Larvicidal effect of crude extracts of some marine plants (mangrove and seagrasses) on mosquitoes of *Culex pipiens*

Rafat M. Khattab¹,²; Ali A. Gaballa¹,³; Saad M. Zakaria¹; Abdullah EL Sayed.Ali¹ and Ibrahim S. Sallam¹

1- Marine Sciences Department, Faculty of Sciences, Suez Canal University, Ismailia, Egypt.
2- Department of biology, Almadinah Almonawara, Taibah university, Kingdom of Saudi Arabia.3- Biological Sciences Department, Faculty of Applied sciences, Um AL- Qura University, Makah, Saudi Arabia

E-mail rafifi2001@yahoo.com

ABSTRACT

Marine halophytes (mangroves and sea grasses) were collected from the Red Sea coast of Egypt and tested for their mosquitocidal activities. The toxicities of mangroves *Avicennia marina* & *Rhizophora mucronata*, and seagrasses *Thalassodendron ciliatum*, *Halodule uninervis* and *Halophilia stipulacea* were examined against lab. Strain of 3rd instar larvae of *Culex pipiens*. Results showed that extracts of seeds and leaves of *Avicennia marina* were more effective than other parts of the same plant as well as of the leaves of *Rhizophora mucronata* against 3rd instar larvae of *Culex pipiens* mosquito. On the other hand, comparison of the toxicities of the three species of sea grasses showed that crude extract of *Halodule uninervis* was more active against 3rd instar larvae of mosquito *Cu pipiens* than crude extracts of *Thalassodendron Ciliatum* and *Halophilia stipulacea*. In view of these results, the purified active compounds from the most effective samples found in our studies could be effective in killing mosquito larvae or repelling adult female mosquitoes in an economic and safe manner.

Keywords: Mangroves plants, sea grasses, Mosquito, Toxicity.

INTRODUCTION

During the last few decades synthetic chemicals have been used in large quantities to control insect pests as they are low-priced and effective (Thangam & Kathiresan, 1990). The synthetic insecticides are generally non target specific and can cause environmental damage due to their persistent nature. Throughout the world there is a long history of plant products being used for their insecticidal or repellent properties. Hence natural insecticides were realized to be ecofriendly and are given preference (Nazar et al., 2009).

In this context, a large number of terrestrial plants have been previously screened for mosquito larvicidal and/or repellent activities (Thangam & Kathiresan, 1990, 1994). Plant extracts have recently gained an importance of insect control, being considered safe to environment and less hazardous to non target biota (Gajendran & Ragupathy, 2003). Intensive work was conducted on the biological activity of plant extracts as natural sources of insecticides (Saleh et al, 1983, Thangam and kathiresan 1993). However, plant extracts may act as toxicants or repellents (Su, and Harvart, 1981, and Sharma, & Dhiman, 1993) or act as insect growth regulators (Bowers et al., 1972).
In vitro, assessment of the antibacteriophage, antibacterial and anticandidal activities as well as cytotoxicity were previously evaluated for both aqueous and ethanol extracts prepared from roots, cotyledons, leaves and stems of the mangrove *Avicennia marina* (Khafagi et al., 2003). Aqueous extracts of both shoots and roots of the seedlings demonstrated antibacteriophage activity using coliphage against *Escherichia coli* which indicates antiviral activity. Aqueous extracts also exhibited moderate cytotoxicity against the larvae of the brine shrimp *Artemia salina*, which demonstrates antiplasmodial and antimalarial activities. Seeds were found to be the most effective followed by leaves and flowers.

It has been strongly recommended that mangroves should be considered as a valuable source for chemical constituents with potential medicinal and agricultural values (Miles et al., 1998). Although the chemical constituents of most mangrove plants still have not been studied extensively, investigations have led so far to the discovery of several novel compounds with prospective medicinal value for the discovery of new chemotherapeutic agents. *Avicennia marina* has received some attention in determining its important chemical constituents. A naphthofuran compound with phytoalexin activity has been isolated (Sutton et al., 1985; Miles et al., 1998).

In vitro, antimalarial activity and cytotoxicity of *A. marina* have also reported previously by Sharaf et al., 2000. Recently, chemo-preventive activity (anti-tumor promoters) of some naphthoquinones and their analogs isolated from *Avicennia* plants was noted (Itoigawa et al., 2001). The bark and roots of *A. marina* are known to contain the tannin lapachol (Tomlinson, 1994). The bark leaves and fruits of *A. marina* are used in folk medicine to treat skin diseases.

As there was no information on the mosquito larvicidal or repellent activities of marine plants (mangroves and sea grasses) inhabiting the Red Sea, the present study was conducted to evaluate the mosquito larvicidal activity of some of these plant extracts against those of *Culex pipiens*, the main vector of lymphatic filariasis in Egypt.

MATERIAL AND METHODS

1. **Collection and preparation of samples**

 Marine halophytes (Mangroves and Sea grasses) were collected from Gharqana coast. Nabq protected area and Ras Mohammed national park at southern Sinai coast (Gulf of Aqaba) during November 2007. Sea grasses were collected from the seagrass beds during low tides from Gulf of Aqaba.

 Mangrove leaves, stems, seeds and flowers of *Avicennia marina* and whole plant of *Rhizophora mucronata* were separately cleaned with many changes of seawater in order to remove epiphytes, shells and other extragenous matter and were immediately transferred to separate polythene bags and placed on ice till return to the laboratory. Each species was again cleaned in running tap water and further once with distilled water and shade dried under room temperature (28±2°C) for further use.

 Different species of seagrasses *Halodule uninervis*, *Halophilia stipulacea* and *Thalassodendron ciliatum* were chosen due to their bundance and biomass. The collected samples were packed in plastic bags and transported to the laboratory. Immediately they were washed with fresh water for removing sand, epiphytes and any extraneous matter; they were then dried in shade for five to seven days then powdered using a pestol and mortar.
2. Extraction of plant material

Extraction was carried out with ethyl acetate solvent at ambient temperature. The extracts were freed from solvent under reduced pressure, the residue obtained are finally dried under vacuum evaporator and used for in vitro screening of antimosquitocidal activity.

3- Antimosquitocidal activity

-Tested insect

A colony of *Culex pipiens* was established in the laboratory, where mosquito larvae were firstly collected from small ponds under leaking irrigation faucets in West- Qantara. They were reared in enamel pans (30cm, in diameter and 10cm in height) and fed daily upon a mixture of dried powder bread, yeast and dried milk in the ratio of 2:1:1, respectively.

Emerging adults were successively reared under room temperature (27 ± °C) in Plastic cages of 30×30×30cm, and fed on 10% sucrose solution which was offered in a piece of sponge suspended by a wire thread from the roof of the cage. Larvae of the 3rd instar were mounted and identified. After inbreeding for several generations, 5 rafts were introduced into each enamel containing the nutrient solution mentioned above. Homogeneous larvae of 3rd instar were isolated subsequently for running bioassay tests.

-Tested procedure

The method of WHO (1975) was followed for testing mosquito larvicides. In order to study the toxicity of the studied plant extracts preliminary screening tests were carried out at a concentration level of 1000 ppm (w/v). This was accomplished by dissolving 0.5mg of each tested crude extract in 10 ml of solution and placed in a 100ml glass beaker marked at 50 ml volume.

Twenty five 3rd instar mosquito larvae of *Culex pipiens* were transferred to a beaker in least quantities of water by means of a small dropper. Then the solution level was adjusted to a 50 ml. Five to seven concentrations were tested. Larval mortality was counted after 24, 48, 72 hours and exposed to log probit regression analyses (Unkelbach, 1985). This process was repeated in three other beakers for each tested extract. Control experiments were carried out alongside other treatments where the same solution was used alone without plant extract, and then examined for calculating the percentage of mortalities:

\[
\text{% corrected mortality} = \frac{\text{% test kill} - \text{% control kill}}{\text{% control kill}} \times 100
\]

Only promising extracts (i.e. of mortality equals to 50/or more) were subjected to detailed toxicity studies where their LC$_{50}$ and LC$_{90}$ values were determined. This was accomplished according to the well established methods (e.g. WHO, 1975). In this respect, a different range of concentrations of each concerned extract was prepared in order to obtain mortalities ranging from 20% to 90%. At least 4 replicates were usually carried out for each tested concentration to prepare the LC-p line according to Finney (1955).

RESULTS

The results presented in table 1 revealed regression lines of toxicity with slopes ranging from 1.58 to 1.89 for different parts of *Avicennia marina* and 1.89 for *R. mucronata* leaves. The LC$_{50}$ values of seeds and leaves of *Avicennia marina* were 3.97 ppm. For flowers and stems LC$_{50}$ values were 4.35 and 7.02 ppm, respectively. The LC$_{50}$ value of *Rhizophora mucronata* was 7.02 ppm. Results shown in (table 1
and fig. 1) clearly indicated that crude extracts of seeds and leaves of *Avicennia marina* were more effective than that of other parts of the same plant as well as of *R. mucronata* against 3rd stage larvae of *Culex pipiens* mosquito.

Table 1: Comparative toxicities of two mangrove plants *Avicennia marina* and *Rhizophora mucronata* against 3rd stage mosquito larvae of *Culex pipiens*.

<table>
<thead>
<tr>
<th>Lethal conc.</th>
<th>Extract conc. (ppm) for plant parts of Avicennia marina</th>
<th>Rhizophora mucronata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seeds</td>
<td>Flowers</td>
</tr>
<tr>
<td>LC10</td>
<td>2.21</td>
<td>2.07</td>
</tr>
<tr>
<td></td>
<td>(0.40-12.39)</td>
<td>(0.25-17.20)</td>
</tr>
<tr>
<td>LC20</td>
<td>2.70</td>
<td>2.67</td>
</tr>
<tr>
<td></td>
<td>(0.69-10.59)</td>
<td>(0.53-13.37)</td>
</tr>
<tr>
<td>LC50</td>
<td>3.97</td>
<td>4.35</td>
</tr>
<tr>
<td></td>
<td>(1.96-8.04)</td>
<td>(2.24-8.45)</td>
</tr>
<tr>
<td></td>
<td>(4.59-11.12)</td>
<td>(3.59-23.22)</td>
</tr>
<tr>
<td>Slope</td>
<td>1.58</td>
<td>1.78</td>
</tr>
<tr>
<td>CHI²</td>
<td>0.03<3.85</td>
<td>0.01<3.85</td>
</tr>
</tbody>
</table>

Fig. 1: Comparative toxicities of *Avicenina marina* (leaves, seeds, flowers, stems and *Rhizophora mucronata* leaves.

Results of the effectiveness of the crude extracts of three plant species of sea grasses *Thalassodendron ciliatum*, *Halophilia stipulacea*, *Halodule uninervis* on 3rd stage mosquito larvae of *Culex pipiens* are shown in table 2.

Table 2: Comparative toxicity between three sea grass species *Thalassodendron ciliatum*, *Halodule uninervis*, and *Halophilia stipulacea* against 3rd mosquito larvae of *Culex pipiens*.

<table>
<thead>
<tr>
<th>Lethal conc.</th>
<th>Extract conc.(ppm) for each sea grass species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thalassodendron ciliatum</td>
</tr>
<tr>
<td>LC10</td>
<td>2.07</td>
</tr>
<tr>
<td></td>
<td>(1.25-17.20)</td>
</tr>
<tr>
<td>LC20</td>
<td>2.67</td>
</tr>
<tr>
<td></td>
<td>(0.53-13.37)</td>
</tr>
<tr>
<td>LC50</td>
<td>4.35</td>
</tr>
<tr>
<td></td>
<td>(2.24-23.92)</td>
</tr>
<tr>
<td>LC90</td>
<td>9.131</td>
</tr>
<tr>
<td></td>
<td>(3.59-23.92)</td>
</tr>
<tr>
<td>Slope</td>
<td>1.78</td>
</tr>
<tr>
<td>CHI²</td>
<td>0.01<3.85</td>
</tr>
</tbody>
</table>
The results revealed regression lines of toxicity with slopes of 1.78, 1.38 and 1.58 respectively for the laboratory strain of *Culex Pipiens*. The LC$_{50}$ value of *H. uninervis* was at 3.97 ppm followed by *T. ciliatum* and *H. stipulacea* at 4.35 and 4.60 ppm respectively. Results in (table 2 and fig. 2) clearly showed that crude extracts of *H. uninervis* by ethyl acetate was more effective than that of *T. ciliatum* and *H. stipulacea* against 3rd stage larvae of *Culex pipiens* mosquito.

![Fig. 2: Comparative toxicities for the sea grasses Thalassodendron ciliatum, Halodule uninervis, and Halophilia stipulacea against 3rd mosquito larvae of Culex pipiens.](image)

DISCUSSION

Culex pipiens is the most widely distributed mosquito species in the world. Hoogstraal *et al.* (1977) stated that mosquitoes in Egypt are vectors of malaria, various forms of filariasis and numerous arboviruses like dengue and yellow fevers. Thangum and Kathiresan (1996) in Parangipettai studied a large number of marine plants as insecticidal and /or repellent activities against mosquito in India, their study was the first to investigate sea weeds, seagrasses and mangrove plants for their larvicidal, skin and smoke repellent activities against mosquito species. Study of environmental hazards in using synthetic insecticides against mosquito was also conducted by Bahgat *et al.* (2001) by using spinosad which is produced from soil Actinomycete. Our results showed that extracts of seeds and leaves of *Avicennia marina* were more effective than other parts of the same mangrove plant as well as of the mangrove *R. mucronata*. The results also displayed that some extracts of *H. stipulacea* are more susceptible against *Culex pipiens* larvae.

There have been numerous studies on the mosquito larvicidal activity of terrestrial plants (Kathiresan and Thangam, 1987). Subsequently, the mosquito larvicidal activity of the seaweeds *Plocamium tefairiae* and *Laurencia nipponica* was reported by Watanabe *et al.* (1989; 1990) who isolated Mosquito larvicidal compounds. Ours was the first study on the mosquito larvicidal activity of Egyptian marine plants. Effective repellent compounds, like dimethyl phthalate which are available in the market are very costly and can give protection only for a short period of one or two hours (Kalyanasundaram *et al.*, 1986).

In view of these results, the purified active compounds from the most effective samples found in our studies could be effective in killing mosquito larvae or repelling
adult female mosquitoes in an economic and safe manner. This finding would be useful in the field of mosquito control without polluting the environment.

ACKNOWLEDGMENT

The authors greatly appreciate Prof Gamal Al-kady, Plant Protection Department, Faculty of Agriculture, Suez Canal University for his great help during the larvicidal toxicity assays.

REFERENCES

WHO (1975). Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides, Mimeographed document, WHO/VBC/75/583.

Arabic Summary

تأثير مستخلصات بعض النباتات البحرية (أشجار الشورى والحشائش البحرية) على بعوض البحري Culex pipiens

رافق عزيفٌ، ً، عبد الله السيد علي، ً، على جب الله، ً، سعد ذكري

1- قسم علوم النبات، كلية العلوم، جامعة قناة السويس
2- قسم الأحياء، كلية العلوم، جامعة طيبة، المملكة العربية السعودية
3- قسم الأحياء، كلية العلوم، جامعة أم القرى، المملكة العربية السعودية

تجميع عينات بعض النباتات البحرية (المانجروف والحشائش البحرية) من سواحل البحر الأحمر المصري

بغرض دراسة تأثير سميتها البيولوجية. وخلال هذه الدراسة تم اختيار تأثير مستخلصات الخام لنباتات المانجروف (Thalassodendron ciliatum)، والحشائش البحرية (Avicennia marina & Rhizophora mucronata).

Culex pipiens على بعوض الطائر التي لبعوضة Halodole unirvinsis و Halophilis stipulacea.

بين الأجزاء الأخرى تناقص النباتات، وإضا فهو فاعلية من أوراق المانجروف

وقد أوضح النتائج أن مستخلصات الحشائش البحرية هي الأكثر فاعلية، Culex pipiens هو الأكثر فاعلية على بعوض الطائر الثالث من بعوضة Halodole unirvinsis

الناتجة عن الأنواع Culex pipiens.

الأحياء من الحشائش البحرية التي تم اختبارها

في هذه الدراسة، يمكن للمركبات البيئية من العينات الأخرى فعالة في حماية النبات من بعوض الطائر الثالث من بعوضة Halodole unirvinsis.