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INTRODUCTION 

  

Aquaculture produces about 42.2% of the global world's production of fish in 2016 

which represents 50 % of the fish consumption; fish and fish products are the key to meet 

the need for protein concerning human nutrition in Egypt (FAO, 2018). 
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The recurrence of bacterial infection in fish is related to several factors, 

including the immune status and oxidative state. A total number of 240 Cyprinus 

carpio was divided into four treatments; control (T1) fed on free diet and three 

treatments (T2–4) fed on supplemented diet with nanoparticles of selenium Se NPs 

(1 mg/kg fish feed) for 10, 20, and 30 days, respectively. Supplemented fish with 

Se NPs for 30 days (T4) had significantly higher total protein and globulin content 

(5.83 and 3.1 g/dl, respectively) compared to the control indicating an enhanced 

immune status. Fish fed on Se NPs supplementation for 30 days (T4) recorded 

significantly higher anti-inflammatory cytokine ―interleukin (IL)-10‖, while the 

pro-inflammatory cytokines ―tumour necrosis factor (TNF)–α, IL-1β, and IL-8‖ 

reduced significantly compared to the control. Antioxidant enzymes (glutathione 

peroxidase GPx, catalase CAT, and superoxide dismutase SOD) were gradually 

and significantly enhanced in time-dependent manner. Genotoxicity (DNA 

damages, DNA fragmentation, and presence of micronuclei) was low in 

supplemented fish while challenged fish performed in an opposite manner. 

However, Se NPs supplementation had overcome those withdraws causing a 

decrease in the signs of genotoxicity. Se NPs improved the immunity, antioxidant, 

and histopathological status of C. carpio showing enhancements in disease 

resistance, as reducing the chance of recurrence of Aeromonas hydrophila 

infection and genotoxicity.  
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Selenium (Se) is a vital trace mineral that plays an important role in animal 

metabolism saving the antioxidant state and immune status (Yu et al., 2014; Biller-

Takahashi et al., 2015; Zhang et al., 2017). The nutritional requirements of selenium 

were estimated in different fish species; Nile tilapia (Oreochromis niloticus; 1.06–2.06 

mg/kg) (Lee et al., 2016), and the gibel carp (Carassius auratus gibelio var. CAS III; 

0.73–1.19 mg/kg) (Zhu et al., 2017). To optimize the antioxidative state of rainbow trout 

(oncorhynchus mykiss) fry, the supplementation of Se was recommended to be added to 

the plant-based diets (Fontagné-Dicharry et al. 2015). Under stress conditions, damages 

of the cell membrane, protein, and DNA of the animal cells are due to the formation of 

free radicals (Halliwell, 2006; Kumar et al., 2018). As a part of antioxidant enzymes, Se 

protects the cell membranes and cellular components from the impacts of oxidative 

stresses (Liu et al 2004). Se nanoparticles (Se NPs) is less toxic and safer than inorganic 

Se (Forootanfar et al., 2014; Kumar et al. 2018), it also enhances the immune 

responses and antioxidant activity in common carp (Cyprinus carpio) (Saffari et al., 

2018) and O. mykiss Kohshahi et al. (2019).  

Fish pathologists are using tremendous amounts of antibiotics and disinfectants to 

control fish diseases that resulted in the emergence of antibiotic-resistant bacteria 

(Abutbul et al., 2004; Sherif et al., 2021a). Additionally, Se NPs supplementation 

enhances fish resistance against bacterial infection; Xia et al. (2019) noticed that 

zebrafish (Danio rerio) fed on Se NPs at a dose of 10 μg/g had a higher survival rate 

compared to the control group after challenging against A. hydrophila. 

To study the genotoxicity of any material in water and/or fish, chromosomes are the 

best choice (Parveen & Shadab 2012) and the comet assay is a reliable test to confirm 

DNA damage (de Andrade et al., 2004).  

The purpose of this study is to assess the potential role of Se NPs in decreasing the 

recurrence of bacterial infection in C. carpio through studying the influence of Se NPs on 

the immunity, antioxidant activity, and genotoxicity besides a trial of isolation of 

pathogenic bacteria from survived fish after different periods. 

 

MATERIALS AND METHODS  

 

2.1 Fish sampling, accommodation, and experimental design 

A total number of 260 Cyprinus carpio (5 ± 0.1 g b.w.) was collected from a local 

private freshwater fish farm at Tolompate 7 Village, Kafrelsheikh Governorate, Egypt, 

and were stocked in the wet laboratory of Animal Health Research Institute (AHRI).  Fish 

were acclimated in a fibre-glass tank (3 × 1.5 × 1 m) for two weeks. Afterwards, 20 fish 

specimens were subjected to clinical and post-mortem analyses following the methods 

described by Austin and Austin (2012) to make sure that the fish were free of any 

diseases. Fish (n=240) were divided equally and randomly into four treatments (T1– 4); 

each treatment had three replicates (20 fish / glass aquarium). The first presented the 
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control (T1) fed on a free diet, while the second (T2), the third (T3), and the fourth (T4) 

were fed on supplemented-Se NPs diet at a dose of 1 mg/kg fish feed for 10, 20, and 30 

days, respectively. Fish were fed on a formulated diet (CP 38% and digestible energy 

2954 Kcal/Kg) twice daily with 5% of their weights for six days per week. Water 

parameters of tank and glass aquaria (110 × 50 × 50 cm) were maintained in suitable 

condition for fish culture (temperature 28±1 °C, dissolved oxygen ≥ 5.5 mg/l, pH 7.8 and 

salinity ≤ 0.3 g/l), also one-third of water was daily exchanged with fresh water to keep 

water quality and remove solid discharges.  

2.2 Source of nano-selenium spheres and diet preparation 

Se NPs were manufactured following the methods described by Zommara (2007) 

and Prokisch et al. (2008) using lactic acid bacteria (LAB-Se, Lactomicrosel®). Briefly, 

Se NPs were manufactured from pure yoghurt cultures of Streptococcus thermophilus 

(CNCM I-1670) and Lactobacillus delbrueckii subsp. bulgaricus (NCAIM B 02206). The 

size of the obtained Se NPs was within the range of 100–500 nm, the characterization of 

Se NPs was performed using inductively coupled plasma mass spectrometer (ICP-MS) (X 

series, THERMO FISHER SCIENTIFIC, Germany) (Eszenyi et al., 2011; Prokisch et 

al., 2011). 

Firstly, Se NPs were ultrasonically distributed in Milli-Q water (1 mg/ml) 

according to the procedure developed by Lammel and Sturve (2018), Thereafter, fish 

food (pellet form) was soaked and fully homogenated till paste formation. Then, the 

gelatine was added to feed past/ Se NPs mixture to improve feed consistency (Canal 

Aqua Cure, Egypt) and left to dry at room temperature then was evenly cut into small 

size. 

2.3 Bacterial infection 

After the feeding trial, fish (50 fish/treatment) was experimentally subjected to 

bacterial infection with Aeromonas hydrophila (AHRAS2, accession number in NCBI is 

MW092007. Fish was injected via intraperitoneal route with LD50 (2.4 ×10
5
 CFU) 

according to methods described by Schaperclaus et al. (1992). The number of dead fish 

was recorded for 14 days, and cumulative mortality rate (CMR) was measured using the 

following equation: 

CMR (%) = (number of deaths in a specific period  ∕  total population during that 

period) × 100. 

After 14 days of bacterial infection, the survived fish was bacteriologically 

examined for A. hydrophila. Three attempts of bacterial isolation were performed with a 

week interval. Bacterial isolation was done using five fish randomly selected from each 

treatment group. Samples for bacteriological analyses were collected from skin lesions, 

kidneys, heart, liver, spleen, and gills and inoculated onto brain heart infusion agar 

(BHIB) and incubated at 28°C for 24 h (Tonguthai et al., 1999). Pure colonies streaked 

onto Rimler’s- Shotts medium (RS medium), Aeromonas selective agar base with 

ampicillin supplement, XLD media. All cultures were incubated at 28 °C for 24 h, and 
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characterization of isolated bacteria was recorded. Phenotypic characterization of the 

bacterial isolates was confirmed according to Bergey (1994), Elmer et al. (1997) and 

Madigan and Martinko (2005). All isolates were identified biochemically by using API 

20E strips (Bio-merieux, 1984).  

2.4 Cytokines of the experimental C. carpio 

Interleukin 1β (IL-1β), TNF-α, and IL-10 were measured in the serum of C. carpio 

by ELISA (enzyme-linked immunosorbent assay) using a solid-phase sandwich ELISA 

test kit obtained from (My BioSource Co., San Diego, California, USA). The procedures 

were done following the manufacturer's instructions. 

2.5 Total protein and globulin fractions 

The concentration of serum total protein (TP) (Weichsellbaum, 1946) and albumin 

(ALB) (Doumas et al., 1971) were measured by colorimetric methods. While serum 

globulin concentrations (GLO) were calculated by subtracting the concentration of TP 

from ALB concentration. The electrophoretic pattern of serum protein fractions was 

measured using polyacrylamide gel columns (Maurer, 2011). Moreover, the gel was 

scanned and read according to Glick (1968). 

2.6 The activity of antioxidant enzymes  

  The activity of glutathione peroxidase (GPx) (EC 1.11.1.9) in the liver of C. 

carpio was determined according to the method described by Anderson and Greenwald 

(1985). The contents of reaction mixture were 1.44 ml of 0.05 M PBS (pH 7.0), 0.1 ml of 

1 mM EDTA, 0.1 mM sodium azide, 0.05 ml of glutathione reductase (GR; 1 U/ml), 0.1 

ml of 1 mM glutathione (GSH), 0.1 ml of 2 mM NADPH, 0.01 ml of 0.25 mM H2O2 and 

0.1 ml of 10 % PMS in a total volume of 2 ml. The disappearance of NADPH was 

recorded using a spectrophotometer at 340 nm. Enzyme activity was expressed as nmol 

NADP reduced/min/ mg protein using a molar extinction coefficient of 6.22 × 103/M/cm. 

Catalase CAT (EC 1.11.1.6) activity in the liver of C. carpio was determined 

spectrophotometrically at 240 nm and calculated as μmol H2O2 decomposed/ mg 

protein/min following a method developed by Anderson and Greenwald (1985). 

Superoxide dismutase SOD (EC 1.15.1.1) activity in hepatic tissue was measured using 

the auto-oxidation principle of pyrogallol, which is inhibited in the presence of SOD. The 

optical density change was determined kinetically for 2 min at 420 nm, at 10-second 

intervals, according to the method mentioned by Beutler (1984). Activities of antioxidant 

enzymes were measured as U mg/protein. 

2.7 Genotoxicity of the experimental C. carpio 

2.7.1 The comet assay  

Comet assay was performed referring to the procedure developed by Blasiak et al. 

(2004). Hepatic cells of fish were mixed with low-melting-point agarose (ratio 

of1:10v/v), then pipetted to precoated slides with normal-melting-point agarose. The 

slides were kept flat at 4°C for 30 min in dark condition. The third layer of low melting 

point agarose was pipetted onto the slides and was left to solidify (4°C for 30 min). The 
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slides were shifted to pre-chilled lysis solution, kept for 60 min at 4°C, after that, slides 

were immersed in freshly prepared alkaline unwinding solution at room temperature in 

the dark for 60 min. Slides were exposed to electrophoresis run at 0.8 V/cm, 300mAmps 

at 4°C for 30 min. The slides were rinsed in neutralizing solution followed by immersion 

in 70% ethanol and then air-dried. The slides were stained with ethidium bromide and 

then visualized using Zeiss epifluorescence microscope (510–560 nm, barrier filter 590 

nm) with a magnification power of ×400. 100 cells per fish were scored. DNA damages 

were analysed using software (Comet Score, TriTek corp., Sumerduck, VA22742; 

Collins et al. (1997). 

2.7.2 DNA fragmentation assay  

The rates of DNA fragmentation were done following the methods used by Yawata 

et al. (1998). Briefly, hepatic tissues of C. carpio, treated with Se NPs and/ or infected 

with pathogenic bacteria, were homogenized in saline (0.09% v/v). The harvested cells 

(plus floating cells) were washed with Dulbecco`s phosphate-buffered saline then, cells 

were lysed using the lysis buffer [10 mM Tris (pH 7.4), 150 mM NaCl, 5 mM ethylene 

diamine tetraacetic acid (EDTA), and 0.5% Triton X-100] for 30 min on ice. Lysates 

products were vortexed and cleared by centrifugation at 10,000 g for 20 min. Fragmented 

DNA in the supernatant was extracted with an equal volume of neutral 

phenol:chloroform:isoamyl alcohol mixture (25:24:1) and analyzed electrophoretically on 

2% agarose gels containing 0.1 μg/ml ethidium bromide. 

2.7.3 Micronuclei Test 

The presence of micronuclei was confirmed according to the method described by 

AL-Sabti and Metcalfe (1995). Briefly, the peripheral blood was obtained from the 

caudal vein of each fish, then smeared immediately after mixing with foetal calf serum 

and fixed in absolute methanol, and hence, dried in air. The slides were stained with 

Giemsa stain and observed under a microscope (Magnification 1000 X). Finally, the 

frequency of micronuclei was calculated in 2000 cells per individuals by using the 

following formula:  

MN frequency (%) = (Number of cells with Micronuclei / Total number of cells      

counted) × 100 

2.8 Histopathological Investigations 

For histopathological analyses of experimental fish, samples were collected from 

three tissues liver, kidney, and spleen before and after the bacterial challenge test. 

Formalin-fixed paraffin-embedded sections were processed routinely for H&E staining 

according to methods described by Suvarna et al. (2012).  

2.9 Statistical Analyses:  

The impacts of Se NPs in C. carpio were statically analyzed with SPSS software 

for windows, SPSS Inc., Chicago, IL, USA (SPSS 2004) using analysis of variance 

(ANOVA). All values were expressed as the mean ± SE (standard error). Duncan's 
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multiple range test (Duncan 1955) was used to determine differences among treatments 

at a significance level of 0.05. 

2.9 The applied biosafety measures  

      This study followed the biosafety measures concerning the pathogen safety data 

sheets: Infectious substances- A. hydrophila, Pathogen Regulation Directorate, Public 

Health Agency of Canada (2010). 
 

RESULTS  

 

During the experimental period, the water parameters were maintained in a suitable 

range for C. carpio; water temperature 28±1 °C, dissolved oxygen ≥ 5.6±0.5 mg/l, pH 

8.2±0.6 and salinity ≤ 0.3 g/l. 

3.1 Challenge experimental fish with A. hydrophila bacteria 

A fifty C. carpio from each treatment was experimentally infected with LD50 of A. 

hydrophia to assess the immunostimulant properties of Se NPs. The survival of fish 

(Table 1) was gradually and positively increased with Se NPs.  In Table (1), challenged 

C. carpio in T4, fed on Se NPs for 30 days resisted the bacterial infection and their 

survival rate was higher (37 out of 50) compared with the control (T1) (24 out 50 fish) (p 

< 0.05). A five C. carpio from each treatment was bacterially examined for the presence 

of A. hydrophia after a two-week period of the challenge test.  The isolation rate of A. 

hydrophia was gradually decreased in a time-dependent of Se NPs supplementation. In 

T4, which received Se NPs for 30 days, A. hydrophia was not isolated after 4 weeks of 

infection.  

Table 1: Mortality and infection rates of C. carpio Challenge with A. hydrophila  

Item T1 (Control) T2 (10 day) T3 (20 day) T4 (30 day) 

no. % no. % no. % no. % 

Fish  50 - 50 - 50 - 50 - 

CMR  26 52 24 48 20 40 13 26 

Sur.  24 48 26 52 30 60 37 74 

Exa.  15 - 15 - 15 - 15 - 

Inf. Post 3 weeks  3 60 3 60 3 60 2 40 

Inf. Post 4 weeks 3 60 3 60 1 20 0 0 

Inf. Post 5 weeks 2 40 1 20 1 20 0 0 

Treatments; T1: control; T2: supplemented Se NPs 10 days; T3: supplemented Se NPs 20 days; T4: 

supplemented Se NPs 30 days. no.: fish number; CMR: cummlative mortality rate; Sur.: survived fish; Exa: 

examined fish in last 3 weeks; Inf: infection rate. 
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3.2 Alteration of inflammatory cytokines in experimental fish 

As shown in Fig. (1), the cytokines were significantly affected with the addition of 

Se NPs to the C. carpio diet. Anti-inflammatory cytokine IL-10 was significantly 

increased (P< 0.05) in serum of C. carpio in T2, T3, and T4 treatments compared with 

the control 14.01, 15.51, and 19.89 pg/mg, respectively. Pro-inflammatory cytokines TNF 

–α, IL-1β, and IL-8 were significantly decreased with time in T2-T4 treatments compared 

to the control treatment (4, 1.55, and 3 pg/mg, respectively).  
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                   Fig. 1:  Cytokines changes in serum of C. carpio.  

Treatments; T1: control; T2: supplemented Se NPs 10 days; T3: supplemented Se NPs 20 days; T4: 

supplemented Se NPs 30 days. Different letters mean that treatments are significantly different at (P< 0.05). 

Values are expressed as the mean ± SE. 

 

3.3 Serum protein and antioxidant enzymes changes 

Serum total protein (TP), albumin (ALB), globulin (GLO), and GLO fractions 

(Alpha, beta, and gamma) were only and significantly improved (P< 0.05) in T4 in which 

fish fed on Se NPs supplementation for 30 days (Table 2). The control (T1) treatment 

differed insignificantly from (P< 0.05) treatments fed on a diet supplemented with Se 

NPs for 10 or 20 days.  

 

Table 2: Total protein and globulin fractions in C. carpio blood. 

Item T1 (Control) T2 (10 day) T3 (20 day) T4 (30 day) 

TP (g/dl) 4.3
B
 ± 1.5 4.72

B
 ± 0.06 4.6

B
 ± 0.21 5.83

A
 ± 0.27 

ALB (g/dl) 2.17
B
 ± 0.03 2.27

B
 ± 0.09 2.16

B
 ± 0.07 2.73

A
 ± 0.12 

GLO (g/dl)  

Alpha (g/dl) 

Beta (g/dl) 

Gamma (g/dl) 

2.13
B
 ± 0.13 

0.55
B
 ± 0.03 

0.47
B
 ± 0.07 

1.12
B
 ± 0.04 

2.45
B
 ± 0.05 

0.61
B
 ± 0.01 

0.53
AB

 ± 0.02 

1.3
AB

 ± 0.09 

2.43
B
 ± 0.14 

0.67
B
 ± 0.08 

0.48
B
 ± 0.06 

1.29
AB

 ± 0.1  

3.1
A
 ± 0.17 

0.95
A
 ± 0.04 

0.69
A
 ± 0.05 

1.47
A
 ± 0.09 
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Treatments; T1: control; T2: supplemented Se NPs 10 days; T3: supplemented Se NPs 20 days; T4: 

supplemented Se NPs 30 days. TP: total protein; ALB: albumin; GLO: globulin. Values are presented as 

the mean ± SE. Treatments with different letters within the same row are significantly different at P≤.05.  

In Fig. (2), the antioxidant enzymes GPx, CAT, and SOD activity in the hepatic 

tissues of the experimental fish were significantly and gradually increased with the 

supplementation period of Se NPs, C. carpio. T4, fed on supplementation for 30 days, 

had a significantly higher antioxidant activity compared to the control fish. 
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Fig. 2:  Antioxidant activities in the liver tissues of C. carpio. 

 (n= 3/replicate) GPx: Glutathione peroxidase enzyme; CAT: catalase enzyme; SOD: Superoxide dismutase 

enzyme. Treatments; T1: control; T2: supplemented Se NPs 10 days; T3: supplemented Se NPs 20 days; 

T4: supplemented Se NPs 30 days. Different letters mean that treatments are significantly different at (P< 

0.05). Values are presented as the mean ± SE. 

3.4 Genotoxicity of C. carpio fed on Se NPs supplementation 

Determination of the DNA damage in fish liver is summarized in Table (3) and 

Figs. (3, 4, 5). The results found that control liver and nano-Se liver tissues, treated 

groups at several time intervals (10, 20, and 30 days), were significantly decreased (P< 

0.05) in DNA damage values compared to the positive control as exposed to bacterial 

infection. However, the DNA damage rates were significantly increased in the liver of 

fish treated with bacteria. On the contrary, the DNA damage rates were decreased 

significantly in the liver tissues exposed to bacterial infection and treated with Se NPs at 

different time intervals in which the 30 days treatment (T4) was the most effective time. 

Determination of the DNA fragmentation rates in the fish liver is summarized in 

Table (4) and Figs. (3, 4). Results revealed that the DNA fragmentation rates were 

significantly increased (P<0.001) in liver of fish treated exaction with bacteria. On the 

contrary, the DNA fragmentation rates were significantly decreased in liver tissues 
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exposed to bacterial infection and treated with Se NPs at different time intervals in which 

the 30 days treatment was the most effective time.  

The results of micronuclei in blood cells of C.carpio of different treatments are 

summarized in Table (5).  According to the results, the micronuclei frequency in fishes 

treated with nano selenium at different times didn't show any significant difference 

comparing to the control except at day 30 which slightly increased more than the control.  

In fishes exposed to bacterial infection, the micronuclei frequency increased significantly 

compared to the control (P≤0.05).  On the contrary, all treatments exposed to bacterial 

infection  and treated with Se NPs at different time intervals (10, 20, and 30 days) were 

significantly decreased (P< 0.05) in micronuclei frequency values compared to the 

positive control exposed to bacterial infection in which the 30 days treatment was the 

most effective time. 

 

Table 3: Visual score of DNA damage in hepatic tissues of C. carpio supplemented 

with Se NPs and/ or bacterial infection.   

Treatment 

No. of cells 

Class
**

 

 

DNA damaged cells % 

(Mean±SEM) 

 Analyzed
*
 Comets 0 1 2 3 

Un infected fish 

T1 
400 30 370 27 3 0 7.52±0.65

d
 

T2 

 

400 31 369 25 4 2 7.75±0.86
d
 

T3 

 

400 35 365 24 7 4 8.76±1.25
cd

 

T4 

 

400 37 363 22 9 6 9.27±1.11
c
 

Infected fish 

T1 
400 98 302 31 28 39 24.50±1.19

a
 

T2 
400 69 331 28 25 16 17.25±1.13

b
 

T3 

 

400 58 342 21 24 13 14.50±1.04
bc

 

T4 

 

400 41 359 17 14 10 10.25±1.12
c
 

*: Number of cells examined per a group, **: Class 0= no tail; 1= tail length < diameter of nucleus; 2= tail 

length between 1X and 2X the diameter of nucleus; and 3= tail length > 2X the diameter of nucleus. 

Treatments; T1: control; T2: supplemented Se NPs 10 days; T3: supplemented Se NPs 20 days; T4: 

supplemented Se NPs 30 days. Values are presented as the mean ± SE. Treatments with different letters 

within the same row are significantly different at P≤.05.  
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Table 4: DNA fragmentation detected in hepatic tissues of C. carpio supplemented 

with Se NPs and/ or bacterial infection. 

 

Treatment DNA Fragmentation % Change Inhibition 

Un infected fish 

 

T1 
8.2±0.25

d
 0 

0 

T2 

 
8.1±0.32

d
 0.1 100.49 

T3 

 
9.3±0.56

d
 1.1 94.61 

T4 

 
10.2±0.63

cd
 2 90.20 

Infected fish 

T1 28.6±0.82
a
 20.4 0.00 

T2 

 
21.5±0.48

b
 13.3 34.80 

T3 

 
17.9±0.67

bc
 9.7 52.45 

T4 

 
12.4±0.35

c
 4.2 79.41 

 

Treatments; T1: control; T2: fed Se NPs 10 days; T3: fed Se NPs 20 days; T4: fed Se NPs 30 days. Values 

are presented as the mean ± SE.Means with different superscripts (a and b) between locations in the same 

column are significantly different at P<0.05. 

 

 
 

Fig. 3: Visual score using comet assay of normal DNA (class 0) and DNA damage (classes 1, 2 

and 3) in hepatic tissues of fish supplemented with Se NPs and/ or bacterial infection.   
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Table 5: Micronuclei frequencies (%) in blood erythrocytes of C. carpio 

supplemented with Se NPs and/or bacterial infection. 

 

Treatment Total number of counted cells/group MN frequency (%) 

Un infected fish 

 

T1 
10000 

 

0.09±0.02 
f
 

T2 

 
10000 0.11±0.02 

f
 

T3 

 
10000 0.14±0.03 

ef
 

T4 

 
10000 0.20±0.02 

de
 

Infected fish 

T1 

 
10000 0.71±0.02 

a
 

T2 

 
10000 0.57±0.03 

b
 

T3 

 
10000 0.38±0.01 

c
 

T4 

 
10000 0.23±0.01 

d
 

Treatments; T1: control; T2: supplemented Se NPs 10 days; T3: supplemented Se NPs 20 days; T4: 

supplemented Se NPs 30 days. Treatments with different letters within the same row are significantly 

different at P≤.05. Values are presented as the mean ± SE. 

 

 

 

 

Fig. 4: DNA fragmentation detected with Agarose gel in hepatic tissues of C. carpio treated with 

Se NPs and/ or bacterial infection.  

M: represent DNA marker, Lanes 1: Control treatment (-ve), Lane 2: represents fish supplemented with Se 

NPs 10 days, Lane 3: represents fish supplemented with Se NPs 20 days, Lane 4: represents fish 

supplemented with Se NPs 30 days, Lane 5: represents fish exposed to bacterial infection, Lanes 6-7: 

represent fish similar to those in lanes 2-4 plus bacterial infection. 
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Fig. 5: Erythrocytes of C. carpio showing micronucleus induced by bacterial infection. 

 

4. Histopathological analyses of C. carpio fed on Se NPs supplementation 

Three tissues liver, kidney, and spleen were histopathologically examined for any 

alterations accompanied by the Se NPs supplementation and A. hydrophila infection. 

Hepatic tissue of C. carpio showed no alteration after feeding Se NPs for different 

periods 10, 20, and 30 days. 

Hepatic tissue of C. carpio challenged with A. hydrophila showed necrotic areas 

(Fig. 6a), these lesions were decreased in C. carpio supplemented with Se NPs in time-

dependent manners as T4 (Fig. 6c) was less pronounced than T2 (Fig. 6b). Renal tissue of 

challenged C. carpio (Fig. 7a) was heavily infiltrated with inflammatory cells and Se NPs 

supplementation for 30 days T4 (Fig. 7c) had the same change; while C. carpio 

supplemented with Se NPs for 10 days T2 (Fig. 7b) had a significant reduction in cellular 

infiltrations compared to the control treatment. Melano-macrophages centre was 

markedly proliferated in spleen tissues of challenged fish (Fig. 8a) and supplemented 

with Se NPs (Figs. 8b,8c).  
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Fig. 6: Hepatic tissue with marked degeneration in A. hydrophila (T1) (a), with gradual 

reduction in the degeneration severity in Se NPs treated (T2) (b), and mild degree of degeneration 

in Se NPs supplemented (T4) (c). H&E X 400. 
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Fig. 7: Renal tissue with heavy interstitial inflammatory cells infiltration associated with 

glomerular degeneration in A. hydrophila (T1) (a). Absence of inflammatory cells infiltration in 

Se NPs supplemented (T2) (b), while massive inflammatory cells infiltration in Se NPs 

supplemented (T4) (c). H&E X 400 



Selenium nanoparticles act as immunostimulant in Cyprinus carpio 
 

 

727 

 

Fig. 8:  Spleen with marked activation of melanomacrophages in A. hydrophila (T1) (a), Se NPs 

supplemented (T2) (b), and Se NPs supplemented (T4) (c) groups. H&E X 400 

DISCUSSION 

 

In the last decade, many researchers (Abdel-Tawwab et al., 2018; Nikapitiya et 

al., 2018; Sherif et al., 2019) stated that nano-materials became widely used in fish 

production for their positive properties (immunostimulant and diseases resistant) and 

also, less toxic compared with their organic and/or inorganic sources.  

The pilot challenge with pathogenic agents is the most reliable test for judging the 

immune system (Köllner et al., 2002).  In a time-dependent manner, C. carpio fed on Se 

NPs supplemented diet (1 mg/kg feed) had a lower mortality rate than the control 

treatment, fish fed on Se NPs supplementation had improved disease resistance against 

the experimental challenge with A. hydrophila, particularly with those in T4 (fed on Se 

NPs for 30 days) which had 13 out 50 survival rate. Similarly, Jobling (2012) observed 

that in many fish species a dose of 0.15 to 0.7 mg/kg of nano-selenium meets the 

optimum requirement needed for the normal growth performance without any nutritional 

disorders.  Supporting our findings, C. carpio feeding a diet supplemented with β-1, 3 

glucan binding protein-based selenium nanowire (0.5 mg, 1 mg, and 2 mg for 30 days) 

could resist aquatic pathogen infection; namely, A. hydrophila, Vibrio parahaemolyticus 

and V. alginolyticus, and showed a high surviving rate (Iswarya et al., 2018). 
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Furthermore, with the same dose, Kumar et al. (2018) stated that Pangasinodon 

hypophthalmus could resist the experimental infection with A. veronii biovar sobria 

showing a low cumulative mortality rate. Furthermore, the immune stimulant, 

antioxidant, bioavailability, and low toxicity properties of Se NPs (0.7 mg/kg) could 

counteract the bacterial challenge in O. niloticus (Neamat-Allah et al., 2019) and C. 

carpio (Saffari et al., 2018). 

 In this study, A. hydrophila could not be isolated from challenged C. carpio at the 

third week after experimental infection in T4 (fed on Se NPs 1 mg/kg feed for 30 days). 

In accordance, Neamat-Allah et al. (2019) stated that the mortality of O. niloticus which 

was challenged with S. iniae ceased at 5th, 12th, and 14th days in, Se NPs, Se, and 

control, respectively, with mortality rates of 93.33%,73.33%, and 26.66%, respectively. 

This indicates that Se NPs speed the recovery and elimination of pathogenic agents. 

The anti-inflammatory cytokine IL-10 was significantly increased (P< 0.05) in C. 

carpio fed on Se NPs whereas, pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 were 

significantly lowered with time compared to the control treatment. In accordance, the 

pro-inflammatory cytokines, IL-8, TNF-α, and transforming growth factor-β were 

significantly (P<0.05) decreased at 0.67–1.46 mg/kg; whereas, IL-10 was down-regulated 

with lower supplementation doses < 0.67 mg/kg (Jingyuan et al., 2020). In the same 

way, IL-10 was decreased in zebrafish and chinook salmon (Oncorhynchus tshawytscha) 

that received lower selenium supplementation diets (Lulijwa et al., 2019; Wang et al., 

2020). In contrast, the anti-inflammatory cytokine in fish is up-regulated in response to 

inflammation and adverse conditions (Saber et al., 2019; Jiang et al., 2020), these 

observations are not in contrast with the present findings, since Se NPs enhanced the 

immune responses (anti-inflammatory cytokines) and it did not initiate an inflammation 

(low pro-inflammatory cytokines). 

The resistance of fish against bacterial infections relies on their immune status. 

Therefore, biochemical parameters in plasma (Davis 2004, Sherif et al., 2021b), total 

protein, and albumin (Ortuno et al., 2001) are good tools to assess the immunity of fish. 

The current findings testified that the TP, ALB, GLO, and GLO fractions (Alpha, beta, 

and gamma) were improved in T4 (fed Se NPs supplementation1 mg/kg feed for 30 days) 

while, no changes was recorded in T2 or T3 (fed on Se NPs for 10 and 20 days, 

respectively). Fish fed on Se had improvements in the serum levels of total protein, 

globulin, and albumin since Se is a part of selenoprotein that helps in albumin syntheses 

(Suzuki et al., 2010; Ashouri et al., 2015; Mansour et al., 2017), total protein and 

albumin in plasma also improved with Se NPs additions (Jingyuan et al., 2020). 

Nevertheless, the decrease in the serum protein contents was observed in fish infected 

with S. iniae due to immunosuppression and/or hepatic dysfunction (Badr et al., 2012).  

Study findings showed an enhancement in a time-dependent manner in the 

antioxidant activity (CAT, GPx, and SOD) of liver of C. carpio fed on Se NPs (1 mg/kg 

feed). In agreement, the activities and gene expression of hepatic antioxidant enzymes 
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(GPx, CAT, and SOD), as well as reduced glutathione (GSH) level, were enhanced at a 

dose of Se 1.06 (P < 0.05) (Kumar et al., 2018; Jingyuan et al., 2020). Noticeably, the 

Se is an active component of glutathione peroxidase enzymes that eliminates the adverse 

impacts of ROS with the (Reeves & Hoffmann, 2009); while, Se NPs had higher 

activities of antioxidant enzymes (GPx, NO, SOD, and CAT) than other Se forms organic 

or inorganic in the experimental fish (Sarkar et al., 2015; Saffari et al., 2018). 

When the antioxidant capacity fails to neutralize the accumulated ROS in cells, 

oxidative stress emerges, resulting in DNA damages, including base pairs aberrations in 

(He et al., 2018; Kassotis et al., 2018). The content of the antioxidant enzymes is an 

important indicator for the health of fish and the integrity of their body tissues and cells. 

Cytogenetic analysis of chromosomes can be used to assess the biological effects of any 

genotoxic substance on fish (Frenzilli et al., 2009). Our findings concerning the activity 

of antioxidant enzymes indicated that Se NPs protect the fish cells from genotoxicity, 

since comet assay, DNA fragmentation rates, and the presence of micronuclei in blood 

cells decreased significantly (P < 0.05) in fish received Se NPs (1 mg / kg feed) mainly in 

T4 (30 days treatment was the most effective period). Antioxidant enzymes GPx, CAT, 

and SOD catalyse the conversion of hydrogen peroxide and fatty acid hydro-peroxides 

into the water and fatty acid alcohol protecting cell membranes against oxidative damage 

(Watanabe et al., 1997), and protecting the cell membranes, DNA, proteins, and lipids 

against oxidative stress (Hodgson et al., 2006). It is worth noting that,  using Se NPs is 

safe (low toxicity) and more bioavailable than the other forms of Se (organic and 

inorganic) (Wang et al., 2007). 

In Fig. (6a), a bacterial infection in C. carpio resulted in severe degeneration and 

areas of necrosis even for the complete absence of hepatocytes, bacterial toxins caused 

upregulation of NO and TNF-α expression. Those reactions stimulate inflammatory 

responses with further hepatic damages (Shimohashi et al., 2000) and necrosis (Shobana 

et al., 2018). In accordance, Chopra et al. (2000) stated that cytotoxic enterotoxin of A. 

hydrophila upregulated pro-inflammatory TNF-α and (Cox2 and Bcl-2). Those cytokines 

mediate tissue degeneration and necrosis (Song et al., 2014). In the present results, the 

enhancements in histopathological features in C. carpio supplemented with Se NPs (Figs. 

6b, 6c) could be attributed to immunological and antioxidant properties of Se. Similarly, 

Se transfers into selenoproteins and stimulates the anti-inflammatory and anti-apoptotic 

effect with down regulation of TNF-α with further down-regulation of cyclooxygenase 

(Cox2) and B-cell lymphoma (Bcl2) (Huang et al., 2012; Qian et al., 2019; Fan et al., 

2020). In addition, Avery and Hoffmann (2018) denoted that the Se deficiency is 

accompanied with up-regulating some inflammatory responses. 

In Fig. (7a), the fish kidney was infiltrated with inflammatory cells after A. 

hydrophila infection, which is explained by the findings of Majumdar et al. (2007) who 

stated that A. hydrophila enhances macrophages which are the first line of defense against 
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the microbial challenge. In the present results, fish supplemented with Se NPs (T2) for 10 

days (Fig. 7b) had low cellular infiltration in kidney tissue compared with those 

supplemented for longer periods (30 days) in T4 (Fig. 7c). Nano-particles affect and 

modulate the neutrophil's functions in a time-dependent and concentration manner 

(Collins & Meyer 2009; Griffitt et al., 2009; Combs et al., 2011). Different findings 

were reported by Jovanovic et al. (2011) who mentioned that high levels of nanoparticle 

accumulation in tissues resulted in a reduction of inflammatory cell infiltration and 

subsequently immune response against bacterial infection. In agreement, do Carmo et al. 

(2018) and Shobana et al. (2018) observed degeneration and necrosis in renal tubule and 

glomeruli with hypotrophy.  

As shown in Fig. (8a), a marked proliferation of melano-macrophages in the spleen 

of C. carpio was experimentally infected with A. hydrophila. Spleen tissue formed of 

melanomacrophage centres which are an aggregation of highly pigmented macrophages 

playing an immunological role (Kipp et al., 2009). Changes in the number, size, and 

cellular content occurred in response to microbial challenge (Daeron, 1997). Similar 

changes in the spleen (marked proliferation of melano-macrophages) were observed in C. 

carpio fed on a diet supplemented with Se NPs for 10 days (Fig. 8b) and 30 days (Fig. 

8c). Those histopathological alterations were due to the accumulation of Se NPs in the 

spleen which is one of the prediction sites of bioaccumulation (Gutscher et al., 2009). 

 

CONCLUSION 

 

Feeding on a diet supplemented with selenium (nano-size) improves the immune 

and antioxidative status of C. carpio. Serum total protein, globulin, levels of anti-

inflammatory (IL-10), as well as antioxidant enzymes (GPx, CAT, and SOD) in serum 

were gradually and significantly enhanced with fish fed on Se NPs (1 mg / kg fish feed). 

Due to those improvements, C. carpio could resist bacterial infection as no bacteria were 

isolated from fish fed for 30 days on supplementation at the third week after experimental 

infection. C. carpio, fed Se NPs for 30 days, showed lower histopathological lesions, 

DNA damages, and micronuclei even after bacterial infection. Thus, it could be safe to 

feed common carp (C. carp) with Se NPs without any threat to fish health.  
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