MPre, MS1, and MS2 exhibited 

significant (P < 0.05) length growth similar to that recorded in G. The MS1 

and MS2 showed the best length growth performance, survival, SOD and 

CAT activities, as well as TAC improvement after treatments, compared to 

G. The larvae fed MS2 and MS1 recorded the highest considerable (P < 

0.05) alkaline phosphatase (ALP) and acid phosphatase (AP) enzymes total 

and specific activities, respectively. The larvae fed Mpre recorded the 

highest significant (P < 0.05) aspartate aminotransferase (AST) total 

activity; while, larvae fed Mpro recorded the highest substantial (P < 0.05) 

AST-specific activity. The larvae fed G recorded the highest meaningful 

(P < 0.05) alanine aminotransferase (ALT) total and specific activities. In 

conclusion, mixing marine probiotics and prebiotics in synbiotics treatments 

improved the European sea bass larval growth, survival, and antioxidant 

capacity. 
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2021; Hong et al., 2022). Hong et al. (2022) reported that the use of antibiotics 

substitution or reducing its use in aquaculture has led to the emergence of many additives, 

including synbiotics (Salem et al., 2015; Ringø & Seong, 2016; Azimirad & Meshkini, 

2017; Li et al., 2018; Okay et al., 2018; Villumsen et al., 2020; Knipe et al., 2021), 

probiotics (Salem et al., 2015; Lamari et al., 2016; Banerjee & Ray, 2017; Hoseinifar 

et al., 2018; Wang et al., 2019; Ringø et al., 2020; Serradell et al., 2020), and prebiotics 

(Zaki et al., 2015; Widanarni et al., 2018). Synbiotics have shown ameliorated growth, 

immune- and antioxidative effects on aquatic animals (Lamari et al., 2016; Ringø & 

Seong, 2016; Huynh et al., 2017; Salem et al., 2022). The synbiotics (Bacillus spp. and 

Enterococcus spp.) probiotics,  prebiotics such as chitosan, fructooligosaccharide (FOS) 

and mannan oligosaccharide (MOS)) have been studied on yellow croaker, Japanese 

flounder, rainbow trout, cobia and the European sea bass (Salem et al., 2015; Zaki et al., 

2015; Huynh et al., 2017; Villumsen et al., 2020; Salem et al., 2022). Synbiotic 

improved disease resistance, survival and host microbial ecology (Ohtani et al., 2020; 

Knipe et al., 2021; Hong et al., 2022; Salem et al., 2022). Larval oxidation risks are 

remarkably high, due to its high water, long-chain PUFA tissue contents, oxygen demand 

and metabolic rate. Therefore, to avoid larvae lipid peroxidation, dietary antioxidant 

element is highly demanded (Mourente et al., 1999; Betancor et al., 2012). Free radicals 

and/or oxygen derivatives are constantly produced through regular cellular metabolism. 

At low concentrations, these ROS may be beneficial in the defence against 

microorganisms. However, oxidative stress happens in case of imbalanced ROS 

generation and removal (Betancor et al., 2012). Betancor et al. (2012) reported that, 

antioxidant enzymes [CAT, glutathione peroxidase (GPX) and SOD] stop oxidation 

reactions and close lipid peroxidation. Fish interactive antioxidant system through SOD, 

CAT, GPx and glutathione S-transferase (GST) encounter the oxidative damage of ROS 

(Hamed et al., 2020).  

The current experiment addressed the effects of oxidative stress due to MPro 

probiotic, MPre and two MS on the European sea bass larvae, and investigated their 

subsequent influences on larval growth, survival and enzymes. The current research is the 

first study to estimate oxidative stress and synbiotics' consequences on the alteration of 

antioxidant parameters. 

MATERIALS AND METHODS  

 

Larval rearing and experimental design 

Newly hatched larvae of the European seabass (D. labrax) obtained from farmed 

broodstock induced spawning at the Fish Reproduction and Spawning lab. Marine 

hatchery (N: 31°12'46.2" E: 29°53'06.1"), Aquaculture Division, NIOF. They were 

stocked in greenwater flowing through a larval rearing unit. Staring from the 3
rd 

dph to 

the 30
th

 dph reared larvae, enriched rotifers and artemia were introduced as feed in the 
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same 2 m
2
 tank in the hatchery larval rearing unit. At 30 dph, triplicate groups of larvae 

were stocked randomly and equally as 100 larvae/30 L
3
 aquaria in the fifteen glass 

aquariums; the weaning experiment began at 30 to 45 dph with different dietary 

treatments. For each experimental tank, 30% of water was partially exchanged, using a 

hose through the plankton net covering the tank. Aeration was performed for 24 

hours/day using an electric air blower. Photoperiod was 16: 8 hours light to darkness, and 

light was 50-100 lux at water surface. 

Larvae were fed enriched B. plactilis and B. routindiformis rotifers from the 2
nd 

to 

the 12
th 

dph at 20 rotifers/ml and enriched A. franciscana (GSL) nauplii from the 12
th 

dph, 

starting with 1.0 nauplii/ml and increased to 2 nauplii/ml until 29 dph. While, at 30 dph, 

larvae started cofeeding on artemia metanauplii and treated Orange® microdiets, with 

100-200 micron 6 times/day. Beginning from the 35
th

 dph, larvae were fed 4 

metanauplii/ml and treated O.range®, with 15gm/m
3
 until 38 dph. While larvae were fed 

2 metanauplii/ml and treated O.range®, with 30 g/m
3
 until 41 dph. Moreover, larvae were 

fed only on O.range® with 45 gm/m
3
 (artemia metanapulii & cofeeding stopped) until the 

45
th

 dph. DHA SELCO® (INVE, Belgium) enrichment of rotifers and artemia were 

conducted for 4 and 6 hours at 28ºC, respectively (Fig. 1). The tanks bottoms were 

siphoned every day. Five weaning microdiets treatments were: the control greenwater 

(Inve O.Range® microdiet without treatment) (G), Suez Gulf locally isolated marine 

bacterial probiotic Bacillus subtilis HS1 1 × 10
7
 CFU g

‒1
 treated Inve O.Range® 

microdiet (Mpro), locally extracted marine chitosan prebiotic of 1.0 mg  g
‒1

 treated Inve 

O.Range® microdiet (Mpre), marine synbiotic 1 (B. subtilis HS1 probiotic bacteria 1 × 

10
7
 CFU + 1 mg chitosan . gm-1microdiet) treated Inve O.Range® microdiet (MS1), and 

marine synbiotic 2 (B. subtilis HS1 probiotic bacteria 1 × 10
7
 CFU + 2 mg chitosan . g

‒1
 

microdiet) treated Inve O.Range® microdiet (MS2) (Fig. 1). Both probiotic, prebiotic and 

synbiotic involved in the present study had effective results on the European seabass 

larvae and fry (Salem et al, 2015; Zaki et al ., 2015; Salem et al ., 2022). 

 

Calculation of fish growth performance 

Larvae measured growth length for total length (TL) and standard length (SL) were 

calculated using a binocular light research microscope with graded eye piece as follows: 

Length gain (LG in mm) = Lf – Li. 

Length average daily gain (LADG in mm d
‒1

) = Lf – Li/t. 

Length specific growth rate % (LSGR % d
‒1

) = (Lin Lf – Lin Li) 100/t. 

Length gain % (LG %) = LG/ Li x 100, where Li and Lf are initial and final lengths 

(mm) and t is the time of experiment (days). 

Survival (S %) = (final fish count/initial fish count) × 100 
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Treatment DPH 2 5  10 12   15 20 30 35           40 45 

Live feeds 

Algae           

Rotifers           

Enriched Artemia nauplii            

Enriched Artemia metanauplii            

INVE Orange®  P 1/2 Microdiet (MD) treatments 

G MD          

MPro MD + Bacillus subtilis HS1 1 × 107 CFU. g‒1MD       

Mpre MD + Chitosan  mg . g‒1MD         

MS1 MD + B. subtilis HS1 1 × 107 CFU. g‒1MD + Chitosan  1 mg . g‒1MD    

MS2 MD + B. subtilis HS1 1 × 107 CFU. g‒1MD +Chitosan  2 mg . g‒1MD    

 

Fig. 1. Weaning and rearing strategies for European seabass (D. labrax) larvae using five 

weaning treatments. 
G: Greenwater control non treated; Mpro: Marine probiotic; Mpre: Marine prebiotic; MS1: Marine 

synbiotic 1 treated, and MS2: Marine synbiotic 2 treated microdiets.  

Measurement of water quality 

Water quality was evaluated using Hanna® HI9828 portable electric device on a  

weekly basis, from the beginning till the end of the experiment at 2 pm. Different parameters 

were measured during the experiments; namely, temperature (17.61
 
- 19.21

 
ºC), dissolved 

oxygen % (91.35 - 104.38%), pH (7.18 - 8.49), conductivity (169.12 - 221.93 Ms/cm), total 

dissolved solids (77.50 - 143.60 ppm) and salinity (35.45 - 39.54 ppt). 

Microbiological measurements 

B. (BBC) and Vibrio (V.) (VBC) colony forming unit (CFU) were done in the 

Microbiology Lab., Marine Environment Division, NIOF. Serial dilutions of 10
‒2 

± 10
‒4

 

were made using filtered sterilized sea water. For each water sample; 100l was 

inoculated on sterile plates and incubated at 30
o
C for 24 - 72 h. Plates of the selective 

media of sea water agar for BBC and thiosulfate citrate bile salt sucrose agar (TCBS) for 

VBC were inoculated with 0.1 ml of the diluted samples, and the different bacterial 

genera were counted following the study of Salem et al. (2015).   

Measurement of antioxidants biomarkers and enzymes  

Biodiagnostic Company kits, Cairo, Egypt purchased a spectrophotometer model: 

01102, LAXCO, Inc., USA for measuring antioxidants and enzymes. Larvae CAT, SOD, 

and TAC were measured according to the protocol of Aebi (1984), Nishikimi et al. 

(1972), and Koracevic et al. (2001), respectively. Albumin, globulin, and total protein in 

g/l according to biuret method for protein (Gornall et al., 1949), using the modified 

method of bromocresol green (Doumas et al., 1971) for albumin, and GOD-PAP 

enzymatic colorimetric method (Weissman & Klien, 1958) for glucose. ALP activity 

was established with the modified procedure of Befield and Goldberg (1971). Acid 
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phosphatase (AP) activity was determined using the modified method of Kind and King 

(1954), while AST and ALT activities were measured according to the methods of 

Murray (1984). TAG was analyzed using modified method of Fossati and Prencipe 

(1982). Specific activities of enzymes were calculated by dividing the total enzyme 

activity over the total protein content. 

Histological methodology, samples preparation and fixation  

Five larvae from each tank were collected at the end of the weaning trial, fixed in 

10% formalin saline for 24 – 48 hours, dehydrated through graded alcohols followed by 

xylene and finally embedded in paraffin wax. Two paraffin blocks containing two larvae 

from two different tanks were sectioned at 5μm, and sections were stained with 

hematoxylin and eosin (H&E) for histopathological evaluations (Martoja & Martoja-

Pearson, 1970). 

Statistical analysis 

All data were subjected to a one-way analysis of variance (ANOVA) at a 95% 

confidence limit, and means were compared by Duncan’s test (P < 0.05) using a SPSS 

software (SPSS for Windows 16; SPSS Inc., Chicago, IL, USA). 

RESULTS  

 

Larval growth and survival 

The 45 dph weaned D. labrax larvae fed MPro, MPre, MS1 and MS2 exhibited 

similar significant (P < 0.05) final TL and SL growth higher than G. The MS1 exhibited 

the best TLG and SLG in mm, TLADG and SLADG in mm/day, and TLSGR and 

SLSGR in %/day. MS1 and MS2 recorded the best significant (P<0.05) S% of 45 dph sea 

bass larvae (Tables 1, 2). 

Larval body protein, glucose and enzymes activities 

The larvae fed Mpre showed the highest considerable (P< 0.05) total protein in 

g/l. While, larvae fed Mpro revealed an excessive noticeable (P< 0.05) glucose in g/l. 

Larvae fed MS1 revealed considerably higher (P< 0.05) total and specific albumin 

activities, and larvae fed Mpro recorded a remarkable high value (P< 0.05) of total 

globulin; whereas, larvae fed MS1 verified the lowest substantial (P < 0.05) specific 

globulin activity. Larvae fed Mpro displayed the highest noteworthy (P< 0.05) total TAG 

activity; however, larvae fed MS1 and Mpro exhibited the highest considerable (P< 0.05) 

specific TAG activity (Fig. 2). 

On the other hand, the larvae fed MS2 and MS1 recoded the highest noteworthy 

(P< 0.05) ALP and AP enzymes total and specific activities, respectively. The larvae fed 
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Mpre recoded the greatest substantial (P< 0.05) AST total activity; while, the larvae fed 

Mpro recoded the topmost considerable (P< 0.05) AST specific activity. The larvae fed G 

recoded the supreme meaningful (P< 0.05) ALT total and specific activities (Fig. 3). 

Antioxidants biomarkers 

It was observed that the larvae fed G showed high significant effect (P < 0.05) on 

body CAT, SOD total and specific activities. The larvae fed MS1 showed the highest 

considerable (P < 0.05) of body TAC total and specific activities (Fig. 5). 
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Fig. 2. Effect of marine synbiotic enriched microdiets on the 45 dph European seabass (D. 

labrax) larval protein and glucose content in g/L. 

Different letters are for significance of treatments' effects (P < 0.05).  

G: Greenwater control non treated; Mpro: Marine probiotic; Mpre: Marine prebiotic; MS1: Marine 

synbiotic 1 treated, and MS2: Marine synbiotic 2 treated microdiets.  

 

Bacterial counts 

VBC was neither found in water nor in larvae samples. BBC in water samples at 

the 45 dph was considerably (P<0.05) higher in MS1 and MS2. While, BBC in larvae 

samples at the 45 dph were considerably (P<0.05) higher in Mpro, MS1& MS2 (Fig. 6). 

 

Histological examinations 

The effect of 45dph D. labrax larval weaning using G, Mpro, Mpre, MS1 and 

MS2 treated microdiets on the histological sections in comparison with 31 dph larvae, 

which was the starting point of cofeeding in microdiets and weaning, as shown in Fig. 

(7). The effect of larval weaning using G, Mpro, Mpre, MS1 and MS2 treated microdiets 

on the histological sections in liver was explained in details. The liver of G control larvae 

showed homogenous hepatic parenchyma; the hepatocytes were polyhedral shaped cells 

with a cord-like arrangement of two or more hepatocytes thick. Hepatocytes have 

spherical centrally located nucleus, with densely staining chromatin margins and 

eosinophilic cytoplasm. Hepatocytes showed irregular vacuolization. Sinusoids appearing 

throughout in the interstitial connective tissue between the hepatic plates. The sinusoidal 

capillaries were narrow and irregularly shaped. Abundant red blood cells are found in the 
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liver sinus of G control larvae (Fig. 7aB). In the liver of the control fish as well as MS 

treated larvae, (Fig. 7Be and F) and 35 dph larvae, (Fig. 7aA), the tissue structure was 

clear and hepatic cells were regularly arranged. The hepatic cord and the hepatic 

sinusoid were connected to each other forming a net. The effect of larval weaning using 

G, Mpro, Mpre, MS1 and MS2 treated microdiets on the histological sections in kidney 

was determined. Kidney of G control larvae (Fig. 7aB) showed urineferous tubules with 

distal and proximal tubular types. Each tubule consists of a layer of columnar epithelial 

cells resting on a basement membrane with a wide lumen and hemopoietic tissue between 

tubules. No structural differences were detected in kidney structure of 35 dph larvae (Fig. 

7aA) or G control (Fig. 7aB). In MS treated larvae, some epithelial cells of proximal 

tubules showed vacuolization (Figs. 7B, F). 
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Fig. 3. Effect of marine synbiotic enriched microdiets on the 45 dph European seabass (D. 

labrax) larval albumin, globulin and triglycerides total and specific activities 

Different letters are for significance of treatments effects (P < 0.05).  

G: Greenwater control non treated; Mpro: Marine probiotic; Mpre: Marine prebiotic; MS1: Marine 

synbiotic 1 treated, and MS2: Marine synbiotic 2 treated microdiets. 
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Table 1. The effects of greenwater, marine probiotic, marine prebiotic, marine synbiotic 1 and marine synbiotic 2 on the European Seabass larvae final total 

length and final standard length growth performance between 30 and 45 dph 

Treatment G Mpro MPre MS1 MS2 

Initial total length (mm) 9.27 ± 0.12 9.07 ± 0.42 9.07 ± 0.42 9.07 ± 0.42 9.07 ± 0.42 

Initial standard length (mm) 8.43 ± 0.06 8.30 ± 0.26 8.30 ± 0.26 8.30 ± 0.26 8.30 ± 0.26 

Initial body width mm 1.37 ± 0.06 1.37 ± 0.06 1.37 ± 0.06 1.37 ± 0.06 1.37 ± 0.06 

Final total length (mm) 10.50
b
 ± 0.10 13.17

a
 ± 0.59 13.00

a
 ± 1.21 14.00

a
 ± 0.80 13.10

a
 ± 0.56 

Final standard length (mm) 9.60
b
 ± 0.10 11.10

a
 ± 0.26 11.40

a
 ± 1.20 12.17

a
 ± 1.10 11.50

a
 ± 0.62 

Final body width (mm) 1.60
b
 ± 0.00 1.97

a
 ± 0.06 2.10

a
 ± 0.26 2.03

a
 ± 0.15 2.03

a
 ± 0.12 

Final Survival% 46.59
c
 ± 1.84 55.02

b
 ± 3.03 54.22

b
 ± 2.41 66.27

a
 ± 5.25 65.06

a
 ± 4.34 

Total length gain (mm) 1.23
b
 ± 0.06 4.10

a
 ± 0.95 3.93

a
 ± 1.12 4.93

a
 ± 0.58 4.03

a
 ± 0.45 

Standard length gain (mm) 1.17
b
 ± 0.15 2.80

a
 ± 0.26 3.10

a
 ± 1.18 3.87

a
 ± 0.93 3.20

a
 ± 0.53 

body width gain (mm) 0.23
b
 ± 0.06 0.60

a
 ± 0.10 0.73

a
 ± 0.25 0.67

a
 ± 0.12 0.67

a
 ± 0.06 

Total length average daily gain (mm/day) 0.08
b
 ± 0.01 0.27

a
 ± 0.06 0.26

a
 ± 0.07 0.33

a
 ± 0.04 0.27

a
 ± 0.03 

Standard length average daily gain (mm/day) 0.08
b
 ± 0.01 0.19

a
 ± 0.02 0.21

a
 ± 0.08 0.26

a
 ± 0.06 0.21

a
 ± 0.04 

body width average daily gain (mm/day) 0.02
b
 ± 0.00 0.04

a
 ± 0.01 0.05

a
 ± 0.02 0.04

a
 ± 0.01 0.04

a
 ± 0.00 

Total length specific growth rate (%/day) 0.61
b
 ± 0.13 4.03

a
 ± 0.70 3.88

a
 ± 0.90 4.61

a
 ± 0.33 4.03

a
 ± 0.32 

Standard length specific growth rate (%/day) 0.43
b
 ± 0.39 2.97

a
 ± 0.28 3.11

a
 ± 1.25 3.86

a
 ± 0.68 3.34

a
 ± 0.46 

Total length gain % 13.31
b
 ± 0.72 45.59

a
 ± 12.58 43.44

a
 ± 12.31 54.43

 a
 ± 6.02 44.57

a
 ± 5.57 

Standard length gain % 13.84
b
 ± 1.90 33.79

a
 ± 3.80 37.39

a
 ± 14.12 46.48

a
 ± 10.42 38.56

a
 ± 6.22 

body width gain  %  17.22
b
 ± 5.08 44.14

a
 ± 9.13 53.66

a
 ± 17.86 48.72

a
 ± 7.48 48.72

a
 ± 2.22 

Different letters in the same row are for significance of treatments effects (P < 0.05). 

G: Greenwater control non-treated; Mpro: Marine probiotic; Mpre: Marine prebiotic; MS1: Marine synbiotic 1, and MS2: Marine synbiotic 2 treated microdiets. 
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Fig. 4. Effect of marine synbiotic enriched microdiets on the 45 dph European seabass (D. 

labrax) larval ALP, AP, ALT and AST total and specific activities 
Different letters are for significance of treatments effects (P < 0.05).  

G: Greenwater control non treated; Mpro: Marine probiotic; Mpre: Marine prebiotic; MS1: Marine 

synbiotic 1 treated, and MS2: Marine synbiotic 2 treated microdiets.  

DISCUSSION 

 

The present results of the 45 dph weaned D. labrax larvae fed MPro, MPre, MS1 

and MS2 exhibited significant length growth higher than G. MS1 and MS2, and recorded 

the best significant survival %. Salem et al. (2015) recorded that Bacillus subtilis HS1 

marine probiotic (the same Mpro strain and dose included in the present study MS) and 

commercial synbiotic treated rotifers, enriched Artemia, sea bass yolk sac larvae  and first 
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fed larvae were added to weaning tanks until weaning showed significant improvement of 

larval growth and survival. Zaki et al. (2015) suggested that chitosan marine prebiotic 

(the same source used in the present study) combined with sea bass fish fry diets 

improved the survival and fish growth performance. Synbiotics have revealed 

ameliorated growth, immune and antioxidative influences on aquatic animals (Lamari et 

al., 2016; Ringø & Seong, 2016; Huynh et al., 2017). In addition, synbiotic improved 

the disease resistance, survival, and host microbial ecology (Ohtani et al., 2020; Knipe 

et al., 2021; Hong et al., 2022; Salem et al., 2022).  
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Fig. 5. Effect of marine synbiotic enriched microdiets on the 45 dph European seabass (D. 

labrax) larval antioxidants biomarkers total and specific activities 
Different letters are for treatments effects significance (P < 0.05).  

G: Greenwater control non-treated; Mpro: Marine probiotic; Mpre: Marine prebiotic; MS1: Marine 

synbiotic 1 treated, and MS2: Marine synbiotic 2 treated microdiets. 

In the current investigation, larvae fed Mpre showed the highest significant values 

for total protein in g/l. While, larvae fed Mpro showed the highest significant total 

glucose, globulin activities and TAG. On the other hand, larvae fed MS1 showed 

significantly higher values of total, specific albumin and specific globulin activities, and 

those fed MS1 and Mpro recorded the highest significant specific TAG activity. It was 
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noticed that, synbiotic reduced food conversion ratio, carcass lipid, Serum cholesterol, 

globulin (Ringø & Song, 2016). Moreover, Hassan et al. (2014) indicated that synbiotic 

expressively improved total protein content and albumin. Furthermore, synbiotic (Biomin 

IMBO) improved serum protein, albumin, and globulin of rainbow trout (Mehrabi et al. 

2011). Desouky et al. (2020) reported that the fish energetic metabolites (triglycerides 

and cholesterols) levels are health indications (Mensinger et al. 2005). Desouky et al. 

(2020) related fish low growth and their high crude lipid content to the high fat diet. 

0

2

4

6

8

10

12

14

16

G Mpro Mpre MS1 MS2

C
F

U
/m

l

BBC Water

0

50

100

150

200

250

300

G Mpro Mpre MS1 MS2

C
F

U
/m

l

BBC Larvae

a
a

b
b

c

b

a
a

a

c

 
Fig. 6. Effect of marine synbiotic enriched microdiets on the 45 dph European seabass (D. 

labrax) larval water quality, water and larval bacterial counts quality 
Different letters are for significance of treatments effects (P < 0.05).  

G: Greenwater control non-treated; Mpro: Marine probiotic; Mpre: Marine prebiotic; MS1: Marine 

synbiotic 1 treated, and MS2: Marine synbiotic 2 treated microdiets.  

 

In the present study, larvae fed MS2 and MS1 recoded the highest significant ALP 

and AP enzymes of total and specific activities, respectively. In addition, larvae fed Mpre 

recoded the highest significant AST total activity; while, those fed Mpro showed the 

highest significant AST specific activity. The larvae fed G recoded the highest significant 

ALT total and specific activities. ALT and AST enzymes are principal liver enzymes. 

Mostly during liver cell damage, ALT and AST are discharged substantially into animal 

blood (Kumar et al., 2011; Hassan et al., 2014). Nile tilapia fed probiotics diets 

considerably reduced ALT and AST levels (Soltan & El-Laithy, 2008).  

AKP and AP enzymes had important roles on the digestive process and on bone 

mineralization, formation and resorption respectively (Piattelli et al., 1997). Also, 

gilthead seabream (Sparus (S.) aurata) larvae AP and AKP increased at late weaning 

(W43) at 70dph (Salem et al., 2021), white seabream (Diplodus sargus) larvae AMP and 

AKP increased at late weaning (W27) at 48 dph (T3) (Guerreiro et al., 2010) and D. 

Puntazzo intestinal enzymes activities increased until 50 dph (Suzer et al., 2007). While, 

for AKP at 9 dph D. sargus (Cara et al., 2003) and for Dentex dentex AKP and AMP 

were high at 6 dph (Gisbert et al., 2009). Salem et al. (2019) exposed that peal prebiotic 

decreased ALP in sea bream. Dehaghani et al. (2015) indicated that ALP was 

considerably higher in the control. Suzer et al. (2008) revealed that ALP in gilthead sea 
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bream larvae improved when Lactobacillus spp. Bacteria applied. Song et al. (2006) 

observed that AP activity and the immune system increased in Miichtys miicy fed with C. 

butyricum. Zhang et al. (2013) revealed that black Amur bream notably improved ALP, 

plasma AP, lysozyme, total serum protein, globulin, IgM, TAC when fed FOS and B. 

licheniformis synbiotic (Ringo & song, 2016). Li et al. (2009) revealed that inclusion 

Bacillus and IMOS synbiotic improved growth performance, AP and ALP activities.  

The current results detected that the larvae fed G showed high significant effect on 

body SOD, CAT total and specific activities. The larvae fed MS1 showed the highest 

significant of body TAC total and specific activities. Thilagam et al. (2010) revealed that 

ROS may decrease SOD and CAT activity as a chain reaction, or SOD and CAT 

reduction might induce additional ROS production. Salem et al. (2019) indicated that 

orange peel prebiotic improved oxidative stress resistance (SOD, CAT, GSH-Px and 

TAC activities) while reduced tissue damage, lipid peroxidation in sea bream. Lamari et 

al. (2016) recorded that Lactobacillus casei probiotic upregulated CAT at 20 dph sea 

bass, while there was no considerable difference among the antioxidant enzymes (CAT, 

SOD and GPX) at 20 and 41 dph sea bass.  

Lamari et al. (2016) revealed that pathogenic Vibrio did not infect Sea bass 

larvae as well as in the current study as well as Salem et al., (2018) determined that 

Vibrio sp. was not detected in European sea bass fry and rearing water which was the 

same source of the present study larvae and water. Synbiotic reduced intestinal total 

viable bacterial counts and Vibrio counts (Li et al., 2009). The present study BBC in 

water samples at 45dph was significantly higher in MS1 and MS2. BBC in larvae 

samples at 45dph were significantly higher in Mpro, MS1 and MS2. In accordance, 

Salem et al. (2015) recorded that Bacillus subtilis HS1 marine probiotic (Mpro of the 

present study) and commercial synbiotic plus enzymes treating rotifers, Artemia 

enrichment and sea bass yolk sac larvae and first fed larvae to weaning tanks showed 

significant improvement of total bacterial and Bacillus sp. counts while significantly 

decreased the Vibrio sp., Aeromonas sp. and Staphylococcus sp. counts Vs. control 

treatment. Salem et al., (2022) revealed a significant improvement of larval length, 

weight growth, and survival with MS (MS1 in the present study) dietary supplementation. 

The ALP enzyme showed a significant increase after MS treatment. The SOD and CAT 

activities showed a significant decrease after MS treatment. MS treated sea bass larvae 

improved growth rate and survival, decreased the negative impacts of E2 and increased 

and ameliorated morphological structure of liver and kidney of ES (MS and E2 mixture) 

compared with E2 treatments. 
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Table 2. The effects of treatments on the European Seabass larvae final body parts [head(H), trunk (TR) and tail (TA)] length growth performance 

between 30 and 45 dph 

Treatment  G MPRO MPRE MS1 MS2 

IHL mm 1.67 ± 0.15 1.67 ± 0.15 1.67 ± 0.15 1.67 ± 0.15 1.67 ± 0.15 

ITRL mm 3.80 ± 0.10 3.80 ± 0.10 3.80 ± 0.10 3.80 ± 0.10 3.80 ± 0.10 

ITAL mm 3.57 ± 0.15 3.57 ± 0.15 3.57 ± 0.15 3.57 ± 0.15 3.57 ± 0.15 

FHL mm 2.17
b
 ± 0.15 2.50

ab
 ± 0.26 2.70

ab
 ± 0.50 2.70

ab
 ± 0.26 2.77

a
 ± 0.21 

FTRL mm 4.70
b
 ± 0.46 5.50

a
 ± 0.53 5.40

a
 ± 0.30 5.33

ab
 ± 0.15 5.20

ab
 ± 0.35 

FTAL mm 3.67
b
 ± 0.35 5.10

a
 ± 0.26 5.43

a
 ± 0.51 5.57

a
 ± 0.06 5.20

a
 ± 0.26 

LG HL mm 0.50
b
 ± 0.20 0.83

ab
 ± 0.15 1.03

a
 ± 0.47 1.03

a
 ± 0.15 1.10

a
 ± 0.20 

LG TRL mm 0.90
b
 ± 0.40 1.70

a
 ± 0.56 1.60

a
 ± 0.36 1.53

ab
 ± 0.15 1.40

ab
 ± 0.26 

LG TAL mm 0.10
b
 ± 0.35 1.53

a
 ± 0.42 1.87

a
 ± 0.45 2.00

a
 ± 0.20 1.63

a
 ± 0.15 

ADG HL mm/day 0.03
b
 ± 0.01 0.06

ab
 ± 0.01 0.07

a
 ± 0.03 0.07

a
 ± 0.01 0.07

a
 ± 0.01 

ADG TRL mm/day 0.06
b
 ± 0.03 0.11

a
 ± 0.04 0.11

a
 ± 0.02 0.10

ab
 ± 0.01 0.09

ab
 ± 0.02 

ADG TAL mm/day 0.01
b
 ± 0.02 0.10

a
 ± 0.03 0.12

a
 ± 0.03 0.13

a
 ± 0.01 0.11

a
 ± 0.01 

G% HL % 30.70
b
 ± 14.73 49.98

ab
 ± 7.74 62.40

a
 ± 28.59 62.05

a
 ± 7.72 66.60

a
 ± 14.46 

G% TRL % 23.61
b
 ± 10.11 44.85

a
 ± 15.30 42.24

a
 ± 10.14 40.39

ab
 ± 4.42 36.77

ab
 ± 6.17 

G% TAL % 2.87
b
 ± 9.71 43.38

a
 ± 13.76 52.31

a
 ± 12.04 56.30

a
 ± 8.05 45.79

a
 ± 3.66 

Different letters in the same row are for treatments effects significance (P < 0.05). 

G: Greenwater control non treated; MS: Marine probiotic; MS: Marine prebiotic; MS1: Marine synbiotic 1, and MS2: Marine synbiotic 2 treated 

microdiets.
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Figure 7a. photomicrograph of D. labrax larvae at 31dph(A) and at 45dph G(B), Mpro(C) larvae (H&E X40), liver and kidney larvae 

(H&E X400). 
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Figure 7b. photomicrograph of 45dph D. labrax larvae at Mpre(D), MS1(E) and MS2(F) larvae (H&E X40), liver and kidney larvae (H&E 

X400). 
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CONCLUSION 

 

The current findings revealed a significant improvement of larval length, weight 

growth, and survival with MS dietary supplementation than G. The MS1 and MS2 

exhibited best length growth performance, survival, SOD and CAT activities, and TAC 

improvement after treatments compared to G. The larvae fed MS2 and MS1 recoded the 

highest considerable alkaline phosphatase (ALP) and acid phosphatase (AP) enzymes 

total and specific activities, respectively. The larvae fed Mpre recoded the highest 

significant aspartate aminotransferase (AST) total activity; while, larvae fed Mpro 

recoded the highest substantial AST specific activity. The larvae fed G recoded the 

highest meaningful alanine aminotransferase (ALT) total and specific activities. In 

conclusion, mixing marine probiotics and prebiotics in synbiotics treatments improved 

European sea bass larval growth, survival, and antioxidant capacity. 
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