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_____________________________________________________________________________ 

INTRODUCTION  

 

The squid is an increasingly significant commodity in the global seafood trade, with 

Asian countries contributing to about sixty percent of world squid landings in 2019 (SFP, 

2022). However, the squid has been under heavy fishing pressure due to overexploitation 

(Fauziyah et al., 2020; Wang et al., 2021). High fishing pressures cause rapid declines 

in squid stocks and harm marine ecosystems  (Arkhipkin et al., 2015). In addition, squid 

resources are best managed by effort limitation, considering that squid resources are 

short-lived ecological opportunists with a lifespan of about 1year; their populations are 

unstable, and environmental conditions influence their recruitment variability 
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This study aimed to evaluate the factors affecting the catch rate and 

predict the potential catch for the determination of productive fishing 

grounds for miter squid (Uroteuthis chinensis) in the Indonesian Fisheries 

Management Area 711 for 2020. A vessel monitoring system and landing 

data from 66 cast nets were used to investigate catch per unit effort. Depth, 

chlorophyll-a, and sea surface temperature from satellite imagery combined 

with the month and geographic location of fishing were evaluated for their 

effect on catch per unit effort using a general additive model. The best model 

output was employed to identify productive fishing grounds. The results 

revealed that the average monthly catch rate ranged from 89.43- 337.47kg h
-

1
, with the highest occurring in May. Three significant variables affected the 

catch rate: month, latitude, and sea surface temperature, with contributions of 

42.6%, 33.6%, and 12.7%, respectively. The catch rate continued to rise 

from March to May and tended to increase at higher latitudes where sea 

surface temperatures ranged from 27.6- 29.5°C or 31.5- 32.2°C. Based on the 

monthly map of predicted potential catch, the most productive fishing 

grounds were located in the waters between the islands of Anambas, Natuna, 

and Tambelan.  These findings can support marine spatial planning and 

squid resource management in IFMA 711. 
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(Rodhouse, 2001). These have gained interest in the need for improved marine spatial 

planning and management to ensure the long-term use of squid resources. One approach 

to support this is to effectively use oceanographic data and geospatial fisheries 

information to comprehend the productivity of fishing grounds. 

Remotely sensed oceanic variables and squid fishery data analyzed in a geographic 

information system environment have aided in understanding fundamental relationships 

between squid resources and their aquatic environment (Solanki et al., 2017). Satellite 

data provided an opportunity to identify the spatial and temporal variation of 

environmental parameters in squid habitats affecting their ecological life (Alabia et al., 

2015). Understanding ecological functions and structures in squid life requires knowledge 

of the physical and biological processes that govern squid population, distribution, and 

productivity at different spatial and temporal scales. The population demographic of 

squid was affected by coastal current, distribution of marine primary productivity, and the 

variation of habitat conditions (Wang et al., 2021). In addition, Islam et al. (2017) 

reported that depth contour is an essential factor in structuring the distribution of squid. 

Furthermore, sea surface temperature and chlorophyll-a concentration positively affected 

the monthly variation of squid abundance (Yu et al., 2019).  

Numerous statistical modeling in a geospatial environment has frequently been 

used to characterize and forecast fishery resources (Valavanis et al., 2008). A 

generalized additive model (GAM) (Hastie & Tibshirani, 1986) is a statistical model 

that combines the properties of a general linear model and an additive model. In this 

model, the relationship between the response and predictors was modified by smooth 

functions to model and discover the data's non-linearities. This change allows the GAM 

to be more flexible than generalized linear or additive models. GAM's ability to deal with 

highly non-linear relationships between a dependent variable and a set of independent 

variables made it ideal for describing biological and ecological linkages (Mugo et al., 

2010)⁠. GAM is a solution that offers an objective ability to estimate species abundance 

based on general ecology over a wide geographical area (Solanki et al., 2017)⁠. Many 

studies have been conducted on various species and catch predictions using GAM, such 

as billfishes, swimming crabs, Indian mackerel, and yellowfin tuna (Nurdin et al., 2017; 

Lan et al., 2017; Naimullah et al., 2020; Crespo-Neto et al., 2021). Maina et al. (2016) 

recommended an integrated approach using remotely sensed data on oceanographic 

parameters, fishery data, and powerful statistical tools such as GAM to identify fishing 

grounds.  

Cast net fishery is the dominant fishing industry for catching squid in the 

Indonesian Fisheries Management Area (IFMA) 711 (Suryanto et al., 2021). A cast net 

(Jala jatuh berkapal in Indonesian) with electric luring lights is a falling gear in Indonesia, 

commonly installed on fleet sizing more than 30 gross tonnages and equipped with a 

vessel monitoring system (VMS) transmitter. The main catch of cast net fishing, the miter 

squid (MS) Uroteuthis chinensis, is the focus of the present study. The MS, as a 
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positively phototactic species can be found at depths of up to 700 meters and exhibits 

morphological traits such as a slender and elongated mantle with a rhombic fin structure 

(Jereb & Roper, 2010; Wulandari, 2018). 

This study enhanced the merits of VMS, satellite-based data from cast net vessels 

for identifying fishing efforts and corresponding with landing data using geospatial 

techniques for characterizing MS catch rate variability in the IFMA 711. It then used a 

statistical approach based on GAM to assess the catch rate response to temporal, spatial, 

and marine environmental changes. For the application, satellite remote sensing data was 

used for oceanographic parameters, viz. bathymetry, sea surface chlorophyll-a, and sea 

surface temperature. Finally, the output data from the best model was used to determine 

productive fishing grounds. As a result, the current study aimed to evaluate the factors 

affecting the catch rate and map the potential catch. 

 

MATERIALS AND METHODS  

 

2.1. Study area 

The study area focused on IFMA 711, with coordinates 102.29-111.05 °E and 

4.13 °S to 7.79 °N, covering approximately 656,880 km2 (Fig. 1). IFMA 711 is located in 

northwest Indonesian waters, encompassing the Karimata Strait in the south, the Natuna 

Sea in the middle, and the South China Sea in the north (MMAF, 2014). These are the 

fishing grounds for the cast net vessels that land the squid at the Tanjung Balai Karimun 

port. 

2.2. Fishery data 

The fishery data were collected from the Technical Executive Unit of Surveillance 

for Marine and Fisheries Resources based in Batam for 2020, which included MS 

landings recorded at the Tanjung Balai Karimun port and daily tracking VMS of vessel 

activities. MS is the main catch of cast net fishing along with its bycatches such as yellow 

stripe scad (Selaroides leptolepis), Indian mackerel (Rastrelliger kanagurta), and 

moonfish (Mene maculata). In this study, only MS catches were used as primary data. 

According to the fish landing data available for analysis, the data period (2020) was 

chosen as the last year with a complete 1-hour (interval) VMS record. The research used 

data from 66 cast net vessels ranging in size from 32 to 99 gross tonnages equipped with 

transmitter VMS, with a total fishing trip of 113. The vessels departed for the fishing 

grounds from February to June, then landed the catch at the port from March to the last 

day of November. The daily tracking VMS of all vessels showed as many as 418,453 

point records. 
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Fig. 1. The map depicts the IFMA 711 as a study area, and the green color represents the 

vessel locations for catching MS based on filtering VMS data 

 

Table 1. The characteristics of oceanographic data 

Data type Description Unit Data source 

Sea surface temperature  

(SST) 

Monthly SST on the 

spatial resolution of 4 

km 

°C http://oceancolor.gsfc.

nasa.gov 

 

Sea surface chlorophyll-a  

(CHL)  

Monthly CHL on the 

spatial resolution of 4 

km 

mg m
-3

 http://oceancolor.gsfc.

nasa.gov 

 

Bathymetry Elevation data on a 15 

arc-second interval grid 

m http://gebco.net 

 

2.3. Environmental data 

This study used bathymetry, sea surface temperature, and chlorophyll-a 

concentration obtained from satellite remote sensing data (Table 1). They are along with 
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the fishing month and geographic location (latitude, longitude) as predictor variables to 

identify the variability of the MS catch rate. 

2.4. Data preparation and processing 

Research data were prepared and processed at the Ocean and Coastal Remote 

Sensing Laboratory, Center for Coastal Rehabilitation and Disaster Mitigation Studies of 

Diponegoro University in Semarang, Indonesia. In brief, the first step was determining 

the fishing effort of cast net vessels from VMS data (Fig. 2). Then, the catch in each 

fishing location was identified. The yield was compared with the fishing effort to 

calculate the catch rate over a standardization spatial of 0.25°×0.25° (latitude×longitude). 

Then, the same action, reprojecting to standard spatial resolution, was applied to satellite 

remote sensing data. The spatial data were monthly summarized for analysis with GAM. 

Processing all spatial data used ArcGIS v10.8 (ESRI, 2011). The GAM was built using 

the MGCV library in R v4.0.0 (R Core Team, 2020). It was practiced to examine the 

effects of temporal, spatial, and marine environmental factors on the MS catch rate. 

Finally, the output data from the best model was used to determine productive fishing 

grounds. 

 
Fig. 2. Review all steps to identify the factors affecting the catch rate and mapping 

potential catch 

2.5. Assumptions in determining fishing activity 

VMS data is a daily vessel tracking in the form of point data, with each point 

(ping) having a time interval ranging from 1 minute to 1 hour. In this study, 1-hour 
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intervals, the most recent data, were used for sorting and accumulating vessel tracking 

data. Initially, the daily VMS trajectory did not provide detailed information about vessel 

activities. As a result, distinguishing between fishing and other vessel activity became 

necessary. Fishing activity was defined in this study as the time the vessel spends 

between lowering the anchor to catch squid and raising the anchor to find a new fishing 

location. Three parameters were used as a filter to detect fishing activity: 

2.5.1. Fishing time 

The cast net operated at night based on the fishing technique. As a result, the time 

chosen was from 6 pm to 5 am on the next day, which corresponds to the time zone when 

the sky is dark, as the first filter to determine fishing activity. 

2.5.2. Vessel speed 

The vessel speed was commonly used to evaluate fishing activity from VMS data 

(Feng et al., 2019; Gerritsen & Lordan, 2011). The cast net operation began with 

dropping the anchor to make the boat more stable, then falling the open net onto a 

schooling squid. As a result, the fishing effort was calculated based on a speed of 0 (zero) 

knots caused by a drop in anchor during fishing operations. In this filter, the zero boat 

speed was neglected due to engine failure. 

2.5.3. Fishing area 

According to MMAF (2020), the fishing area of cast net vessels operates more 

than 12 miles from the shoreline. This filter eliminates an unnecessary zero-speed 

trajectory caused by the vessel's position in port or sheltering on a nearby island during 

adverse weather conditions. 

2.6. Catch rate calculation 

The landing data per vessel included records of catches made during a single 

fishing trip at multiple fishing locations. Consequently, the yield per fishing location had 

to be recalculated to correspond with the fishing effort at the fishing location. A step to 

verify fishing activity (from VMS trajectory) and squid landing data was required based 

on the transmitter ID and fishing hours to measure the number of catches at each fishing 

location.  

The estimation of catch per fishing location was calculated by following the 

LPUE method (Russo et al., 2018), with modification of the fishing power variable. In 

this study, the vessel productivity (VP ) was used to substitute the fishing power related 

to vessel size ( vGT ). The VP  was calculated by dividing the number of fish caught (in 

tons) per type of fishing gear by the vessel size (in gross tonnage) during one year 

(MMAF, 2021). Calculating the fishing power ( FP ) of the vessel ( v ) using the 

following formula (Equation 1): 
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8760/1000 vv GTVPFP  (1) 

Where, VP  for cast net vessel is 0.86 (MMAF, 2021), the multiplier (1000/8760) denotes 

the conversion of tons per year to kg per hour. 

Consequentially, if vtlF ,,  is the total duration of the fishing activity (in hours) 

conducted by a vessel ( v ) during fishing trips occurring on fishing ground ( l ) during the 

period ( t ), and GT  is the size of the vessel ( v ), the fishing effort, FE , is obtained by 

(Equation 2): 

vtlvv FFPFE ,,  (2) 

It also implies that the average of the MS catches at each fishing location (kg), 

vtlc ,, , corresponding to the fishing activity ( e ) of a vessel ( v ) at time ( t ) in the fishing 

ground ( l ) was acquired by (Equation 3): 

vtl

v

v

vtl e
FE

TC
c ,,,,   (3) 

Where, vTC  is the amount of squid landing by vessel in one fishing trip, corresponding 

with record landing data. 

Following the acquisition of data on fishing activity and catch at each fishing 

location, the catch rate was examined using a geospatial approach by regarding Adibi et 

al. (2020) with modification of the spatial grid. As a fishing grid, a spatial of 0.25°× 

0.25° (latitude × longitude) was used. The technique created a raster layer from the value 

of the catch and fishing activities. Then, the catch rate was calculated by dividing the MS 

caught (kg) by the number of hours of fishing activity from all vessels on the fishing grid. 

As a result, the fishing grid's MS catch rate was calculated as follows (Equation 4): 





vtl

vtl

tl
e

c
CR

,,

,,

,   (4) 

Where, tlCR ,  is catch rate (kg h
-1

) at location  at time . 

The catch rate data were overlaid on the fishing grid and summarized monthly. 

Each fishing grid was used to extract the raster pixel values of the corresponding fishing 

location. This information was compiled into a single data set that included fishing 

location and pixel data. This spatial analysis unit is assumed to be the interconnection of 

the spatial extent scale and the accuracy of squid fishing locations. 
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2.7. Identifying geographical and oceanographic characteristics in fishing grounds 

The general characteristics of the geographical location and oceanographic 

characteristics of squid fishing activities by cast net vessels in the fishing ground were 

determined using monthly average data. The formula used in the calculation was: 





N

n

nmm P
N

P
1

,

1
   (5) 

Where, mP  is the average longitude (or latitude or depth or CHL or SST) in the fishing 

location after data fusion to the fishing grid in month m ; N  is the number of the fishing 

grid;  nmP ,  is the value of longitude (or latitude or depth or CHL or SST) in month m  and 

period n . 

2.8. GAM analysis 

The procedure for GAM fitting in the case of data with catch rate response 

variables and environmental factor predictors used the Gaussian error distribution with an 

identity linking function (Yu et al., 2019; Wang et al., 2020). Furthermore, when using 

GAM, the distribution of catch rate data had to be adjusted from asymmetric to 

symmetric using logarithmic transformation (Hoyle et al., 2014). The current study 

allowed these recommendations. Then, the F-test was used to determine whether the 

predictor variables had a significant effect on the response variable, with a significance 

level of 1% (P<0.01). A stepwise forward strategy was utilized to choose factors that 

impact the model for determining the particular expression of GAM. The selection of the 

best fit model results in the GAM was based on the smallest Akaike's Information 

Criterion (AIC) for each GAM model formed (Wood, 2017)⁠. The model selected for 

fitting was formulated as follows (Equation 5): 

)()()()()()(ln SSTsCHLsDepthsLatsLongsMonthsCR   (6) 

Where, CRln  is the logarithmic transformation of the observed catch rate value;  s  is the 

spline smoothing function of the variable, and )(Months  represents the effect of the 

fishing month. Furthermore, )(Longs  and )(Lats  are the effects of the longitude and 

latitude degree of fishing locations, respectively. Finally, )(Depths , )(CHLs , and 

)(SSTs  are the effect of depth, chlorophyll-a concentration, and sea surface temperature, 

respectively. 

2.9. Model validation and mapping of fishing ground 

The accuracy of the best model chosen was evaluated by comparing the observed 

catch rate with the model output value using mean absolute percentage error (MAPE). 

This strategy was employed by considering the characteristics of the empirical data, 

which showed no zero or close to zero value. MAPE has the substantial disadvantage of 

producing infinite or undefined values for zero or near actual values (de Myttenaere et 
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al., 2016; Kim & Kim, 2016). MAPE measures forecasting error concerning the dataset's 

actual value, which is obtained by dividing the absolute error in each period by the 

observed values for that period. The average of those fixed percentages of the results was 

then calculated. It was formulated as follows (Equation 6): 








N

i i

ii

y

yy

N
MAPE

1

%100
ˆ1

 (7) 

Where,  is the number of sample data;   represents the observed data in period , and 

 is the predicted data in period . The MAPE values were interpreted following Chang 

et al. (2007) as described in Table (2). 

The productive fishing grounds were mapped based on the model output. In raster 

data, the range of predictor variable values that affect the increase or decrease in catch 

rate value was grouped as references. These rasters were generated for all months and 

fishing locations and then analyzed using a raster overlay by additions for suitability 

modeling. This analysis compiles the rasters into a single data set that is summarized 

monthly. All monthly rasters were compared and reclassified to obtain high and low-

ranking values as a catch potential database. Model performance was assessed by 

comparing this catch potential with the observed catch rate data set. 

Table 2. The interpretation of MAPE 

MAPE value Signification 

<10% 

10–20% 

20–50% 

>50% 

Excellent forecasting ability 

                        Good forecasting ability 

   Reasonable forecasting ability 

                        Bad forecasting ability 

 

RESULTS  

 

3.1. Fishing activity, catch, and catch rate  

Filtered with the three parameters (fishing time, vessel speed, and fishing area) on 

VMS data (a total of 418,453 points), only 1.3% identified fishing activity (Fig. 1, green 

color). In Fig (1), one mark of the fishing location represents a one-hour fishing interval 

between the 0 (zero) knot speed point and the previous point in the VMS trajectory. From 

February to October, fishing activities were scattered in the marine waters of Natuna, 

Anambas, Bintan, Tambelan and Lingga. 

The fishing operation of cast nets for 2020 in IFMA 711 occurred from February to 

November (Table 3). Cast nets departed for fishing locations from February to June, with 

the highest number of departures in March, 34 units. The number represented more than 
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half the vessels operated in 2020. Based on the analysis of VMS trajectories, the monthly 

total fishing activity ranged from 17 to 1,627 hours. A high total number of hours may 

indicate the number of detected fishing locations. The catch at the fishing location 

described the average number of catches per haul per hour. In general, the number of 

catches at the fishing location is proportional to the abundance of squid at the fishing 

grounds, which is also related to the number of fishing hours. In April, the number of 

catches at the fishing locations reached the highest value of 357.9 tons, as well as the 

highest fishing hour value. 

In addition, from March to November, cast nets with enough catch gradually 

returned to the port, with a fishing trip length ranging from 43 to 129 days. In general, the 

current month's monthly mean of fishing days for vessel arrivals was longer than the 

previous month. The total monthly landing at the port tended to increase as more vessels 

arrive to land their catch. The largest catch landing of 457.4 tons occurred in May, with 

35 vessels landing. The lowest was 2.4 tons in November, with only one cast net landing. 

According to data from the day of fishing, the cast nets that landed in May were from 

vessels departing between February and April. The high number of landings in May 

appears to be the result of both the large number of vessels landing and the high number 

of catches per location in April. Overall, the total MS land at the Tanjung Balai Karimun 

port in 2020 was approximately 1,151.2 tons. 

Table 3. Monthly summary of cast net vessel operation analysis data for 2020 

Month Number 

of vessels 

depart 

(units) 

Total 

fishing 

activity 

(hours) 

Total catch 

at the fishing 

location 

(tons) 

Number 

of vessels 

arrival 

(units) 

Days of 

fishing 

(Mean±SD) 

Total 

landing 

at the 

port 

(tons) 

February 13 17 10.3    

March 34 754 172.8 1 43±0 15.6 

April 25 1627 357.9 5 49±6 28.5 

May 26 1362 304.8 35 66±19 457.4 

June 15 459 95.6 19 73±7 254.9 

July  331 89.7 16 87±13 135.5 

Augustus  352 61.8 22 96±6 180.6 

September  286 38.6 8 103±6 42.1 

October  84 19.8 6 119±5 34.2 

November    1 129±0 2.4 

In this study, the catch rate data were overlaid on the fishing grid of 0.25° × 0.25° 

(latitude × longitude) and summarized monthly. The number of monthly fishing grids 

varied from 9 to 100, with the highest value in April (Fig. 3a). The number of grids 
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represents the distribution of fishing locations. The greater the number of grids, the larger 

the fishing area. The monthly mean of catch rate showed the lowest at 89.43 kg h
-1

 in 

October and the highest at 337.47 kg h
-1 

in May (Fig. 3b). The standard deviation of the 

monthly catch rate indicated a value of more than half the mean reflecting a large amount 

of variation in the data.  

The total catch at the fishing location, the number of fishing grids, and total fishing 

activity were all higher in April than in May, but the mean catch rate was higher in May 

than in April (Table 3 & Fig. 3). This demonstrates that a high mean catch rate on the 

grid will not always be linear with a high total catch at a fishing location, depending on 

the number of fishing grids and total fishing activity. 

Fig. 3. Monthly variation in the number of fishing grid and catch rate from February to 

October 2020 

3.2. Monthly variation in geographical and oceanographic characteristics in the 

fishing grounds 

The information on longitude, latitude, depth, CHL, and SST demonstrated 

variations in the fishing grounds. The longitude variability was 104°-109.5° E; the 

latitude was 1.22° S-3.28° N; the CHL density was 0.09-1.00 mg m
-3

, and the SST was 

27.6-32.2 °C. It used data based on monthly mean values of all fishing grids 

corresponding to the catch rate to describe the variability of oceanographic parameters.  

The fishing ground shifted from low latitudes and longitudes to higher elevations 

from February to April (Fig. 4). At the same time, the water temperature gradually 

increased. The density of CHL decreased from February to March, then increased from 

March to April; whereas, the depth revealed the opposite condition as the CHL 

parameter. From May to July, the fishing grounds moved to a lower latitude than the 

previous month, despite the degree of longitude which showed a movement to a lower 
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area in May and then increased from June to July. The SST conditions remained elevated 

from May to June, before declining in July. The changes in depth and CHL 

characteristics were similar to the prior three months. 

Furthermore, from August to September, the fishing grounds shifted to areas with 

lower latitudes but higher longitudes than the previous month. The SST conditions in 

August and September were similar but lower than in July. The depth of the fishing 

ground in August and September remained shallower than in the preceding month, with 

CHL density increasing during July. Finally in October, the fishing grounds shifted to a 

site with a higher latitude though being a lower longitude than the previous month. 

Simultaneously, the fishing grounds changed to a deeper location with lower SST and 

CHL conditions. 

 

Fig. 4. Monthly variability of longitude, latitude, depth, CHL, and SST variables for MS 

fishing grounds from February to October 2020 

3.3. GAM analysis 

The GAM was used to analyze the relationship between catch rate as a response 

variable and predictor variables including fishing month, longitude and latitude of the 

fishing location, depth, chlorophyll-a, and sea surface temperature based on grid data. 

The univariate model was used to analyze the influences of each predictor variable on 

catch rate and the corresponding fitting degree of the model (Table 4). Each variable has 

a different impact on the MS catch rate. Variables were selected based on the F-test with 

a significant level of 1% (P < 0.01). All six predictor variables passed the significance 

test, indicating that each variable was statistically significant in influencing the catch rate, 

with low deviance explained. It was discovered that the sequence influence of variables 

was SST < CHL < Long < Depth < Lat < Month based on the deviance of each variable. 

Month and latitude explain more deviance, with values of 23% and 10.2%, respectively.  
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Table 4. Test of each predictor variable in GAM. 

Variable df edf DE F-value p-value 

s(Month) 6.95 4.95 23% 17.62 <2e-16 *** 

s(Long) 4.65 6.19 6.23% 2.79 0.00648 ** 

s(Lat) 8.19 2.65 10.2% 12.12 1.05e-07 *** 

s(Depth) 8.39 6.39 7.9% 3.70 0.000461 ** 

s(CHL) 3.00 1.00 4.69% 18.29 2.45e-05 *** 

s(SST) 5.56 3.56 3.45% 2.43 0.0445 * 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’  

The univariate analysis of general additive modeling revealed that each predictor 

variable had a low precision. Consequently, multi variables are needed to investigate their 

effect on MS catch rates. Predictor variables were incrementally entered into GAM and 

selected using the AIC score (Table 5). It has been shown that as the number of variables 

increased, the AIC score decreased, and the value of deviance explained in the model 

increased, indicating an increase in the fit and generalization of the model. The results of 

GAM fitting showed that the best model for MS included six explanatory variables. The 

deviance explained by this model was 32.9%, with an AIC score of 606.12. The 

relationship between the catch rate and each variable in the GAM aided in determining 

the significance of each variable sequentially (Table 6). According to the F-ratio test, 

three variables in the best model were significant (P<0.01), consisting of Month, 

Latitude, and SST, with contribution values of 42.6.2%, 33.6%, and 12.7%, respectively. 

Table 5. Test of the combination of predictor variables in GAM. 

Variable df AIC DE 

s(SST) 5.56 706.03 3.45% 

s(SST)+ s(CHL) 6.21 689.63 7.91% 

s(SST)+ s(CHL)+ s(Long) 12.75 687.49 13.4% 

s(SST)+ s(CHL)+ s(Long)+ (Depth) 17.48 675.05 16.6% 

s(SST)+ s(CHL)+ s(Long)+ (Depth)+ s(Lat) 14.37 667.99 16.8% 

s(SST)+ s(CHL)+ s(Long)+ (Depth)+ s(Lat)+ s(Month) 23.66 606.12 32.9% 

Table 6. Contribution of each predictor variable in the best fit model.  

Index SST CHL Long Depth Lat Month 

edf 5.186 3.657 1.000 4.927 1.000 5.890 

F-value 3.484 1.037 0.385 1.615 9.217 11.700 

P-value 0.0021 ** 0.4436 0.5355 0.1527 0.0025 ** <2e-16 *** 

Contribution 12.7% 3.8% 1.4% 5.9% 33.6% 42.6% 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 

Analysis of GAM in the best fit model generates plots of the effect of predictor 

variables on the response variable (Fig. 5). Shaded areas in the figures describe the 
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confidence intervals at the 95% level. The tightly defined confidence limits indicate high 

relevance distribution scales, while the wide confidence limits represent low relevance 

distribution scales. The effect of predictor variables on MS catch rate revealed that SST 

increased the rate of catch significantly at 27.6-29.5 ℃ and 31.5-32.2 °C while tending to 

decrease at temperatures greater than 29.5-31.5 °C (Fig. 5a). The confidence interval 

dropped between 27.5 and 31 °C and gradually increased between 31 and 32 °C. At a 

range of 0.1-0.4 mg m
-3

, the CHL density formed a wavy plot tends to flatten with a 

decreased confidence interval and gradually increases to more than 0.4-1 mg m
-3

 (Fig. 

5b). The rate of catch decreased when the concentration was less than 0.4 mg m
-3

 or 

greater than 0.6 mg m
-3

 and increased when the attention was between 0.4 and 0.6 mg m
-

3
. The Depth variable positively affected the MS catch rate (Fig. 5c). The more profound 

the fishing location, the higher the catch rate, with a confidence interval, gradually 

decreasing to 20-45 m and progressively increasing to 45-80 m. The catch rate increased 

as the latitude degree increased, indicating a linear positive effect on latitude (Fig. 5d). 

The confidence interval for the latitude effect decreased gradually from 1° S-1° N before 

gradually increasing from 1°-3° N. The longitude variable influenced the decrease in 

catch rate in the fishing area from 104° to 105° E, reducing the confidence interval 

progressively. The catch rate steadily increased with the significance interval level at 

more than 105°-109.5° E (Fig. 5e). The fishing month variable had a dome-shaped 

relationship (Fig. 5f). The catch rate gradually increased from February to May, then 

declined from June to October. 

 
Fig. 5. Effect of predictor variables on catch rate in the best fit model: (a) SST, (b) CHL 

(c) depth, (d) longitude, (e) latitude, and (f) month of fishing. On the x-axis, rug plots 

depict the relative density of data points. 
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Fig. 6. Monthly raster maps of productive fishing grounds. The circle symbol represents 

the observed catch rate data, and the color ramp denotes the predicted potential catch. 
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3.4. Model validation and mapping fishing ground 

The accuracy of the best fit model based on MAPE analysis produces an error rate 

of 7.5%, which means it has an excellent forecasting ability. The data output of the best 

fit model was used to forecast potential catch in a raster map summarized monthly (Fig. 

6). Prediction results are validated by combining them with observed catch rates. Both the 

catch rate and the catch potential are graded from low to high. The catch rate is 

represented by a circle, with the larger the circle indicating a higher catch rate. While the 

catch potential is represented by a color ramp with blue at the lowest and red at the 

highest part. We discovered that high catch rates were related to high catch predictions. A 

higher catch potential indicates an area that better fits the range of predictor variable 

values identified in the model. The availability of data for high catch rates in areas with 

high catch potential shows the model explains the distribution of fishing ground well. 

Productive fishing grounds are marked on the prediction map with a red area and a large 

circle around this one. It was found mainly in the waters between Anambas, Natuna, and 

Tambelan. This indicates that the waters are the most productive fishing ground.  

DISCUSSION 

 

This study demonstrates the use of models to understand factors affecting catch 

rates and estimate potential catch for determining productive MS fishing grounds. A 

fishing effort analysis that specifies the time and location of fishing is required to provide 

the catch rate analysis. It might be the first study to spatially analyze cast net fishing 

efforts from VMS data in the IFMA 711 part of the Indonesian Sea. Previously, Marzuki 

et al. (2015) studied fishing activity from VMS data for the shrimp trawler, purse-seiner, 

pole-and-liner, and longliner operating in the IFMA 718. The VMS records spatially cast 

net vessel activities during a fishing trip. As a result, the utility of VMS data can be 

advanced in squid resource monitoring because the analyses of data offered by this 

system allow for the mapping and quantitative determination of fishing efforts. 

The geographically referenced fishing effort with corresponding catch landings is 

used to calculate catch rates, which are widely used as indicators of abundance (Russo et 

al., 2018). Therefore, this approach might be a reliable alternative in providing spatial 

information related to potential catches in the fishing ground. A database was created 

with MS landing data, VMS-based fishing efforts of cast net vessels, and oceanographic 

satellite images. It is used to analyze catch rates according to the oceanographic 

conditions and obtain models that provide more information about the productivity of the 

fishing grounds. In Addition, we used GAM to assess the effect of the fishing month, 

geographic fishing location, and oceanographic variables on catch rates. 

Few studies have been conducted previously to develop a model for the spatial 

prediction of squids in other oceanic regions. Tian et al. (2009) studied Ommastrephes 

bartramii for Chinese Squid-jigging fishery in the Northwest Pacific Ocean to 
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standardize catch per unit effort using two statistical models, the generalized linear model 

(GLM) and GAM. They noticed that GAM analysis performs better than GLM analysis 

to understand abundance variability in time and space. Yu et al. (2019) studied 

Sthenoteuthis oualaniensis in the north-central South China Sea using GAM to 

successfully understand the response of squid abundance to marine environment changes. 

Additionally, according to Solanki et al. (2017), the GAM allows any user to identify the 

fishing grounds corresponding with a range of environmental parameters suitable for 

squid abundance. Concerning squid abundance prediction, Denis et al. (2002) explained 

that the general additive modeling, although inaccurate in predicting squid abundance in 

small geometric areas, can indicate where productive fishing grounds are expected.  

In the present study, squid fishers start fishing operations in February (Table 3). 

This month is the end of the wet season in Indonesia, where high rainfall in previous 

months encourages an increase in nutrients from river runoff and causes higher 

chlorophyll-a concentrations in coastal areas. Coastal upwelling may also affect the 

nutrient increase. Nutrients originating from coastal upwelling off northwest Borneo in 

the South China Sea were carried by currents to IFMA 711, formed in December, 

matured in January, and decayed in February (Yan et al., 2015). Then, the transition to 

the dry season caused a rise in SST from March to May. The growing concentration of 

chlorophyll allowed by the increase in temperature and nutrients on the coast caused 

waters to have high productivity and be food-rich, impacting the increase in the MS 

abundance. The GAM analysis findings indicate that the highest catch rate occurred in 

May when the mean SST in the fishing grounds gradually increased over three months 

(Fig. 4). These results corroborate previous studies by Suwarso et al. (2019) in the 

Karimata strait, part of IFMA 711. They found a higher MS abundance in April-May led 

to a high catch rate.  

In GAM analysis, we employed three oceanographic data: bathymetry, 

chlorophyll-a, and sea surface temperature. In the univariate model, Depth was the 

oceanographic parameter with the most influence on the MS catch rate compared to CHL 

and SST. The MS exhibited significant vertical diel migration, beginning in deep waters 

during the day and moving up to surface waters at night (0 to 200 m) (Jereb and Roper, 

2010). Sea depth was also related to the squid migration, spawning ground in coastal 

waters, and feeding ground farther offshore (Arkhipkin et al., 2015). The Depth variable 

may significantly affect the catch rate in the univariate test. However, in the best model 

fit of the multivariate test, the Depth variable does not firmly explain the response 

variable. Denis et al. (2002) documented that bathymetry does not play a significant role 

in the overall pattern of squid abundance. Still, it could contribute to inter-seasonal 

differences when combined with climatic variables and life-cycle-sensitive stages over 

time. 
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In the best model fit, three significant variables affected the MS catch rate: month, 

degree of latitude, and sea surface temperature. Compared with previous relevant studies, 

it was known that certain months affect the life stages of squid and their growth rate, 

resulting in changes in monthly biomass stocks. In January, female and male squid 

mature faster in North Queensland waters (Jackson et al., 2012). March and April are 

spawning months in the South China Sea when more male and female squid swarm 

(Wang et al., 2010). Squids are abundant in the Pearl River Estuary from December to 

February (Wang et al., 2021). Several researchers have reported the effect of a specific 

range degree of latitude on a high abundance of squid. Chang et al. (2016) found that the 

Illex argentinus abundant in the Southwest Atlantic was elevated at 40°–50° S. Whereas, 

Pilar-Fonseca et al. (2013) reported that Loligo vulgaris off the Portuguese coast showed 

a high density at 36.5–41.5° N. The temperature variations substantially impacted squid 

prevalence and distribution shifts (Agnew et al., 2002; Chasco et al., 2022). Temperature 

dynamics on an annual scale were linked to trends in squid landings (Robin and Denis, 

1999) and positively increased squid catch rates in warmer water (Wang et al., 2021). 

The concentration of squid is abundant at different temperature ranges depending on the 

species and fishing location. Tian et al. (2009) found the catch rate of Ommastrephes 

bartramii in the Northwest Pacific Ocean tended to rise in the temperature range of 14–

21 °C. While in the South China Sea, the catch rate of squid (Sthenoteuthis oualaniensis) 

increases when the temperature is 24–28 °C (Yu et al., 2019).  

The MAPE was used to assess the accuracy of the best fit model. This method 

was appropriate for determining the accuracy of a prediction when the predicted sample 

was acknowledged to remain significantly above zero (de Myttenaere et al., 2016). 

Furthermore, Prayudani et al. (2019) found that it was advantageous when the quantity 

of predictive factors is critical in determining prediction performance. An accuracy test 

based on a percentage of error was scale-independent. It was commonly used to compare 

estimated performance across diverse data series (Hyndman and Koehler, 2006). 

The output data from the best fit model was used to forecast the potential of MS 

catch as an indicator to determine productive fishing grounds. The prediction results were 

represented on a map, indicating which locations were low or high in MS abundance. The 

availability of information concerning productive fishing grounds allows for greater 

flexibility in management strategies.  For example, vessels may be directed to the most 

valuable areas with the highest potential catch, preventing fishing in low-value areas to 

allow resources to reach a state of readiness for capture.  

Nonetheless, the results of this study should be interpreted with caution, and 

certain limitations should be considered. In this study, MS catches were calculated on 

average from all fishing locations in all months in one fishing trip. This approach can 

cause catch rate prediction bias in the model analysis even though the accuracy is high. 
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Therefore, the catch per fishing location with geographic coordinates from observer or 

master fishing records can be used to overcome data limitations. 

CONCLUSION 

 

Information on productive fishing grounds is useful in supporting marine spatial 

planning and management of squid resources. In our opinion, the GAM approach, when 

combined with geospatial techniques, is capable of describing the factors that influence 

catch rates and mapping productive fishing grounds. The combination of VMS, landing, 

and satellite remote sensing data has the potential to be the most practical and cost-

effective method of analyzing the dynamics of fishing grounds at multiple time and space 

scales. This research adds value to VMS data for identifying fishing locations and aids in 

determining the oceanographic conditions of fishing areas. 

The study results indicated the need for a strategy to be efficient in fishing efforts 

because most of the operating time of vessel was spent on activities other than fishing. 

We found three major parameters influencing the catch rate of miter squid: fishing 

month, latitude degree of fishing grounds, and sea surface temperature. These three 

factors have the possibility to serve as guidelines in finding miter squid fishing grounds 

to increase the efficiency of fishing efforts. The most productive fishing grounds were 

identified in the waters between Anambas, Natuna, and Tambelan. These findings can 

support marine spatial planning and squid resource management in IFMA 711. 
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