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INTRODUCTION 

 

Water is necessary for life; however, till now a huge number of people can’t attain safe, 

clean, and healthy drinking water, and many cases of death are caused by the 

contamination of water by pathogenic organisms. Over fifty severe illnesses can be 

caused by contaminated water, including infectious diseases, skin diseases, digestive 

sickness, respiratory diseases and cancer (Wen et al., 2020). Drinking water safety is a 

significant public health hazard; as of 2022, approximately two billion people live in 

countries with extreme water deficiency, as the result of population expansion and 

climate change. The drinking water sources of over two billion people were contaminated 

with waste, and 829 000 people annually die from diarrheal diseases caused by unhealthy 

drinking water, deficiency of sanitation, and poor hand hygiene (WHO, 2022). Hospitals, 

industries considered, decontamination stations, outlets of wastewater treatment plants, 

and storm drains are considered the most common sources of pollution from natural water 
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       This review was presented to suggest if viruses could be used as fecal 

indicators for drinking water and treated sewage pollution. The failure of 

bacterial indicators in a lot of cases to indicate viral pollution in drinking water 

and treated sewage indicates that bacterial indicators may fail to express fecal 

pollution in drinking water and treated sewage. We could explain this 

statement as viruses, especially enteric viruses are generally secreted in the 

feces of infected or carrier persons. Thus, it always expresses the fecal 

contamination in sewage and consequently water. Hence, the defect of 

bacterial indicators to indicate the enteric virus’s presence in a lot of cases may 

indicate failure in expressing the fecal pollution, which is the cause of viral 

contamination of sewage and water. Adding at least one viral indicator besides 

bacterial indicators can help supply more perfect water quality results and 

greater assurance of water quality safety. Adenoviruses and bacteriophages 

may represent suitable candidates as indices of viral and fecal pollution 

indicators in drinking water and treated sewage samples. 
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sources. Some studies show the relation between urban activities and pathogens 

concentrations (Marsalek & Rochfort, 2004; Selvakumar & Borst, 2006). There are 

two sources of fecal contamination; the first source is related to human activities such as 

non-collective sewage systems, water sewage treatment plants, and combined sewage 

overflow. The second source is manure spreading by wild and domestic animals (Jung et 

al., 2014). Most studies have found that gastroenteritis diseases occur at higher rates than 

other diseases (EPA, 2012). Enteric viruses and enteric bacteria have been the most 

causes of waterborne gastroenteritis diseases (Said et al., 2003; Kay et al., 2007). 

Because of the difficulties of methodology, enumeration of pathogens (viruses, bacteria, 

parasites), and a low dose of infectivity to occur the infection, the environmental and 

health authorities have been used as micro-bioindicators to assess the water’s quality and 

the performance of treatment process (Bartram et al., 2001). 

Indicator term can be used to refer to the index and the indicator function (Bartram et 

al., 2001), in which the index is linked to the presence of microorganism surrogate or 

material (pathogens, age, fecal remnants); on the other hand, the function of indicator 

includes features such as stability under the environmental conditions and treatment 

processes resistance (García‐ Aljaro et al., 2019). Fecal indicators bacteria (FIB) were 

first introduced in the 1880s to determine the quality of water when bacteriological media 

were used to show the microbial presence in food and water (Ashbolt et al., 2001). FIB 

covers all the roles of indicators, but now viruses are the most resistant to treatment 

operation and more survival in the environment than the FIB (Grabow, 2001; 

García‐ Aljaro et al., 2019); in addition,  FIB fails to detect fecal contamination sources 

(Malakoff, 2002). There is no common indicator, only a wide range of indicators with 

certain features (Ashbolt et al., 2001).   

This review aimed to suggest if viruses could be used as fecal pollution indicators in 

drinking and treated sewage water samples. 

1. Enteric viruses in the aquatic environment 

Many groups of enteric viruses, enteric bacteria, and protozoa are transferred by water 

(Liste et al., 2000). About 150 several serological types of viruses including, 

adenoviruses (AVs), noroviruses (NoVs), rotaviruses (RVs), enteroviruses (EVs), and 

polyomaviruses (PVs) cause a variety of diseases. (Hamza et al., 2009; Rodriguez-

Lazaro et al., 2012; Tran et al., 2015; Adriaenssens et al., 2019). Enteric viruses 

replicate in the human and animal intestinal tract; they can tolerate the gut acidic pH, the 

alkaline activity, and the duodenum proteolytic activity (Greening & Cannon, 2016; 

Katayama & Vinjé, 2017). Moreover, enteric viruses have high resistance to 

environmental conditions (temperature, light, salinity), water, and wastewater treatment 

processes (Gibson, 2014; Kauppinen et al., 2018; Sekwadi et al., 2018). Enteric viruses 

are host-specific and can be used to distinguish between human and animal sources of 

fecal contamination (Jiang et al., 2007; Silva et al., 2011). Fecal-oral route is the main 
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route for the transmission of the enteric virus by contaminated food or water, in addition, 

to the direct contact with infected individuals (Koopmans & Duizer, 2004; Katayama 

& Vinjé, 2017). Many diseases are caused by enteric viruses such as conjunctivitis, 

respiratory infection, non-bacterial gastroenteritis and hepatitis (Lenaerts et al., 2008; 

Okoh et al., 2010; Fewtrell & Kay, 2015; Graciaa et al., 2018). Some enteric viruses 

can excrete in infected individuals' feces with a range of up to 10
11

 viral particles per 

gram of stool (Bosch, 1998), as well as very low infectious dose (1-10) viral units 

(Leclerc et al., 2002).  Rivers, seawater, and soil can be contaminated by enteric viruses 

through defects in the wastewater treatment process (La Rosa et al., 2012).  

Rotaviruses are the main causative agent of gastroenteritis in kids under the age of five 

years, with 258 million diarrhea cases (Crawford et al., 2017).  There are 111 million 

diarrheal cases, and about 2 million children hospitalized during the year (Wang et al., 

2016; Badur et al., 2019). Rotaviruses are the most RNA enteric viruses detected in 

rivers and raw sewage water. They are the most resistant RNA enteric viruses to 

treatment operations in water and wastewater treatment plants (Kukkula et al., 1999; 

Borchardt et al., 2004; Verheyen et al., 2009; El-Senousy et al., 2013a, 2015; El-

Senousy & Abou-Elela, 2017). Adenoviruses are the main cause of many diseases, 

including conjunctivitis, respiratory disease and gastroenteritis (Chitambar et al., 2012). 

Fever, vomiting, and diarrhea are all symptoms of pediatric gastroenteritis caused by the 

adenovirus F 40 and 41 serotypes, which is considered the second major causative agent 

of gastroenteritis in kids after rotaviruses (El-Senousy et al., 2013a; Ogorzaly et al., 

2013). In addition, adenoviruses are the main pathogens associated with severe childhood 

pneumonia (Jonnalagadda et al., 2017). Adenoviruses were detected in drinking water 

and sewage samples worldwide (Lee & Kim, 2002; He & Jiang, 2005; Verheyen et al., 

2009; El-Senousy et al., 2013a; Quintão et al., 2021). Astrovirus is also one of the 

causes of gastroenteritis (Gofti-Laroche et al., 2003). They follow rotavirus as a major 

cause of diarrhea in both young and adults (Liste et al., 2000; Macdonald et al., 2015). 

Astroviruses were also found in sewage and drinking water samples (Abad et al., 1997; 

Kukkula et al., 1999; El-Senousy et al., 2007; Meleg et al., 2008). Noroviruses are the 

causative agent of gastroenteritis infections, with 200,000 deaths and 685 million 

diarrheal cases (Katayama & Vinjé, 2017). Noroviruses were detected in different water 

types such as treated sewage and drinking water (Kukkula et al., 1999; Borchardt et al., 

2004; Meleg et al., 2008; El-Senousy et al., 2013b, 2014). Papillomaviruses and human 

polyomaviruses have been detected in infected individuals' feces and urine (Rachmadi et 

al., 2016). Certain polyomaviruses have been detected in seawater, wastewater, river and 

sediment (Fratini et al., 2014; Di Bonito et al., 2015; Hamza & Hamza, 2018; Samir 

et al., 2020). Some enteric viruses were detected in water and sewage samples, such as 

the hepatitis A virus (Borchardt et al., 2004; El-Senousy et al., 2004; Ouardani et al., 

2016; Rachida & Taylor, 2020). Enteroviruses (Donaldson et al., 2002; Lee and Kim, 

2002; Borchardt et al., 2004; El-Senousy et al., 2004; Ehlers et al., 2005; Tiwari and 
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Dhole, 2018) were also detected. Other enteric viruses that are considered accusative 

agents of gastroenteritis have been detected in contaminated rivers and wastewater, with 

lower titer such as bocaviruses, torque teno virus, and human picobirna viruses 

(Haramoto et al., 2008; Symonds et al., 2009; Hamza et al., 2011; Adriaenssens et al., 

2018). 

2. Microbial indicators for water quality 

Observing all pathogenic microorganisms in aquatic environments needs a great effort 

because of the large variety of pathogens that present (bacteria, viruses, and protozoa), 

the methods required for concentration, analysis, culturing of many pathogens, and the 

difficulty of identifying, besides the existence in low titer in aquatic environments. On the 

other hand, detecting only one pathogen can give a false impression if another pathogen 

not tested is present (Scott et al., 2005; Stoeckel & Harwood, 2007). The water quality 

microbiological indicator selection is the process to select one species or group of 

microorganisms transferred to water through the feces of infected individuals but can be 

easily detected to measure than other harmful pathogens that pose to risk human health 

(Berg, 1978; Bosch, 2007). The perfect indicators are detected whenever a pathogen is 

present (Payment et al., 2003). The destruction and removal of indicators against the 

target pathogen have an important role in the selection of any indicator system (Berg, 

1978). There is no unique indicator, but a variety of indicators with a specific 

characteristic. The difference between these indicators is controlled by a wide range of 

factors that affect their ability to be stable and transport through the environment, such as 

the size, tolerance to environmental factors, abundance in feces, and the nature of the 

hydrological process (Anderson et al., 2005; Yates, 2007). The ideal indicator should 

include the following characteristics:  (ⅰ) should be completely related to the origin of 

the pathogen (specific to a host species) and must be absent in non-contaminated areas, 

(ⅱ) detected with concentration higher than pathogens concentration, (ⅲ) very simple for 

detection and quantification (easy, cheap, rapid methods), (ⅳ) does not replicate outside 

the host, (ⅴ) related with human diseases, (ⅵ) high abundant in feces of host individuals, 

(ⅶ) more resistant than pathogen to environmental factors (persistence, survival, fate, 

transport, temp, pH, salinity, light) and disinfection processes in water and wastewater 

treatment, (ⅷ) must not be pathogenic ( safe for those who are monitoring) (Bosch, 1998; 

Walker et al., 2020). 

     2.1 Fecal indicator bacteria (FIB) 

FIBs are used to determine the fecal pollution in different aquatic environments which are 

related to other pathogenic intestinal bacteria. Total coliform, fecal streptococcus, fecal 

coliform, and E. coli are used to assess contamination since they are easy and low-cost to 

detect (Bitton, 2005; Fong & Lipp, 2005; Fong et al., 2010; Tawfik et al., 2012; El-

Senousy et al., 2013a; Ogorzaly et al., 2013). The first time that fecal coliform was 
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recommended as FIB by the EPA (1976), it was used to detect pathogens in recreational 

waters (Cabelli et al., 1983; Dufour, 1984). The coliform group includes E. coli and E. 

aerogenes which are found in contaminated water by infected individuals’ feces. E. coli 

provides a good indicator for fecal pollution (Messner et al., 2017). The correlation 

between the pathogens and FIB can be changed in an aquatic environment due to a wide 

range of parameters such as the environmental survival of pathogens, dilution, and water 

flow characteristics (Devane et al., 2014; Boehm et al., 2015; Ahmed et al., 2018; 

Nelson et al., 2018). According to WHO, the acceptable levels of E. coli and coliform 

bacteria must be null for 100 ml of water and about 126 CFU/100 ml for recreational and 

domestic water (Gunda & Mitra, 2016). 

     2.2 Correlation between FIB and enteric viruses 

Globally, E. coli and Enterococci are the most common fecal indicators used; when 

compared with viruses, they are less tolerant to environmental conditions, like UV 

irradiation, sun irradiation, pH and temperature (Gerba et al., 1979; Wyer et al., 1995; 

Borchardt et al., 2004; Harwood et al., 2005). Enteric viruses have been detected 

during the drinking water and wastewater treatment processes, with higher incidence 

rates than bacterial indicators; furthermore, they are also greater persistent in the aquatic 

environment (Kim et al., 2009; Staley et al., 2012; Lin & Ganesh, 2013; Prez et al., 

2015; Sidhu et al., 2017). Many environmental studies reported that, there is no 

relationship between FIB and human enteric viruses (Baggi et al., 2001; Kageyama et 

al., 2003; Haramoto et al., 2007; Espinosa et al., 2009; Kitajima et al., 2009; Jurzik et 

al., 2010; Kuo et al., 2010; Simmons et al., 2011; Wu et al., 2011; Flannery et al., 

2012). The defect of FIB in a lot of cases to detect viral contamination in drinking water 

and treated sewage samples indicates that the bacterial indicators may fail to express fecal 

pollution in treated sewage and drinking water. We could explain this statement as 

viruses, especially that enteric viruses are usually excreted in infected or carrier persons' 

feces, thus it always expresses the fecal contamination in sewage and subsequently water. 

Consequently, the failure of FIBs to indicate the enteric virus’s presence in a lot of cases 

may indicate failure in expressing the fecal pollution which is the cause of viral 

contamination of sewage and water. The addition of at least one viral indicator besides 

bacterial indicators can help providing more adequate water quality results and more trust 

in the safety of water quality (Toribio-Avedillo et al., 2021). The drinking water quality 

standard, which was issued by WHO includes twenty-eight microbiological indicators; it 

contains eight kinds of viruses, twelve kinds of bacteria, six kinds of protozoa, and two 

kinds of parasites (WHO, 2011). It is agreeable that, FIB concentration above the level of 

detection is supposed to detect fecal contamination. However, the detection of FIB to 

evaluate the effect of pathogenic contamination in natural waters is difficult because this 

FIB may multiply in the natural aquatic environment under suitable conditions (Ishii et 

al., 2006; Vogel et al., 2007). Moreover, it's not easy to distinguish between the source of 



Rashed et al., 2022 
 
734 

fecal pollution origin as human or animal-infected individuals by using bacterial 

indicators. Additionally, the incidence of some pathogens, such as adenoviruses, human 

enteroviruses, Giardia spp., Salmonella spp., Cryptosporidium, and coliphages are more 

stable than FIB in aquatic environments; thus, the detection of FIB in different types of 

waters does not indicate the incidence of pathogens (Bonadonna et al., 2002; Payment 

& Locas, 2011; Sidhu & Toze, 2012). One of the most important tasks is to identify the 

fecal contamination source markers (Tran et al., 2015). 

3. Viral indicators for water quality 

The optimal viral indicator must have similar stability, and higher resistance to 

environmental conditions or treatment processes than the pathogen, and it must be 

detected throughout the year in aquatic contaminated environments. Furthermore, during 

a viral outbreak or pandemic, the viral indicator can determine the ratio of infected people 

(Xagoraraki & O’Brien, 2020). Adenoviruses are used as viral indicators for 

contamination to monitor water quality due to their higher persistance in the environment 

compared to the FIB (Simmons et al., 2011; Rachmadi et al., 2016; Messner et al., 

2017; El-Senousy, 2021; Rashed et al., 2022). Norovirus can be used also as a viral 

indicator because of its higher resistance to treatment processes (Duizer et al., 2004; 

Jimenez & Chiang, 2006), high persistance in the environment, long-term stability (Wu 

et al., 2005; D’Souza et al., 2006) and a low dose of infection (Teunis et al., 2008). NoV 

has also been reported in recreational water (Maunula et al., 2004; Sartorius et al., 

2007) and in many outbreaks of contaminated drinking water (Maunula et al., 2005; 

Hewitt et al., 2007). The viral indicators for water quality can be classified into two 

types: 

3.1  Viral indicators used as fecal pollution indicators  

Enteric viruses are considered a promising fecal pollution indicator due to their host 

specificity and prevalence in host feces (Sidhu & Toze, 2009; Payment & Locas, 2011; 

Tran et al., 2015). In addition, they can differentiate between human or animal fecal 

pollution sources by identifying the sequence of common genes in the genus (Fong et al., 

2005; Ahmed et al., 2010). Human adenovirus and polyomavirus (JC and BK) have been 

suggested as fecal indicators and targets for microbial source monitoring markers based 

on their distribution in the population (10
3
 − 10

7
 gc/l), high resistance to environmental 

factors, and human host specificity (Pina et al., 1998; Albinana-Gimenez et al., 2009; 

Ahmed et al., 2010; Wolf et al., 2010; Wyn-Jones et al., 2011; McQuaig et al., 2012; 

Hewitt et al., 2013; Liang et al., 2015). De Giglio et al. (2017) detected enterovirus, 

rotavirus, and norovirus (fecal pollution indicators) in groundwater. On the other hand, 

FIBs were poor to indicate the presence of viruses in groundwater. Many studies 

suggested coliphages as an adequate fecal indicator in several types of water according to 

their characteristics, occurrence, fate, and epidemiological relationship in the 
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environment (Blanch et al., 2006; Lee et al., 2011). F-specific RNA coliphages (F - 

RNA) were suggested to express fecal pollution in groundwater and surface water. 

Moreover, by using their genotyping or serotyping groups, it is easy to identify the source 

of fecal contamination (Havelaar et al., 1993). In addition to the results of some studies 

subgroups I and IV of F - RNA are typically related to animal feces and subgroups II and 

III are correlated with human fecal pollution (Ibarluzea et al., 2007; Lee et al., 2011). 

    3.2 Viral indicators used as surrogates for viral pollution  

Aichi virus (AiV1) has been found at a higher concentration in wastewater and the 

environment, compared to NoVs due to the morphological and prevalence similarity 

(Hata et al., 2013; Kitajima et al., 2014). AiV can be used as a viral indicator to detect 

viral contamination in different types of waters (Kitajima & Gerba, 2015). Garcia et al. 

(2022) suggested that adenovirus, pepper mild mottle virus (PMMoV), and crAssphage 

may be used as viral indicators. Some studies showed that many groups of coliphages 

have similarities in structure, morphology, size, persistence, and survivability in the 

environment to enteric viruses when compared to FIB (Cole et al., 2003; Love et al., 

2008). The removal of somatic coliphages is still regarded as a reflection of the 

elimination of human viruses, while the use of F-specific coliphages as human viruses 

index is restricted (Ottoson et al., 2006). Havelaar et al. (1993) suggested that F- RNA 

coliphages are a suitable microbial marker for human viral pollution in the aquatic 

environment. PMMoV was suggested as a viral indicator that was detected with high 

concentrations to evaluate enteric viruses’ detection in different types of water. (Hamza 

et al., 2011; Kitajima et al., 2018; Garcia et al., 2022).  

4. Survival of viral indicators in the environment 

Viruses are obligatory host-specific and cannot multiply outside their hosts, thus the viral 

particles may survive or be damaged when they are suspended in the environment; this 

means that the viral concentration will be the same or decreased (Pinon & Vialette, 

2018). The effect of these factors changed according to the type of environment 

(Rzeżutka and Cook, 2004; Pinon and Vialette, 2018). Enteric viruses in the soil can 

persist for more than 100 days at 20 to 30°C, up to 120 days in fresh water and sewage, 

and up to 130 days in seawater (Wetz et al., 2004). Kocwa-Haluch (2001) showed that 

with a wide range of pH (3 to 10) and low degrees of temperatures enteric viruses can 

persist for a long time. Rotavirus is one of the more persistent viruses in aquatic 

environments; it can survive for 16 days with a 2-log10 reduction in the initial count, 

using cell-based techniques for the detection of the virus in unpolluted lake water 

(Pancorbo et al., 1987). Espinosa et al. (2008) reported that, the survival of rotavirus by 

using quantitative polymerase chain reaction in surface water and groundwater samples 

may reach 4-log10 and 3-log10 reduction, respectively, in periods ranging between 150 to 

180 days.  Many environmental conditions such as temperature, sunlight, and salinity 
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have an impact on viruses’ survival in the environment (Rzeżutka & Cook, 2004; Pinon 

& Vialette, 2018). 

a. Temperature  

The biological processes such as occurrence, penetration, attachment, viability, and 

multiplication depend on the degree of environmental temperatures (Sobsey & Meschke, 

2003; Jończyk et al., 2011). High temperatures may destroy nucleic acids, and the viral 

capsid protein, or inactivate the enzymes of replication (Bitton, 1980). The effect of 

temperature can increase the activity of viral cells at ambient temperature, but decay 

occurred rapidly at higher temperatures while at a low temperature above freezing 

(Shahid et al., 2009; Paluszak et al., 2012). Several studies reported that enteric viruses 

and coliphages have been surviving for long periods in natural environments at low-

temperature degrees and rapid inactivation at higher temperature degrees (Long and 

Sobsey, 2004; Fong & Lipp, 2005). Abad et al. (1997) noted that, the logarithmic 

reduction of astroviruses in drinking water can reach 2 log10 for 30 days at 20°C and 60 

days at 4°C. Adenovirus can be persisted in groundwater for 132 days at 4°C, when the 

temperature increases to 20°C, the decay occurred more rapidly in 36 days with the same 

reduction (1 log10) (Ogorzaly et al., 2010). Porcine rotavirus and MS2 coliphage have 

low inactivation rates constant at temperatures ranging from 14 to 42°C, the inactivation 

rates increased 10-fold when the temperature increased to 50°C (Romero et al., 2011). 

Seo et al. (2012) examined the log10 of MS2 coliphage and murine NoV at a range of 

temperatures between 24 to 85°C. The result showed that the reduction of MS2 coliphage 

was lower than murine NoV at the range of 24°C and 60°C, while both viruses 

inactivated rapidly at temperatures higher than 60°C. 

b. Sunlight 

In addition, sunlight is the most common factor in virus inactivation. In dark conditions, 

coliphages and enteric viruses have lower reduction than in sunlight conditions (Sobsey 

& Meschke, 2003; Fong & Lipp, 2005; Jończyk et al., 2011). The main composition of 

sunlight, besides the visible light is UV light that is responsible for the damage of the 

genetic materials of the viral cell by forming pyrimidine dimers or other photo products 

(Lytle & Sagripanti, 2005; Love et al., 2010; Silverman et al., 2013).  Johnson et al. 

(1997) observed that, the inactivation of polioviruses increased to 3log10 when exposed to 

sunlight than dark after 24 h incubation in the marine environment. Sinton et al. (2002) 

reported that, the reduction rates of bacteriophages are ten times higher in sunlight 

conditions than in dark conditions. Under sunlight conditions, the reduction rates of 

somatic coliphages, poliovirus type 3, and F-DNA phages were equal to or higher than 

the reduction rates of F-RNA phages and adenovirus type 2 in seawater (Love et al., 

2010). Silverman et al. (2013) observed that, the GI of F-RNA phage reduction rates 

were equal to or less than adenovirus type 2 and significantly below poliovirus type 3 in 
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all examined waters under sunlight and dark conditions. This study emphasized that the 

reduction rates of dark conditions were less than the reduction rates of sunlight 

conditions. 

c. Salinity 

Salinity has an impact factor on the reduction rates of enteric viruses by increasing or 

decreasing, according to the salt concentration, the salt type, temperature, and the specific 

viruses found (Nguyen et al., 2011; Seo et al., 2012). The salinity effect depends on 

monovalent salts that provide strong steric and electrostatic stabilization that have a 

strong inactivation effect by aggregating all the particles of viruses (Mylon et al., 2010; 

Nguyen et al., 2011). Hurst and Gerba (1980) showed that, the results of reduced rates 

of simian rotavirus, coxsackievirus, poliovirus, and echovirus, in fresh and estuarine 

water for two different years were more rapid in estuarine water than in fresh water in 

one year, and become similar in the second year. Seo et al. (2012) observed that, MS2 

RNA coliphage was more resistant to NaCl than murine NoV under different 

concentrations of NaCl at several temperatures ranging between 24°C to 50°C.   

5. Correlation between viral indicator and pathogen 

The correlations between the indicator and pathogen detection are controlled by some 

factors, such as detection methods, sample size, number of positive samples of pathogens, 

and pathogen sources. Furthermore, it might be difficult to assess the health hazards of 

decisions based on the results of indicators (Wu et al., 2011). The fundamental objective 

of the viral indicator is to serve as a monitoring system for detecting pathogens. The 

indicator should be detected at an equal or greater number than the pathogen. Many 

studies’ results have been used to help find the suitable viral indicator correlated with the 

pathogen. Payment and Franco (1993) reported a significant correlation between enteric 

viruses and Cryptosporidium oocysts, Giardia cysts, and C. perfringens counts. Also, the 

study showed that somatic coliphages and C. perfringens can be used to assess the 

virological and parasitological quality of treated drinking water. Detection of enteric 

viruses’ genomes has been easy than the isolation by cell culture such as the detection of 

the enterovirus genomes Furthermore, the results of detecting viral contamination in 

surface water showed that somatic coliphages were not suitable for the detection of viral 

contamination and pathogens (Hot et al., 2003). Another study done by Ottoson et al. 

(2006) represents the significant relation between coliphages, enterococci, and E. coli in 

untreated wastewater and no correlation between pathogens reductions and indicators 

(P>0.05). Total coliphages can be used as a viral index indicator rather than using F-

specific phages. This study agrees with other studies that suggested using viral indicators 

for pollution detection, for example, polyomaviruses (Bofill-Mas et al., 2000), 

adenoviruses (Pina et al., 1998), and enteroviruses (Hot et al., 2003).  Tonani et al. 

(2013) found that no statistical significance in Cryptosporidium count decreases with 
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pathogens; besides, there is a significant decrease in the count of adenovirus, rotavirus, 

and giardia (P<0.05). Additionally, there was no significant seasonal detection observed 

in protozoa (oo) cysts distribution in the collected sewage samples. Tian et al. (2017) 

reported that, the human NoV rate was detected in all positive and negative bacterial 

pathogens samples without any positive relationship between the incidence of human 

NoV and pathogenic bacteria (Listeria, Salmonella, O157 E. coli STEC and non-O157 

STEC).   

As a result, the study of Tandukar et al. (2018) on 8 viruses (human adenoviruses, 

rotavirus A, Aichi virus 1, human cosaviruses, enteroviruses, caliciviruses, and 

noroviruses GI and GII) found a positive relationship between human enteric viruses and 

theses viruses (P < 0.05); no positive correlation was detected between FIB and 

Cryptosporidium or Giardia (P > 0.05). Furthermore, the detection ratio of fecal markers 

was lower than the human bacteroidales, besides that these fecal markers have a 

significant relationship with human enteric viruses. Finally, this study suggested that the 

use of the viral index, bacterial indicators, and human bacteroidales could be used as 

good indicators for human fecal contamination detection in rivers. 

Another study in 2020, compared four water-borne enteric viruses (enterovirus, 

astroviruses, hepatitis A virus, and rotaviruses) with fecal bacterial and bacteriophages 

indicators of fecal pollution in wastewater treatment plants. The incidence rates in 

influent samples of EV, AV, HAV, and RV were 100%, 75%, 12.5%, and 12.5%, 

respectively; however, enteroviruses RNA was detected in half of all the outlet samples. 

The positive samples of the enteric virus had a high concentration of bacteriophages in 

inlet and outlet samples. The most abundant phages in the samples were E. coli phages, 

which had titer ranging between (7-8) log pfu/ml. The fecal bacteriological indicators 

were detected in high concentrations in all outlet samples: 1.92 × 10
3
 cfu/ml, 1.32 ×10

3
 

cfu/ml, and 3.20× 10
3
 cfu/ml for shigella spp., salmonella spp., and E. coli, respectively. 

According to these results, a positive relation was recorded between the detection and 

cultivation of pathogenic bacteria (salmonella, fecal coliform, and E. coli), and the 

detection of EV and their specific bacteriophages. Thus, the study introduced the non-

pathogenic coliphages as a good indicator for viral pollution to assess water quality 

(Janahi et al., 2020). 

Bailey et al. (2021) found that cryptosporidium, adenoviruses, and giardia were found in 

100%, 81%, and 41%, respectively, of all samples; furthermore, the incidence of total 

coliphage, somatic coliphages, and F+ coliphages were detected in 77%,77%, and 32%, 

respectively, of all samples. E. coli was detected in half of the samples, while total 

coliforms and enterococcus were found in 95%, and 64%, respectively, of all samples. 

This study investigated that, the presence or absence of an indicator is not always 

accurate in predicting the presence of pathogens in the samples, and these results noted 

that many cases of false-positive or negative results used only one indicator for the 
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detection of pathogens. Consequently, in the prediction of pathogen presence or survival 

in surface water, no one signal indicator was perfect in detection. This study suggested 

that enteric pathogens, including salmonella spp., adenoviruses, cryptosporidium, and 

giardia may be used as indicators for drinking water sources. From previous studies, we 

try to answer one question to help in determining the viral indicator that can suit for viral 

detection. 

6. Which viral indicators are suitable? 

Most viruses don’t have the complete requirements to be a universal indicator. Thus, it is 

necessary to select the suitable indicator according to the distribution in the aquatic 

environment, seasonal variation, stability to environmental conditions, and resistance to 

the treatment process. The suitable viral indicators should have the ability for long-term 

detection of viral pollution in aquatic environments throughout the year (Walker et al., 

2020). Papillomaviruses, coronaviruses, and influenza viruses have been detected in 

wastewater with high titer but not or less detected in a contaminated environment; this is 

due to the rapid damage of these viruses (Bosch et al., 2016). Other viruses have clear 

peaks during the seasons of the year, such as rotavirus peaks in autumn and winter 

(Villena et al., 2003; El-Senousy et al., 2004, 2013a, 2014), AiV peaks during spring 

and winter in wastewater (Kitajima et al., 2014), the peaks of sapoviruses and 

noroviruses in winter, and the enteroviruses peaks in summer (Prevost et al., 2015; 

Cooper et al., 2018). The suitable indicator must be able to distinguish between human 

and animal sources of contamination (Scott et al., 2002), such as zoonotic enteric viruses 

(hepatitis E virus, torque teno virus, rotavirus, and astrovirus), which are present due to 

the activities of agriculture contaminated with human wastes in the aquatic environment 

(Bosch et al., 2016). Human AdVs are found in polluted environments without any 

seasonal variation which is detected all over the year, many studies have suggested 

human adenovirus as an effective indicator (Kitajima and Gerba, 2015; Rachmadi et 

al., 2016). PMMoV has been proposed as useful viral pollution for wastewater pollution 

(Kitajima et al., 2018; Symonds et al., 2018). It is detected with a high concentration in 

wastewater samples before and after the treatment process over the year (Myrmel et al., 

2015; Schmitz et al., 2016). Coliphages are usually found in high titer in several types of 

water and used proposed as a viral indicator to detect enteric viruses in contaminated 

water (McMinn et al., 2017). A result of the previous studies that suggested different 

viral candidates as a viral indicator for viral pollution of water and wastewater discussed 

the following topics: 

I. Bacteriophages 

Viruses that infect bacteria are called bacteriophages (phages). Phages were discovered in 

the early 1900s and originated from the intestinal tract of humans (d’Herelle & Smith, 

1926; Ashbolt et al., 2001). These phages may be detected in several environments 
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where the bacteria can grow, like in different types of water, soil, and can detect inside 

other higher individuals (Clokie et al., 2011; Dutilh et al., 2014; Dorevitch, 2016). 

Bacteriophages are divided into three taxonomic groups: somatic coliphages, F-specific 

(DNA, RNA) coliphages, and bacteriophages that can infect Bacteroides spp. (Jofre et 

al., 2016; Jebri et al., 2017). Bacteriophages are suggested as fecal and viral indicators 

for fecal contamination in several aquatic environments and assessing the viral pollution. 

Coliphages are phages that infect Escherichia coli; they have been suggested as 

alternatives to FIB and as a surrogate to enteric viruses to detect viral contamination. 

Bacteriophages infect intestinal bacteria in a similar way to enteric viruses (Hilton & 

Stotzky, 1973; Gerba, 1987; Sobsey et al., 1995; Chung et al., 1998; Contreras-Coll 

et al., 2002; Skraber et al., 2004; Mocé-Llivina et al., 2005; McMinn et al., 2017; 

Toribio-Avedillo et al., 2019). Bacteriophages have the most ideal features of viral 

indicators such as being excreted in feces and not replicating in the environment till the 

presence of their hosts, being stable against the environmental conditions, more 

distributed in the environment,giving high accuracy results (Tufenkji and Emelko, 

2011). 

Somatic coliphage can infect E. coli and coliform bacteria by adhesion to specific 

receptors on the cell wall of bacteria (Muniesa et al., 2003). Several trials, laboratory 

experiments, and validation testing suggested that somatic coliphages such as PRD-1, 

phix174, T-4, and T-7 can be used as viral surrogates to enteric viruses to detect viral 

pollutions (Lucena & Jofre, 2010). Hot et al. (2003) showed no positive relationship 

between somatic coliphages and HAdVs, EVs, Norwalk I and II viruses. 

F coliphage is another new approach to detect and quantify pathogens and fecal pollution 

in the aquatic environment (Griffith et al., 2016). They are recommended for use as a 

fecal and viral indicator of water contamination because of the similarity in shape and 

size to enteric viruses, detection in sewage contamination, and the difficulty to multiply 

outside the host in the environment (Duran et al., 2003). Many studies detected these 

phages in recreation water, groundwater, surface water, rivers, harbors and wastewater 

(Yamahara et al., 2012; Vijayavel et al., 2014; Rashed et al., 2022). Stewart‐ Pullaro 

et al. (2006) reported that, somatic coliphages have been found at high concentrations 

than male-specific phages in raw water sources and wastewater. Especially, F-RNA 

phages, and somatic coliphages have been demonstrated as excellent fecal viral indicators 

(Jofre et al., 2016; Jebri et al., 2017). HSP 40 phage can infect the bacteroides fragilis. 

Bacteroides fragilis, the anaerobic bacteria found with high titer in the human intestinal 

tract, execrated through the feces of infected individuals, and die rapidly when released 

into the environment. HSP 40 phage is represented as a unique indicator for fecal 

pollution in polluted water (Duran et al., 2003). 

There are some disadvantages of bacteriophages that prevent them to be viral indicators 

such as some coliphages present in low numbers than bacterial indicators (Payment & 
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Locas, 2011). To differentiate between the origin of fecal pollution as an animal or 

human fecal contamination was recorded a failure (Hot et al., 2003; Jiang & Chu, 

2004). Some types of bacteriophages are present in contaminated water with high 

concentrations than other types like somatic coliphages detected in raw and wastewater 

with high titer than male-specific phages (Stewart‐ Pullaro et al., 2006). In some 

studies, there is no relationship between viral contamination and coliphages in sewage 

water (Carducci et al., 1999), surface water (Hot et al., 2003) and groundwater (Long & 

Dewer, 2008). 

II. Pepper mild mottled virus (PMMoV) 

PMMoV is RNA plant virus that infects the leaves of a pepper plant. It is a member of 

Tobamo virus genus, and it is responsible for economic losses of infected pepper 

worldwide (Fauquet et al., 2005). Zhang et al. (2006) was the first study that identified 

the PMMoV in feces by using viral metagenomics techniques. PMMoV is suggested by 

many studies as a fecal indicator (Hamza et al., 2011; Symonds et al., 2018). It has been 

detected at a significantly high concentration, with a higher prevalence than enteric 

viruses and pathogenic viruses in human feces (Rosario et al., 2009; Hamza et al., 2011; 

Haramoto et al., 2013; Symonds et al., 2018), It was detected in several types of water 

such as surface water and sewage water (Rosario et al., 2009; Kitajima et al., 2018; 

Shrestha et al., 2018; Symonds et al., 2018; Tandukar et al., 2020). PMMoV is also 

present in wastewater in some places such as Florida, Germany, New Zealand, and 

Vietnam, with a range from 10
6 

to 10
10

 gc/l. (Rosario et al., 2009; Hamza et al., 2011; 

Kitajima et al., 2014; Schmitz et al., 2016; Gyawali et al., 2019). On the other hand, it 

was less prevalent with a titer range between (10
3
-10

6
 gc/l) in Spain, Arizona, and the UK 

(Kitajima et al., 2014; Rusinol et al., 2015; Schmitz et al., 2016; Cooper et al., 2018). 

Rashed et al. (2022) detected PMMoV in four samples of drinking water, with a 

complete absence of the infectious units of phix174 bacteriophage virus and adenoviruses 

in these samples. This is due to the higher resistance of PMMoV to treatment processes 

(chlorine disinfection) than phix174 bacteriophage virus and adenoviruses, which can 

give false positive results so it cannot be used as a viral indicator for all types of waters 

(Shirasaki et al., 2018, 2020). 

III. Adenoviruses 

Adenoviruses have been considered the second viral pathogen after rotavirus which leads 

gastroenteritis (Fong et al., 2010). They infect children less than five years (Lennon et 

al., 2007). Ad40 and Ad41 enteric serotypes are found under species F (Rigotto et al., 

2011), which are responsible for most cases of gastroenteritis (Logan et al., 2006). 

Adenoviruses sub-species B is responsible for 5–7% of conjunctivitis and respiratory 

diseases in kids (Wold & Horwitz, 2007). Compared to other interic viruses, 

adenoviruses are more resistant to environmental degradation (Hijnen et al., 2006), and 



Rashed et al., 2022 
 
742 

ultraviolet disinfection (Linden et al., 2007). In addition, they are more resistant to pH 

conditions (Thurston-Enriquez et al., 2003), and chlorine in the water treatment process 

(Thurston-Enriquez et al., 2005; Rashed et al., 2022). They are detected in several 

types of water, such as drinking water, wastewater, groundwater, swimming pools, 

recreational waters, rivers, and polluted water (Pina et al., 1998; Bofill-Mas et al., 2006; 

Haramoto et al., 2007; Katayama et al., 2008; Miagostovich et al., 2008; Wong et al., 

2009; Dong et al., 2010; El-Senousy et al., 2014). It’s a human host specificity that 

cannot replicate outside of the host (Fong et al., 2005; Wong et al., 2012). Pina et al. 

(1998) worked on wastewater treatment plants and found that adenoviruses were detected 

throughout the year. On the other hand, the concentrations of fecal coliform were below 

regulatory standards, thus the proposed adenoviruses as a viral indicator. Another study 

was done by Jiang et al. (2001) on California beaches exposed to an urban runoff in 

which adenoviruses genomes concentrations ranged from 0.9 to 7.5 × 10
3
 genomes/l. 

AdV was more resistant to water and sewage treatment processes in treatment plants than 

RV (El-Senousy et al., 2013a). it is important to detect the HAdV infectious units to 

know the recent contamination because HAdV infectious units persist in water less than 

the genomes (Donia et al., 2010; El-Senousy et al., 2014; Prevost et al., 2016; Rashed 

et al., 2022). HAdV is suggested as a viral water quality indicator by several studies 

(Puig et al., 1994; Pina et al., 1998; Albinana-Gimenez et al., 2006; Hundesa et al., 

2006; Bosch et al., 2008; Jurzik et al., 2010; Okoh et al., 2010; El-Senousy et al., 

2013a; Rames et al., 2016; Iaconelli et al., 2017; Lun et al., 2019; Ibrahim et al., 

2021; Rashed et al., 2022). 

IV. Human polyomavirus (HPyVs) 

HPyVs are non-enveloped DNA viruses, are found under the family Polyomaviridae 

(Bofill-Mas et al., 2001; Johne et al., 2011), consist of five serotypes JCV, BKV, KIV, 

MCV, and WUV (Kean et al., 2009). HPyV is mainly excreted in the feces and urine of 

infected individuals (Rachmadi et al., 2016). HPyVs were detected in different aquatic 

environments such as in sources of drinking water (Albinana-Gimenez et al., 2006), in 

river water (Haramoto et al., 2010; Hamza et al., 2014; Rusinol et al., 2015), in 

drinking water sources (Albinana-Gimenez et al., 2006), in wastewater (Hamza et al., 

2014; Kitajima et al., 2014), stormwater (Sidhu et al., 2012), swimming water (La Rosa 

et al., 2012) and seawater (Moresco et al., 2012). Fratini et al. (2014) detected that the 

major pathway of the infection by the HPyV by inhalation or ingestion of contaminated 

water with HPyV.  HPyVs have been concentrated in different types of water by many 

concentrated methods such as virus adsorption and elution (Karim et al., 2009; 

Haramoto et al., 2010), ultrafiltration (Liang et al., 2015), and skim milk flocculation 

(Calgua et al., 2013). Also, several molecular methods detections used to detect HPyV in 

concentrated samples including PCR (Sidhu et al., 2012), qPCR (Wong et al., 2012; 
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Liang et al., 2015), immunofluorescence (Calgua et al., 2011), microarray and cell 

culture technique (Schowalter et al., 2012). 

JCV and BKV were detected in drinking water sources in Spain with titer ranging 

between (2.6 × 10
1
 gc/l - 4.62 × 10

3
 gc/l) and 2.1 × 10

1
 gc/l respectively (Albinana-

Gimenez et al., 2006, 2009). While detected in Japan with titer (2.90 × 10
2
 gc/l –1.3 × 

10
3
 gc/l) and 2.50 × 10

2
 gc/l respectively, (Haramoto et al., 2012). 

McQuaig et al. (2009) suggested that HPyVs especially BKV and JCV serotypes are a 

good indicator of pathogenic viruses due to the high resistance to different degrees of 

temperature which is similar to AdV resistance. Also, several studies suggested HPyV as 

a viral indicator due to its high stability in environmental waters with little seasonality 

(Bofill-Mas et al., 2001, 2006; Rachmadi et al., 2016), resistance to UV (Nims and 

Plavsic, 2013; Calgua et al., 2014) resistant to acidic conditions (Bofill-Mas and 

Girones, 2003) and more resistant to the treatment process in water and sewage plants 

than other types of viruses such as AdV type 2 and MNV-1 (Hata et al., 2018). 

         CONCLUSION 

 

From this review, we conclude some points to select the best viral indicator  

• No correlation between fecal indicators bacterial and viral indicators. 

• No single viral indicator can be used for the detection of pathogenic viruses in all 

water bodies. 

• Use of one or more viruses as viral indicators according to the prevalence of these 

viruses in the aquatic environment for each country which can change from country to 

country. 

• Detection of infectious units of viral indicators is necessary to determine the 

recent contamination than detection of genome copies which are more persistent than 

infectious units. 

• PMMoV is more resistant to the water treatment process than other enteric viruses 

so it cannot be used as a viral indicator for all types of water. 

•  Bacteriophages can be used as viral indicators, while some studies, showed that 

bacteriophages do not always correlate with human enteric viruses and it is difficult to 

differentiate between the source of contamination (human or animal fecal contamination). 

• Till now the studies suggested adenoviruses as viral indicators which are more 

tolerant to the water treatment process than other viruses, rapidly detecting the infectious 

units and easy differentiating between human and animal contamination. 
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• Most of the water quality criteria don’t have any of the viruses to express the 

pollution of water and wastewater with enteric viruses so, more studies are needed to 

suggest one or grouped viral indicators that can be used as viral indicators.  
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